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SUMMARY

High-fat-diet (HFD)-induced obesity is a major
contributor to diabetes and cardiovascular disease,
but the underlying genetic mechanisms are poorly
understood. Here, we use Drosophila to test the
hypothesis that HFD-induced obesity and associ-
ated cardiac complications have early evolutionary
origins involving nutrient-sensing signal transduc-
tion pathways. We find that HFD-fed flies exhibit
increased triglyceride (TG) fat and alterations in
insulin/glucose homeostasis, similar to mammalian
responses. A HFD also causes cardiac lipid accu-
mulation, reduced cardiac contractility, conduction
blocks, and severe structural pathologies, reminis-
cent of diabetic cardiomyopathies. Remarkably,
these metabolic and cardiotoxic phenotypes eli-
cited by HFD are blocked by inhibiting insulin-TOR
signaling. Moreover, reducing insulin-TOR activity
(by expressing TSC1-2, 4EBP or FOXO), or
increasing lipase expression—only within the
myocardium—suffices to efficiently alleviate cardiac
fat accumulation and dysfunction induced by HFD.
We conclude that deregulation of insulin-TOR
signaling due to a HFD is responsible for mediating
the detrimental effects on metabolism and heart
function.

INTRODUCTION

Obesity has grown to epidemic proportions globally, with

more than 1.5 billion adults overweight and 400 million of

them considered obese. Increasing evidence indicates that

excessive dietary accumulation of lipids (i.e., ‘‘obesity’’) is

a high risk factor in causing deleterious effects on metabolism

and heart function and has been strongly linked to the

progression of heart disease and type 2 diabetes (Szendroedi

and Roden 2009; van Herpen and Schrauwen-Hinderling

2008). Investigating the origin and deleterious effects of

high-fat-diet (HFD)-induced obesity and its genetic mediators

is important in understanding the mechanisms that contribute

to obesity-associated secondary diseases, led by heart

disease.
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However, the mechanisms that underlie HFD pathophysiology

have yet to be elucidated and include theories that the cause of

obesity is a recent evolutionary genetic adaptation to alternating

periods of famine and excess (Neel et al., 1998). Alternatively, the

potential for HFD-induced obesity may have arisen early in

evolution via nutrient-sensing pathways that coordinate metab-

olism. Here, we used the Drosophila model to investigate the

genetic mechanisms that may underlie HFD-induced obesity

and cardiac dysfunctions. Drosophila is well suited to study

this hypothesis. For example, the way the human heart is spec-

ified during embryogenesis relies on mechanisms and gene

networks that were first elucidated in Drosophila (Bodmer

1995; Harvey 1996), which has subsequently been validated in

many ways in mammals (Cripps and Olson 2002; Zaffran et al.,

2002; Ocorr et al., 2007a; Neely et al., 2010). Not only is the

embryology of cardiac specification equivalent between verte-

brates and invertebrates, but nearly the entire complement of

control genes and interactions is conserved and even partially

interchangeable between vertebrates and flies (Bodmer and

Venkatesh 1998; Cripps and Olson 2002). Since there is such

a deep evolutionary conservation in the formation of the heart,

it is likely that many aspects of heart function are also conserved,

including themechanisms that control or influence how the heart

responds to HFD-induced obesity. In addition, Drosophila has

already been established as an excellent model for studying

the genetic control of metabolism and nutrient-sensing path-

ways (Baker and Thummel 2007; Leopold and Perrimon 2007;

Kim and Rulifson 2004; Oldham and Hafen 2003). The insulin

and TOR pathways are highly conserved regulators in the control

of metabolism. Although the molecular basis of regulating and

coordinating metabolic homeostasis is far from being under-

stood, manipulating insulin or TOR signaling in species ranging

from yeast to humans dramatically influences metabolic

responses, such as lipid and glucose homeostasis (Arking

et al., 2005; Saltiel and Kahn 2001; Tatar et al., 2003; Vellai

et al., 2003; Wang et al., 2005).

The genetic simplicity of the Drosophilamodel combined with

recently established heart function assays (Ocorr et al., 2007b,

2007c; Taghli-Lamallem et al., 2008; Wessells et al., 2004; Fink

et al., 2009) make it possible to probe the genetic mechanisms

of how a HFD affects heart function. Our findings indicate that

flies on a HFD become obese, which is dependent on insulin-

TOR signaling as well as regulators of lipid metabolisms (triacyl-

glycerol lipase and fatty acid synthase [FAS]). We show that both

systemic and (adipose) tissue-specificmanipulations canprotect

the fly from HFD-induced systemic lipid accumulation and other
etabolism 12, 533–544, November 3, 2010 ª2010 Elsevier Inc. 533
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Figure 1. HFD-Induced Obesity Leads to

Metabolic Syndrome in Flies

(A) TG content (expressed as relative change from

NF flies) of 10- to 15-day-old females on HFD for

5 days. The w1118 fly strain was used as wild-

type (WT) in all experiments unless indicated

otherwise. WT flies were used under four different

concentrations of saturated fats. At least three

independent experiments were done for each

time point for all TG experiments. The concentra-

tions used were 3% (n = 46), 7% (n = 49), 15% (n

= 31), 30% (n = 81) for 5 days. WT type flies (n =

107) showed a dose-dependent increase in TGs

(*p < 0.05, **p < 0.01, ***p < 0.0001).

(B) TG content (expressed as relative change from

NF flies) of 10- to 15-day-old females on HFD for

5 days. The w1118 fly strain was used for the

wild-type (WT) flies. WT flies were used two dif-

ferent types of saturated fats. Myristic and lauric

acid are both the major components of coconut

oil. The amount of each fatty acid corresponds to

its respective amount found in the 30% HFD. At

least three independent experiments were done

for each time point for all TG experiments. The

concentrations used were lauric acid 14% (n =

36), while myristic acid was 5% (n = 35) and finally

30% of the original coconut oil mixture for 5 days.

