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Abstract. We exploit the force spectroscopy capabilities of the atomic force microscope in characterizing the local elastic­
ity of rubber-like materials. Extraction of elastic properties from force curves usually relies on the linear theory pioneered 
by Hertz. While the Hertzian force-indentation relationships have been shown to be accurate in modeling the contact 
mechanics at sufficiently shallow indentation depths, the linear deformation regime of the probed material is exceeded in 
many practical applications of nanoindentation. In this article, a simple, nonlinear force-indentation equation based on the 
Mooney-Rivlin model is derived and used to fit data from the indentation of lightly crosslinked poly(vinyl alcohol) gels in 
equilibrium with water. The extracted values of Young’s modulus show good agreement with those obtained by both 
macroscopic compression testing and by fitting truncated portions of the force curves with the Hertz equation. 
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1. Introduction 

Despite its prevalence in various fields as a tech­
nique for measuring the local mechanical proper­
ties of elastic materials, the accuracy of indentation 
testing utilizing the atomic force microscope 
(AFM: see Figure 1) remains equivocal. Aside 
from artifacts arising from factors that can affect 
instrument performance (e.g., drift due to tempera­
ture variations), the causes of the ambiguity can be 
methodological (e.g., uncertainties in determining 
cantilever bending stiffness and tip dimensions) or 
analytical (e.g., uncertainties in robustness and 
accuracy of the data processing method) in nature. 
With care and the employment of existing tech­
nologies, environmental and methodological 
effects can be minimized. However, the latter cate-

Figure 1. Schematics of the atomic force microscope (left) 
and indentation of the sample by the tip (right). 
Displacement control is achieved by moving the 
sample (as shown) or the cantilever base, usu­
ally with piezo tube actuators. Force is inferred 
from laser-based measurements of cantilever 
deflection d. The indentation depth δ is depend­
ent on both d and the vertical displacement of 
the scanner (or the cantilever base) z. 
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gory of sources is not as easily addressed because 
data processing methods are model dependent and 
no clear performance benchmark exists. Further­
more, indentation at all length scales can deviate 
significantly from ideal behavior due to tip-sample 
interactions (e.g., adhesion) and material nonuni­
formities. This is especially true of gels and other 
rubber-like materials. 
Recently, we developed and validated a robust and 
comprehensive scheme for extracting Young’s 
moduli from the indentation of soft materials based 
on linear elastic contact mechanics theory [1, 2]. 
For a set of poly(vinyl alcohol) – henceforth abbre­
viated to PVA – gels at different polymer concen­
trations, Young’s moduli agreed well with macro­
scopic compression tests when indentation strains 
did not exceed the linear elastic limit. These results 
are consistent with the generally accepted view that 
small-strain deformation of many rubber-like mate­
rials is virtually a linear elastic process and can be 
modeled accordingly. Depending on the magnitude 
of tip-sample interactions, however, it is oftentimes 
difficult to control the indentation depth of each 
stroke of the AFM probe. Furthermore, tip-sample 
interactions often result in decreased signal-to­
noise ratios. The effect is usually most pronounced 
in the vicinity of the tip-sample contact point; 
under such circumstances, accuracy is adversely 
affected by limiting the analysis to data points that 
do not exceed a strain threshold. For materials that 
exhibit rubber elastic behavior, derivation of a sin­
gle contact mechanics equation relating force and 
indentation depth is therefore necessary. Such a 
model would also be applicable in estimating the 
large-strain mechanical response of soft biological 
materials such as cells and tissues, where the use of 
linear elasticity theory generally leads to significant 
errors in Young’s modulus [3]. In this work, we 
propose an approximate relationship suitable for 
the indentation of Mooney-Rivlin materials with 
spherical probes and test it by fitting to data 
obtained from the AFM indentation of highly 
swollen PVA gels. Accuracy of this model is 
assessed by comparison with results from macro­
scopic compression tests and from fitting initial, 
small-strain portions of each dataset with the classi­
cal Hertz equation. 