WT type flies showed an increase in TGs (*p < 0.05,

**p < 0.01, ***p < 0.0001).

(C) Glucose content of female WT flies fed a 30%

HFD (normalized toWT NF-fed flies of each appro-

priate age). Trehalose present in the hemolymph

was converted to glucose (see the Experimental

Procedures). Since 30% HFD gave us the stron-

gest most consistent results, we used 30% for all

of the remaining experiments in this study. At least

three independent experiments were done for

each time point. After 2 days, glucose decreases,

then rapidly increases after 5 and 10 days

(*p < 0.05, **p < 0.01, ***p < 0.0001). A minimum

of 35 flies were used for each variable at each

time point.

(D) Relative Dilp2 transcript levels in WT flies fed

a 30% HFD for 2, 5, and 10 days. Dilp2 levels

rapidly increase after 2 days, then begin to

decrease the longer the fly remains on a HFD

(***p < 0.0001). All qPCR were done in triplicate.

(E) Graphical representation of the effects of HFD-

induced obesity on geotaxis. Flies were filmed for

5 s, then the movie was analyzed and individual

flies were counted at each height, 1 cm being the lowest portion of the vial with 7 cm being the highest part of the vial. A minimum of 150 flies were used for

each variable. All flies eventually moved to the top of the vial, but we only counted the position of the flies to the allotted 5 s time span. Flies on a 30%HFD showed

a significant decrease in geotaxic activity, with approximately 80% remaining in the bottom of the vial for the allotted time span.

Error bars represent SEM.
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deleterious effects of high dietary fat, such as heart dysfunction.

Moreover, cardiac-specific inhibition of TOR downstream of

TSC1-2, overexpression of FOXO, or lipase protects the heart

dysfunction in otherwise obese flies due to exposure to HFD

conditions. Importantly, our evidence suggests that the meta-

bolic and cardiac dysfunction caused by a HFD is evolutionarily

and functionally conserved and mediated by a nutrient-sensitive

circuit, which includes insulin-TOR signaling and the control of

lipid metabolism. Thus, targeted inhibition of the TOR pathway

or lipid biogenesis may provide new therapeutic interventions

in obesity and its adverse effects on heart function.
534 Cell Metabolism 12, 533–544, November 3, 2010 ª2010 Elsevier
RESULTS

Flies Exhibit Similar Phenotypes as Mammalian
Metabolic Syndrome
To investigate the conserved genetic mechanisms involved in

lipid accumulation in Drosophila, we first determined the effects

of a HFD on the fly’s metabolism. We found a dose-dependent

increase in whole-body TG content per body mass when flies

were fed diets containing 3%–30% saturated fats from coconut

oil for 5 days (Figure 1A, see Figure S1A available online). This

indicates that the fly accumulates lipids in a dose-dependent
Inc.
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fashion. Next, we tested if the major individual fatty acids (FAs) in

the coconut oil could also cause an increase in TGs. We found

that either lauric or myristic acid (the main components of

coconut oil) caused a significant increase in whole body TGs

(Figure 1B, Figure S1B).

In mammals, increased levels of TGs have been found to be

a major risk factor for metabolic syndrome, insulin resistance,

and the onset of type 2 diabetes (Ouwens et al., 2005; Van Gaal

et al., 2006). In mammals after initial exposure to HFD, insulin

release is increased,which corresponds to a decrease in glucose

levels. However, upon chronic exposure to HFD, glucose levels

begin to increase as the periphery becomes more insulin resis-

tant. To determine if changes in insulin and glucose homeostasis

by HFD-induced obesity are functionally conserved, we tested

changes in glucose and insulin homeostasis in flies fed a HFD.

Indeed, after 2 days on a 30% HFD, flies showed a decrease

in total glucose accompanied by an increase in Drosophila

insulin-like peptide 2 (Dilp2) transcript levels (Figures 1C and

1D). After 5 and 10 days on HFD, glucose levels rose while

Dilp2 levels continued to drop (Figures 1C and 1D). Another

marker for monitoring insulin-glucose homeostasis is phosphor-

ylated Akt (pAkt), which decreases under HFD conditions,

thereby lowering glucose uptake in mammals (Manning, 2004).

In flies on a HFD, pAkt is progressively reduced (Figure S2A),

compared to flies on a normal food (NF) diet. We also find that

under a HFD the TOR pathway is activated, as measured by

increased 4EBP and S6K phosphorylation (Figure S2B).

Together, these data suggest that the Drosophilamodel exhibits

central aspects of metabolic syndrome and obesity upon HFD.

Excess dietary fat consumption has been linked with

increased nonadipose fat deposition, which is thought to be a

contributing factor in instigating several secondary diseases

such as type II diabetes, nonalcoholic fatty liver disease, colon

cancer, and cardiovascular disease (Schaffer 2003; Unger

2003; van Herpen and Schrauwen-Hinderling 2008). Therefore

we investigated the accumulation of lipids in both adult adipose

tissue (fat body, FB) and the midgut, which are the fly’s major

organs for lipid storage and utilization. Using oil redO tomeasure

the changes in fat accumulation, we find an increase in lipid

droplet staining in HFD-treated flies compared to NF fed controls

both in FB and gut (Figure S3). These findings indicate that when

fed a HFD flies accumulate excess fat in both adipose and non-

adipose tissue, as seen in mammals.

A recent study found that upon fat accumulation activity levels

tend todecrease (Wareham, 2007). Therefore,wedetermined the

activity levels of flies under HFD conditions. Normally flies prefer

to move against gravity (negatively geotaxic) (Gargano et al.,

2005). When testing for changes in geotaxic activity, we found

that HFD-fed flies exhibit a substantial reduction in geotaxic

behavior (Movies S1 and S2), with most flies remaining at the

bottom of the vial during the experimental time (Figure 1E).

They will eventually climb to the top, albeit more slowly and

less vigorously. These data suggest that consumption of a HFD

has adverse, lethargic-like effects on the flies’ activity levels.

Increased Dietary Fat Causes Severe Functional
and Structural Changes in the Fly Heart
When rodents are fed a HFD, they show signs of increased

accumulation of cardiac TGs, accompanied by hypertrophy
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and decreases in fractional shortening (FS), a relative measure

of cardiac contractility (Fang et al., 2008; Sowers, 2003). It

may be the increased adipose and circulating lipid levels that

cause a disturbance of cardiac performance. For example,

increased expression of lipid transporters in the heart leads to

elevated fat in the myocardial cells accompanied by cardiac

dysfunction (Chiu et al., 2005), although the underlying mecha-

nisms have yet to be elucidated. To determine if ‘‘fat’’ flies

also show increased cardiac TG levels and exhibit deteriorating

heart function, we examined them under HFD conditions. After

5 days on a HFD, we observed elevated cardiac TG levels (Fig-

ure 2A) and progressively altered contraction patterns (Figures

2B–2G, Movies S3–S5). We then investigated other cardiac

dysfunctions and observed a reduced FS due to a smaller dia-

stolic diameter (Figures 4C and 4D), reminiscent of a restrictive

cardiac phenotype (see Cammarato et al., 2008). In addition, we

found noncontractile portions of the heart, dysfunctional inflow

valves (ostia), and increased incidences of partial conduction

blocks (anterior and posterior heart beats at a different rate)

(Figures 2D–2G, Movies S6–S8). We also found severe defects

and disorganization in the myofibrillar structure of the heart of

flies fed a HFD (Figures 2H1–2H200). Taken together, these

results dramatically illustrate that a HFD in Drosophila adversely

affects heart function, and that in both mammals and flies a HFD

compromises cardiac activity and structural integrity.

Systemic Inhibition of the TOR Pathway Prevents
Excess Fat Accumulation
It is unclear howobesity increases the risk of heart disease. Since

the TOR pathway has been linked to nutrient sensing and the

modulation of aging heart function in Drosophila (Luong et al.,

2006; Wessells et al., 2009), we tested whether TOR signaling

is involved in the regulation of lipid levels related to cardiac

dysfunction. To determine if reducing TOR function can

alter the effects of HFD-induced obesity, we fed hypomorphic

TOR7/P mutant flies (Luong et al., 2006) a HFD and observed no

increase in TG levels, compared to flies on NF (Figure 3A). The

TOR mutants show lower TG levels on both NF and a HFD,

compared towild-type onNF (Figure S1C). These results suggest

that reducingTOR function is either accelerating fat catabolismor

decreasing lipid anabolism or storage. To test possible down-

stream mechanisms that may contribute to this phenotype, we

tested the change in transcript levels of genes involved in lipid

metabolism: Brummer (ATGL) lipase (Bmm) (Gronke et al.,

2005) and fatty acid synthase (FAS) (Valet et al., 2002). We found

that Bmm transcript levels are significantly increased, whereas

FAS levels are decreased, in TOR7/Pmutants under both NF and

HFDconditions (Figures 3Band 3C), suggesting that TORactivity

regulates the balance between lipid anabolism and catabolism,

possibly due to increased lipase and decreased FAS activity.

We tested this idea further by using oil red O, a lipid droplet

marker, to investigate the changes in fat accumulation in both

the FB and gut. Indeed, HFD-fed TOR mutants showed no

increase in the quantity of lipid droplets in both the FB and gut,

and fat levels were generally lower (Figure S3).

To determine if TOR-dependent prevention of HFD-induced

obesity extends to other HFD-mediated phenotypes, we tested

the geotactic activity of the TOR mutants under NF and HFD

conditions. We find that in TOR mutants these activity levels
etabolism 12, 533–544, November 3, 2010 ª2010 Elsevier Inc. 535
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Figure 2. HFD Treatment Causes Cardiac Dysfunction

(A) TG content from female hearts on NF and HFD for 5 days (normalized to WT NF hearts). TOR7/P mutant flies were examined under the same food conditions.

At least three independent experiments were done for each time point for all TG experiments (with approximately 90 hearts were used for each condition and

genotype). WT type flies showed an increase in TGs (*p < 0.05), while the TOR mutants had significantly lower levels of TGs that did not increase on a HFD.

(B) Bar graph representation of changes in heart period for a population of approximately 24 flies’ hearts from each food type. A dose dependent effect is shown

for the increase in dietary fat content (***p < 0.0001). A minimum of 22 flies were used for each dietary condition.

(C) M-mode traces prepared from high-speed movies of semi-intact preparations on NF, and 15% and 30% HFDs for 5 days. Note the changes in the M-mode

traces as the concentration of fat increases. Red bars indicate systolic and diastolic diameters.
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Figure 3. Reducing TOR Function Prevents

HFD Obesity

(A) Comparison of changes in TG levels (ex-

pressed as relative change from NF flies) between

WT, TOR7/P, and systemic TSC1-2 overexpression

(arm > TSC1-2 flies). At least three independent

experiments were performed for each time point

for all TG experiments. A significant increase in

TGs were seen in WT flies (***p < 0.0001) fed a

30% HFD for 5 days, while TOR mutants (n = 46)

startedwith lower levels of TG under NF, and these

levels did not increase even on 30% HFD (n = 48).