2. Theory 

The indentation problem is based on the Hertz the­
ory of contact between two elastic spheres in the 
absence of adhesion [4]. Johnson et al. [5] pio­
neered the theory of adhesive contact, citing evi­
dence of deviation from Hertzian behavior in 
numerous experiments as the motivation for devel­
oping the now well-known Johnson-Kendall-
Roberts (JKR) theory. Other contributors to the 
field include Derjaguin et al. [6], Tabor [7], and 
Maugis [8]. For the purposes of this work, only the 
Derjaguin-Muller-Toporov (DMT) theory is con­
sidered. The JKR and DMT theories were found by 
Tabor to apply to opposite extremes of the relation­
ship between surface force and sample compliance, 
with the DMT theory pertaining to relatively stiff 
samples and weak adhesive forces [7]. 
The Hertz and DMT equations ((1) and (2)) for the 
indentation of a linear elastic, infinite half-space 
with a rigid sphere are [4, 6]: 

1 2 3 24ER δ (1)F = F + F = n ad 23(1− ν ) 

a = Rδ (2) 

where F is the net indentation force, Fn is the 
applied normal force, Fad is the tip-sample adhesive 
force (= 0 in the Hertz theory), δ is the indentation 
depth, a is the contact radius, R is the radius of the 
sphere, and E and ν are Young’s modulus and Pois­
son’s ratio of the indented sample, respectively. In 
the DMT theory, the constant adhesive force is 
related to the interfacial energy (γ ) by Equation (3): 

Fad = 2πγ R (3) 

According to Yoffe [9], Hertz stated explicitly that 
Equation (2) applies only to cases in which the con­
tact radius is small relative to the radius of the 
indenter (i. e., a/R < 0.1). In practice, however, 
contact radii frequently exceed the imposed limit. 
Experimental and analytical support for applying 
the equation at large relative contact radii can be 
found in tests performed by Kumar and 
Narasimhan [10] and the theoretical studies of 
Yoffe [9]. In the macroscopic indentation of poly-
methyl methacrylate samples using stainless steel 
balls, Kumar and Narasimhan found excellent 
agreement between measured values of the contact 
radius and those predicted by Equation (2) for a/R 
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approaching 0.14. Yoffe developed a first-order 
correction to the Hertzian contact radius at large 
indentation depths and demonstrated that the devia­
tion from the Hertz theory as the contact area 
widened was dependent on ν. As ν approached the 
incompressibility limit of 0.5, it was found that 
Equation (2) began to over predict the magnitude of 
the contact radius. For example, when ν = 0.4, the 
error in a predicted by Equation (2) increased from 
1% at a/R ~ 0.28 to 6% at a/R ~ 0.53. These errors 
can be considered acceptably small, even at the 
large strains that are frequently applied in the 
indentation of polymer gels. 

3. Materials and methods 

3.1. Sample preparation and testing 

PVA solutions were prepared by dissolving PVA 
(molecular weight 70 000–100 000; Sigma) in 
deionized water at 99°C to make a stock solution 
with a concentration of 14% (w/w). Gels were 
made by crosslinking the PVA solution with glu­
taraldehyde at pH ~1.5 (adjusted by addition of 
HCl). To prepare gel samples at two different levels 
of compliance, the PVA concentration was changed 
while maintaining a constant crosslink density (one 
unit of GDA per 100 units of vinyl alcohol). The 
elastic moduli of these gels differed by roughly an 
order of magnitude corresponding to the typical 
range of biological soft tissues such as cartilage. 
Gel cylinders and thick layers (2 mm to >1 cm) 
with final PVA concentrations of 6% and 12% 
(w/w) were cast in molds (1 cm in diameter and 
1 cm in height) and 35 mm Petri dishes, respec­
tively. All samples were stored in deionized water 
until testing. 
A bench top materials testing system (Stable Micro 
Systems, UK) was used to perform displacement-
controlled compression of the gel cylinders at a 
ramp speed of 1 mm/s. The undeformed dimen­
sions of each cylinder were measured prior to com­
pression with a micrometer. The Young’s moduli 
of the PVA gels were calculated from the neo-
Hookean equation (4): 