Arm > TSC flies (n = 30) had similar levels as the

WT control flies, but these levels did not increase

when placed on a HFD.

(B) Relative Bmm (ATGL Lipase) mRNA transcript

levels. There is a slight increase in Lipase levels

in WT under 30% HFD conditions (p < 0.05).

In contrast, TOR7/P mutants have a 3-fold in-

crease in Bmm levels under NF conditions and

remain high under HFD conditions. All qPCRs

were done in triplicate.

(C) Expression of FAS transcript levels in WT and

TOR7/Pmutants under both NF and 30%HFD con-

ditions for 5 days. TOR7/P flies show significantly

lower FAS mRNA levels than the corresponding

WT flies on the same diets (**p < 0.01). All qPCR

were done in triplicate.

(D) Graphical representation of the effects of HFD-

induced obesity on geotaxis. Flies were filmed for

5 s, then the movie was analyzed and individual

flies were counted at each height, 1 cm being the

lowest portion of the vial, with 7 cm being the high-

est part of the vial. A minimum of 150 flies were

used for each variable. All flies eventually moved

to the top of the vial, but we only counted the posi-

tion of the flies to the allotted 5 s time span. Unlike

WT, TOR7/P are impaired in their geotaxic ability

that was exacerbated when fed a HFD.

Error bars represent SEM.
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are already impaired under NF, and this phenotype is exacer-

bated when flies are placed on a HFD (Figure 3D), which

suggests that the protection by the ubiquitous inhibition of

TOR activity is not a global response but may be selective to

tissue type and lipid metabolism. These data are consistent

withmice that are deficient in TOR complex 1 (TORC1) in skeletal

muscles, which exhibit a 40% decrease in voluntary wheel

activity (Bentzinger et al., 2008).
(D) A sketch of a dissected semi-intact heart preparation. Arrows indicate to the

(E–E0) Representation of partial conduction blocks of hearts using M-modes from

the heart displaying a regular heart beat. (E0) M-mode from the posterior portion

pared to I.

(F–F0 ) Representation of a portion of the heart that is noncontractile using M-mod

heart displays regular beating pattern. (F0 ) M-mode taken from the posterior por

(G) Side bar graph of heart phenotypes seen under HFD conditions with increasin

blocks, noncontractile myocardial cells, dysfunctional ostia, and no noticeable de

fashion. A minimum of 26 heart movies were analyzed for each dietary condition

(H) Fluorescent micrographs of hearts on NF andHFD for 5 days at 103 and 253 o

Adult heart of a WT flies on NF. (10) Magnified anterior NF-fed WT heart region. No

flies on HFD for 5 days. Note the degeneration of the regular myofibrillar structure

on HFD. Note the disorganization of the circular myocardial myofibrils. (3) Adult he

dation of heart structure, and the diameter is not constricted. (30) Magnified anterio

under HFD conditions compared to NF-fed WT (10).
Error bars represent SEM.

Cell M
Systemic Inhibition of the TOR Pathway Protects
the Heart against HFD-Induced Cardiac Dysfunction
Next, we tested whether global reduction of TOR function pro-

tects the heart’s performance under HFD conditions. First, we

tested whether the elevated TGs due to a HFD are reduced in

the heart itself in TOR7/P mutants. Indeed, reduced systemic

TOR function causes a significant decrease in cardiac TGs,

which remains low even under HFD conditions similar to the
area the corresponding M-modes shown in (E)–(F0).
different portions of the same heart. (E) M-mode from the anterior portion of

of the same heart displaying a faster and erratic heart beating pattern, com-

es of different heart regions. (F) M-mode taken from the anterior portion of the

tion of the same heart showing poor or no contractions.

g amount of fat. The heart phenotypes used in this graph are partial conduction

fects. The instances of all three phenotypes increase in a fat-dose-dependent

.

ptical magnification. Adult hearts are stained with Alexa Fluor 594 phalloidin. (1)

te the regular arrangements of myofibrillar organization. (2) Adult heart of a WT

and the decrease in heart tube diameter. (20) Magnified anterior WT heart region

art of a TOR7/P mutant on a HFD for 5 days. Note that there is little to no degra-

r heart region of a TOR7/P mutant. There is little change in myocardial structure

etabolism 12, 533–544, November 3, 2010 ª2010 Elsevier Inc. 537
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Figure 4. Reducing TOR Function Prevents HFD-Induced Obesity Cardiac Dysfunction

(A) M-mode traces of dissected WT flies on NF and 30% HFD, TOR7/P mutants and arm > TSC1-2 on NF and 30% HFD. No significant change was seen in TOR

mutant nor arm < TSC heart M-modes on HFD when compared to WT on NF.

(B) Bar graph of cumulative heart periods for WT, TOR mutants (n = 25, 36 respectively) and arm > TSC1-2 flies (n = 20 [NF], 21 [HFD]) under NF and HFD condi-

tions. No change in heart period from WT under NF was seen in TOR mutants and arm > TSC1-2 flies under HFD conditions.

(C) Bar graph of changes in FS. A decrease in FS in WT flies was seen after 5 days on a 30%HFD (p < 0.001). While no change was seen in FS in neither the TOR

mutants nor the arm > TSC1-2 flies under a HFD.

(D) Bar graph of combined diastolic diameter data of WT and TOR mutant and arm > TSC1-2 hearts under NF and 30% HFD conditions. No change was seen in

diastolic diameter in TOR mutants and arm > TSC1-2 flies under a HFD.

(E) Bar graph of systolic diameter of fly heart as in (F). No decrease in systolic diameter was seen after 5 days on a 30% HFD for any of the strains tested.

(F) Graphical representation of heart phenotypes as in Figure 2G. No significant change to the heart phenotype of TOR7/P mutants or with systemic TSC1-2 over-

expression under HFD could be detected, when compared to WT flies. A minimum of 20 individual fly heart movies were analyzed.

Error bars represent SEM.
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results from whole-body TGs (Figure 2A). We then show that the

TOR mutants exhibit considerable protection against deteriora-

tion of heart function when placed on a HFD. Remarkably, flies

with reduced TOR function exhibit unchanged heartbeat and

contractility parameters under NF or HFD, comparable to wild-

type under NF conditions (Figures 4A–4E, Movie S9). Similarly,

the incidences of conduction blocks, dysfunctional ostia, and

noncontractile myocardial regions were as low as in the TOR

mutants under NF or HFD conditions compared to wild-type flies

on NF (Figure 4F). We also find that the myocardial structure
538 Cell Metabolism 12, 533–544, November 3, 2010 ª2010 Elsevier
remains intact and similar to WT on NF (Figures 2H3–2H30).
These findings suggest that a decrease in TOR activity initiates

lipid breakdown and decreased lipid synthesis, which may

help prevent the adverse effects of a HFD on the heart.

Metabolic homeostasis is a balance between storage and

expenditure that is regulated by genetic and environmental

interactions, both polygenic and multiorgan in nature. To eluci-

date how reduced TOR signaling alters the HFD response at

the tissue level, we used the UAS/Gal4 system (Brand and Per-

rimon, 1993) to inhibit TOR pathway components both in the
Inc.



Cell Metabolism

A High-Fat Diet Obesity Model in Drosophila
whole organism and in selective tissues. First, we overexpressed

the TOR inhibitor TSC1-2 ubiquitously using the arm-Gal4 driver,

which resulted in a similar rescue of the HFD-induced increase in

TGs and aberrant heart phenotypes (Figure 4), as with TOR loss-

of-function mutants. Moreover, global inhibition of TOR transla-

tional effectors (eIf4E and S6K) by 4EBP (Miron et al., 2001) or

dominant-negative S6K overexpression (S6KDN) (Hennig and

Neufeld, 2002), respectively, also elicits a protective cardiac

phenotype against HFD-induced abnormalities (data not shown),

similar to TSC1-2 overexpression (Figure 4). These results indi-

cate that systemic inhibition of TOR signaling protects the animal

against the adverse cardiac effects of a HFD and that multiple

TOR-dependent effectors may contribute to TG accumulation

and cardiac dysfunction.

Adipose-Specific Manipulation of Insulin-TOR Signaling
Affects Obesity Phenotypes
In insects, the FB is an important organ for lipid storage and

hormonal regulation and is functionally comparable to the verte-

brate liver and adipose tissue. Therefore, we testedwhether inhi-

bition of TOR signaling in the fly’s FB can prevent the HFD-

induced obesity and heart phenotypes. Expression of TSC1-2,

S6KDN, and 4EBP specifically in the FB showed a phenotype

similar to the ubiquitous inhibition of TOR exposed to a HFD.

Specifically, FB-restricted expression abolished the normally

observed increase in TGs, and there are no significant changes

in cardiac function of all these genotypes when subjected to

HFD conditions (Figure 5, Figure S4). Thus, genetic manipula-

tions inhibiting TOR pathway activation specifically in the FB

resulted in protection from HFD-induced fat accumulation and

cardiac dysfunction. This result also suggests that manipulation

of TOR in the FB regulates the organism’s systemic lipid metab-

olism, which in turn influences proper heart function.

Since we find that TOR mutants exhibit an increase in Bmm

and a decrease in FAS transcript levels (Figures 3B and 3C),

we tested if expression of Bmm or FAS-RNAi in the FB protects

against HFD-induced increases in body fat and heart dysfunc-

tion. Indeed, we find that expression of Bmm in the FB prevents

systemic TG accumulation and protects against abnormalities in

heart function under HFD, similar to FB expression of TSC1-2

(Figure 5, Figure S4). When we tested the effects of FAS knock-

down in the FB, we found a partial decrease in TG levels and

a moderate attenuation of HFD-associated heart defects (Fig-

ure 5, Figure S4). These findings suggest that prevention of fat

accumulation by increasing lipolysis or reducing lipogenesis

can mimic the metabolic and cardiac protection from HFD

observed by reduced TOR signaling.

It has been shown that loss of insulin signaling in the murine

adipose leads to lower circulating insulin levels and prevents

obesity (FIRKO mouse; Bluher et al., 2002). Therefore we tested

if altering insulin signaling in the FB had physiological conse-

quences similar to TOR inhibition. To achieve this, we expressed

the negative effector of insulin signaling, FOXO, in the FB. This

also limited the accumulation of lipids, as we observed for TOR

inhibition and Bmm lipase expression, and protected the heart

from the adverse effects of excess lipid accumulation (Figure 5,

Figure S4). Thus, reduced insulin-TOR signaling in the FB

prevents systemic dyslipidemia and protects the heart (and

presumably other organs) from lipid overload.
Cell M
Autonomous Protection of the Heart from HFD
by Cardiac Inhibition of Insulin-TOR Signaling
The above findings raise the question of whether manipulating

insulin-TOR signaling in the heart itself is sufficient to protect

the heart against the effects of a HFD. To test this, we expressed

TSC1-2, 4EBP, and S6KDN specifically in the myocardial cells

of the heart and found that the systemic TG levels show the

same increase when fed a HFD, as did wild-type flies (Figure 6A,

Figure S5A). Remarkably, we also observed that myocardial

expression of both 4EBP and S6KDN was sufficient to protect

against HFD-induced cardiac abnormalities, despite elevated

systemic lipid levels (Figure 6, Figure S5B). However, unlike all

other TOR inhibitory manipulations, overexpression of TSC1-2

in the heart did not confer a robust protection from a HFD-

inflicted insult to the heart (Figure 6, Figure S5B). To further

confirm that inhibition of TOR itself was sufficient to prevent

HFD-induced cardiac dysfunction, we expressed a dominant-

negative form of TOR, TORTED (Hennig and Neufeld, 2002), in

the heart and found similar cardiac protection, as with 4EBP

and S6KDN, against the adverse effects of a HFD (Figure 6),

comparable to the systemic or FB-specific manipulations

(Figure 5).

To determine if elevated lipase activity is a possible mecha-

nism downstream of reduced TOR activity in the protection of

the heart, we directly expressed the Bmm lipase in the myocar-

dial cells of flies exposed to a HFD. We found that increased

cardiac lipase expression protected the hearts against HFD-

associated dysfunction, yet the systemic TG levels were

increased under a HFD, as in wild-type (Figure 6A, Figure S5B).

We also tested heart-specific FAS knockdown and observed

similar protective phenotypes to those observed with Bmm

overexpression or inhibition of TOR signaling downstream of

TSC1-2 (Figure 6, Figure S5B). These findings strongly imply

that reduced cardiac TOR signaling autonomously protects the

heart’s susceptibility to a HFD by altering lipid metabolism.

Since adipose FOXO expression protects against HFD-

induced cardiac malfunction (Figures 5B and 5C) and cardiac

FOXO expression protects against cardiac aging (Wessells

et al., 2004), we also tested whether FOXO activity in the heart

under HFD conditions is also protective. Indeed, we find that

the expression of FOXO in myocardial cells autonomously

protects the heart from the adverse effects of a HFD, but as

expected not against overall body fat accumulation (Figure 6A).

We then tested if altering downstream insulin-TOR signaling in

the heart tissue would affect lipid accumulation with the heart.

We found no significant increase in heart-specific TG accumula-

tion in HFD hearts when overexpressing either FOXO or Bmm

(Figure S5C). We also found that under NF conditions Bmmover-

expression had significantly lower levels of heart TGs under

NF conditions then WT controls (Figure S5C). These findings

correlate well with our previous data showing a decrease in TG

accumulation when inhibiting insulin-TOR or increasing lipase

activity. Taken together, these results suggest that moderate

reduction in insulin-TOR signaling prevents HFD-induced

obesity and cardiac dysfunction (Figure 7). It will be interesting

to see whether FOXO acts upstream of TOR effectors (i.e.,

4EBP) in protecting the heart from lipotoxicity, as it does in

reducing the decline of cardiac performance with age (Wessells

et al., 2009).
etabolism 12, 533–544, November 3, 2010 ª2010 Elsevier Inc. 539
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Figure 5. Fat Body-Specific Inhibition of TOR Prevents Obesity and Heart Phenotypes

(A) Changes in TG content of WT and FB-specific (lsp-Gal4) expression of TSC1-2 (n = 36), S6KDN (n = 36), 4EBP (n = 34), FOXO (n = 48), Bmm (n = 36), and FAS-

RNAi (n = 34). WT flies show a significant increase in TGs, while all of the other flies show no significant increase in TG levels after 5 days on 30% HFD.

(B) Bar graph of relative change in heart dysfunction for FB-specific (lsp-Gal4) expression of TSC1-2 (n = 24), S6KDN (n = 36), 4EBP (n = 24), UAS-FOXO (n = 36),

UAS-Bmm (n = 36), and UAS-FAS-RNAi (n = 24). Only FAS-RNAi had amoderate increase in the severity of all three cardiac dysfunction phenotypes (see C) when

compared to the same genotype under HFD.

(C) Side bar graph of individual aberrant heart phenotypes for WT and FB-specific expression of TSC1-2, S6KDN, 4EBP, FOXO; FAS-RNAi; and Bmm. The only

strain to exhibit a moderate increase in heart abnormalities under a HFD was FAS-RNAi. A minimum of 24 individual fly heart movies were analyzed for each

genotype and diet variation.

Error bars represent SEM.
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DISCUSSION

HFD-induced obesity is associated with an increased risk for

diseases, including cancer, diabetes, and heart disease. The

polygenic and/or multiorgan nature of HFD-induced obesity

makes it difficult to determine the relative contribution to each

of these diseases. In order to examine these complicated inter-

actions in a simple system, we established a HFD-induced

obesity model in Drosophila to elucidate the underlying mecha-

nisms. We used the genetic versatility of the Drosophila model

along with sophisticated cardiac function assays to investigate
540 Cell Metabolism 12, 533–544, November 3, 2010 ª2010 Elsevier
the effects of insulin-TOR-mediated metabolic regulation and

the crosstalk between organs exposed to excess dietary fat.

We find that HFD-fed flies become obese, develop metabolic

syndrome, and exhibit severe symptoms of cardiac lipotoxicity.

The deleterious HFD-induced effects are alleviated by genetic

manipulations of metabolic regulators or by directly altering lipid

metabolism either systemically, in adipose tissue, or specifically

(autonomously) in the heart.

We provide evidence that Drosophila fed a HFD exhibit central

features of mammalian metabolic syndrome, including elevated

lipid levels and changes in insulin and glucose homeostasis.
Inc.
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Figure 6. Myocardial-Specific Inhibition of TOR Autonomously Blocks HFD Heart Effects Despite Obesity

(A) Relative changes in TG content of WT and myocardial-specific expression (GMH5-Gal4) of TSC1-2 (n = 36), TORTed (n = 36), S6KDN (n = 48), 4EBP (n = 36),

FOXO (n = 35), Bmm (n = 48), and FAS-RNAi (n = 36). All flies tested show a significant increase in TGs levels after 5 days on 30% HFD.

(B) Bar graph of relative change in heart dysfunction for myocardial-specific (GMH5) expression of TSC1-2 (n = 23), TORTED (n = 24), S6KDN (n = 35), 4EBP (n = 42),

FOXO (n = 22), Bmm (n = 33) and FAS-RNAi (n = 25). Only TSC1-2 had an increase in the incidences of all three phenotypeswhen compared to the same genotype

under HFD.

(C) Side bar graph of individual aberrant heart phenotypes for myocardial-specific (GMH5) expression of TSC1-2, TORTED, S6KDN, 4EBP, FOXO, and Bmm. Only

TSC1-2 had an increase in the incidences of all three phenotypes when compared to the same genotype under HFD. A minimum of 22 individual fly heart movies

were analyzed for each genotype and diet variation.

Error bars represent SEM.

Cell Metabolism

A High-Fat Diet Obesity Model in Drosophila
Furthermore, the effects of the HFD-induced obesity on the heart

are profound, including diminished contractility, conduction

blocks, and structural defects. The HFD-induced elevation in TG

levels is an important marker for this collection of phenotypes, as

high TG levels are associatedwith disruptions of lipid and glucose

homeostasis, mitochondrial function, and other processes

(Schaffer 2003; Unger 2003; Ouwens et al., 2005; Van Gaal et al.,

2006; van Herpen and Schrauwen-Hinderling 2008), all of which

may contribute to high lipid accumulation and heart phenotypes.

Because the insulin-TOR pathway is a key integrator of metab-

olism, we initiated a comprehensive investigation of both the
Cell M
systemic and tissue-specific effects of altering insulin-TOR

signaling under HFD conditions. We found that reduction of

pathway activity blocks HFD-induced increased lipid levels in

Drosophila. Recent studies have begun to connect insulin-TOR

signaling to the regulation of lipid metabolism in flies and

mammals (Luong et al., 2006; Li et al., 2010; Lee et al., 2010;

this study). For example, the increased lipid synthesis caused

by insulin treatment is blocked by reduction of TOR function,

and the activation of the TOR pathway leads to fat accumulation

(Luong et al., 2006; Porstmann et al., 2008; Li et al., 2010).

In addition, TOR function in lipogenesis (and heart function)
etabolism 12, 533–544, November 3, 2010 ª2010 Elsevier Inc. 541



Figure 7. Model of Insulin-TOR Pathway Function in HFD-Induced

Obesity

Model for the effects of increased lipids on the insulin-TOR pathway in the FB

and the heart.

Cell Metabolism

A High-Fat Diet Obesity Model in Drosophila
may be mediated by activation of sterol regulatory element

binding protein (SREBP) and its lipogenic target genes, including

FAS (H.Y. Lim, R.T.B., S.O., and R.B., unpublished data). There-

fore, modulation of lipid metabolism is a likely mechanism that

mediates the effect of TOR signaling on the HFD phenotype.

To determine the contributions of lipidmetabolism to the HFD-

induced obesity phenotypes, we examined a key regulator of

lipid utilization: the Bmm (ATGL) gene is required for the break-

down of lipid droplets, and encodes a triacylglycerol lipase that

is conserved from nematodes to mammals (Gronke et al.,

2005, 2007; this study). Drosophila Bmm mutants show signifi-

cant increases in TGs, while ectopic expression results in the

reverse effect of lowering TG levels. Previous studies in mice

have shown that systemic mutants of ATGL caused increases

in lipid accumulation in nonadipose such as the heart (Haem-

merle et al., 2006; Hirano et al., 2008). Here, we find that reduc-

tion of TOR function leads to increasedBmmRNA levels and that

Bmm overexpression prevents the HFD-induced elevation of TG

levels. In the heart, Bmm overexpression protects against

cardiac dysfunction and fat accumulation inflicted by a HFD.

These protective effects by Bmm may stem from modified lipid

utilization by themitochondria. Additionally, lipid droplet lipolysis

may also liberate fatty acid ligands for nuclear receptors, which

may contribute to changes inmitochondrial biogenesis (Palanker

et al., 2009; Finck et al., 2003). Altered insulin-TOR signaling is

likely to also increase activity of translation factors involved in

mitochondrial function (Zid et al., 2009). Lastly, increases in

autophagy have been implicated in the regulation of lipid metab-

olism via the breakdown of lipid droplets (Kovsan et al., 2009).

Thus, reduction of insulin-TOR signaling can coordinately lead

to changes in lipid metabolism, which in turn affects organismal

physiology under excess dietary fat conditions.

A critical step in the regulation of lipid synthesis involves

SREBP, which in flies responds to decreased levels of the major
542 Cell Metabolism 12, 533–544, November 3, 2010 ª2010 Elsevier
membrane lipid phosphatidylethanolamine (PE) by increasing

FAS expression (Rawson, 2003). In examining the role of lipid

synthesis in relation to the HFD-induced obesity phenotypes,

we observed that the transcript levels of FAS decrease in TOR

mutants, and that FAS knockdown reduces the deleterious

effects of HFD, possibly because of reduced lipid synthesis.

Consistent with this idea, loss of SREBP and FAS function in

mammalian models leads to low TG levels (Valet et al., 2002;

Bentzinger et al., 2008), and loss of Drosophila easily shocked

(eas), which encodes an ethanolamine kinase critical for PE

synthesis, leads to increased levels of the active form of SREBP,

increased FAS expression, and thus elevated TG levels (H.Y. Lim

and R.B., unpublished data). In addition, this effect is also

observed in mammalian hepatocytes where TOR function is

required for SREBP activation (Li et al., 2010), and it has been

proposed that TOR serves as an important fork in the road of

diabetic insulin resistance separating gluconeogenesis from lipo-

genesis (Li et al., 2010; Laplante andSabatini, 2010). Collectively,

these data support the idea that TOR is required tomediate HFD-

induced obesity and ensuing (cardiac) organ defects via multiple

mechanisms. Interestingly, reducing or blocking fat accumula-

tion mimics the protective effects of lowered insulin-TOR

signaling under a HFD. However, it remains to be determined

what it is about the accumulating fat that is detrimental to an

organism: is the fat itself or a side effect of its accumulation that

is causing metabolic and physiological dysregulation?

Our data indicate that heart dysfunction due to the HFD treat-

ment is the result of autonomous changes within the heart, as

evidenced by the increased cardiac TG levels; and cardiac-

only reduction of insulin-TOR signaling protects the heart from

dysfunction and fat accumulation. Importantly, our findings

show that inhibition of insulin-TOR signaling or ensuing fat accu-

mulation in the heart itself can significantly prevent cardiac

dysfunction despite the presence of elevated systemic TG

levels. In addition, HFD-induced obesity also influences heart

function via the adipose tissue, since blocking insulin-TOR func-

tion in the adipose can also prevent the HFD obesity heart

phenotypes. Thus, nonautonomous crosstalk factors, which

may include hormones or metabolites, also contribute to HFD-

induced heart dysfunction. The Drosophila model will help to

understand the basis of such crosstalk.

The fact that flies become obese on aHFDhas important impli-

cations on its own. Theories for the increased frequency and

appearance of obesity include the thrifty gene hypothesis, which

tries to understand why the incidence of obesity may be

increasing despite its deleterious effects. These ideas state that

recent evolutionary selection pressure on people experiencing

frequent famines concentrated genetic variants that increased

the ability to provide sufficient nutrients to an organism in times

of lean, but also predisposed to obesity in times of plenty. Alter-

natively, the potential for HFD-induced obesity may have arisen

early in evolution, perhaps independently of external selection

pressure, via deregulation ofmetabolic responses inmulticellular

organisms. In this report, we provide evidence to suggest that the

capacity for HFD-induced obesity and its associated complica-

tions is likely evolutionarily ancient and inherent to core

nutrient-sensing pathways, a property that manifests itself

upon exposure to dietary extremes resulting in a homeostatic

imbalance that exceeds the normal dynamic range.
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The discovery of these HFD-induced obesity phenotypes in

the Drosophila genetic model will permit a detailed dissection

of obesity phenotypes, especially with regard to the cardiac lip-

otoxicity effects (and possibly mimicking aspects of diabetic

cardiomyopathy). In particular, we can now attempt to under-

stand the various contributions of insulin resistance, fat accumu-

lation, and fatty acid oxidation to the HFD-induced obesity

phenotypes, including timing requirements. In summary, the

advent of the Drosophila HFD-induced obesity model opens up

many new horizons to study deregulated processes and

diseases of chronic lipid excess.

EXPERIMENTAL PROCEDURES

Fly Stocks

We obtained w1118 flies from Bloomington’s Stock Center and used these as

wild-type controls. We used multiple drivers for each tissue type. For driving

expression ubiquitously, we used arm-Gal4 (Bloomington); in the FB we

used the lsp-Gal4 (Cherbas et al., 2003) and the DCG-Gal4 (provided by Jon

Graff and J. Suh); for the heart we used GMH5 (Wessells et al., 2004) and

Hand-Gal4 (Han et al., 2006). We found similar trends for corresponding

drivers for each tissue. S6KDN (Mary Stewart), and UAS-d4EBP (Miron et al.,

2001), UAS-FAS-RNAi (Vienna RNAi stock center), and UAS-Bmm (Gronke

et al., 2005) were used. UAS-TORTED and UAS-TSC1-2 were a donation (by

TomNeufeld). The TORmutants are from Luong et al. (2006). To test a negative

effector of the insulin signaling pathway, we used UAS-FOXO (Wessells et al.,

2004). All flies were maintained on NF source made from a combination of

yeast, corn starch, and molasses. HFD was made by mixing either 3%, 7%,

15%, or 30% coconut oil to the food in a weight-to-volume ratio with the NF.

Heart Assays

For a detailed analysis of the cardiac contractions it is necessary to surgically

expose the fly’s heart in order to make it accessible for high-resolution video

microscopy (Vogler and Ocorr 2009). In this analysis we used the previously

published heart assay and analysis (Ocorr et al., 2007a, 2007b, 2007c; Fink

et al., 2009). In brief, dissections to expose the fly’s heart within the abdomen

were kept in oxygenated saline, and high-speed digital movies were taken and

then analyzed for heart rate, arrhythmia, contractility, FS, etc. (Ocorr et al.,

2007a, 2007b, 2007c; Fink et al., 2009).

HFD Feeding Regime

Bottles of flies were emptied and dated; then 5 days after emptying the vial, all

flieswere taken and placed in a new vial of NF and aged 5more days. This pop-

ulation was then spilt into two populations, one on NF and one on the desig-

nated concentration of HFD, for either 2, 5, or 10 days. We used 30% HFD

for 5 days for the majority of the experiments, since it gave strong and repro-

ducible phenotypes.

Statistical Analysis

All statistical analysis was done using Student’s t tests, and the analysis was

performed using GraphPad Prism version 5.00 for Windows, (GraphPad Soft-

ware, San Diego California USA, http://www.graphpad.com/).

Additional methods are in the Supplemental Information available online.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, nine movies, Supplemental

Experimental Procedures, and Supplemental References and can be found

with this article at doi:10.1016/j.cmet.2010.09.014.
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