σ = G(λ – λ–2) (4) 

where σ is the engineering stress, λ is the compres­
sion ratio, and G is the shear modulus. In the exper­
iment, λ was varied in the range 0.6 < λ < 1. The 

absence of volume change and barreling during the 
compression measurements was checked [1]. 
Nanoindentation of gels was performed using a 
commercial AFM (Bioscope I with a Nanoscope 
IIIA controller, Veeco Instruments, Santa Barbara, 
CA) seated atop an inverted optical microscope. 
General-purpose silicon nitride tips were used 
(model DNP, Veeco). The cantilevers were modi­
fied by gluing either a 9.6 μm diameter polystyrene 
bead or a 5.5 μm diameter glass bead near the tip. 
The spring constant of each cantilever was deter­
mined using the thermal tune method [11]. Multiple 
force curves for each PVA film were collected 
using the ‘force-volume’ mode of the AFM. In this 
automated raster scanning method, the user defines 
the size of the square region to be scanned, the res­
olution, and the relative trigger threshold (i. e., the 
maximum cantilever deflection). Because the gels 
were assumed to be relatively homogeneous, the 
resolution was set to the lowest limit of 16 × 16 
indentations covering a 20 μm × 20  μm region. 
Relative trigger thresholds were set to either 100 or 
50 nm. 

3.2. Processing of AFM indentation data 

An algorithm that we developed previously [1, 2] 
was used as the basis for automated processing of 
indentation data. Briefly, the contact point depend­
ent method requires the identification of multiple 
reference points, shown in Figure 2 for both adhe­
sive and non-adhesive analysis. These points are 
used to transform the typical raw values of can­
tilever deflection (d) and base displacement (z) to 
applied force and indentation, respectively. The 
conversions are given by Equations (5), (6) and (7): 

Fn = kc(d – d0); negligible adhesion (5) 

Fn = kc(d – d1); significant adhesion (6) 

δ = (z – z0) – (d – d0) 
= (z – d) – (z0 – d0) =  w – w0 (7) 

where kc is the spring constant of the cantilever, 
(z0, d0) are the coordinates of the contact point, and 
(z1, d1) are the coordinates of the point of zero 
applied force (see Figure 2). The transformed vari­
able w = z – d is introduced for simplification. The 
adhesive force is then related to the reference points 
by Equation (8): 
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Fad = kc(d1 – d0) (8) 

Figure 2. A typical set of deflection-displacement curves 
in extension and retraction with negligible adhe­
sive interactions in extension and significant 
adhesion upon retraction. The two curves are 
offset from each other for clarity; they are plot­
ted without offset in the inset. In extension, only 
the contact point (z0, d0) is required to transform 
the data to force vs. indentation. In retraction, 
two reference points are needed – the contact 
point and the point of zero applied force (z1, d1). 
The schematics show the bending of the can­
tilever at the reference points and at the point of 
maximum indentation. 

Substitution of Equations (5) through (8) into 
Equation (1) recasts the force-indentation relation 
into a form appropriate for fitting the raw data and 
extracting the values of E. 

4. Results and discussion 

In this section, we first develop a nonlinear contact 
mechanics model that describes the force-indenta­
tion relationship for rubber-like materials. The der­
ivation is based on the concepts discussed in the 
theoretical section and on the Mooney-Rivlin for­
malism. A comparison is then made between the 
predictions of this model and the experimental data 
obtained for the PVA hydrogels. 

4.1. Formulation of a nonlinear contact 
mechanics model 

The Hertz and DMT equations are based on the the­
ory of linear elasticity and therefore subject to its 
inherent limitations, including the requirement of 
geometric (i. e., stress-strain) linearity. As previ­
ously mentioned, it may not always be feasible to 
limit indentation depths to the linear regime. In the 

realm of rubber elasticity, many phenomenological 
theories have been developed. One of the simplest 
and perhaps most well-known of the stress-strain 
relations derived from these theories is the 
Mooney-Rivlin equation (9) [12]: 

σ = 2C1(λ – λ–2) + 2C2(λ – λ–3) (9) 

where σ is the stress, λ is the extension ratio, and 
C1 and C2 are constants. We wish to use Equa­
tion (9) as the basis of a force-indentation relation­
ship. To that end, we define the effective or average 
stress and strain due to indentation. The indentation 
stress, σ*, can be set equal to the mean contact pres­
sure (force over the contact area), given by Equa­
tion (10): 

σ* = F 
(10)

πa 2 

The indentation strain, ε*, is defined by Equation 
(11) [13]: 

aε* = (11)
R 

For linear elastic (Hertzian) contact, it can be seen 
that σ* and ε* are linearly proportional, giving a 
Hookean equation (12) of the form: 

* * 4Eσ = ζε , with ζ = 
2 (12)

3π(1− ν ) 

In order to derive force-indentation relations for 
materials obeying the constitutive Equation (9), 
disparities in sign conventions for stress and strain 
between Equations (9) and (12) must first be 
resolved. In Equation (9), standard engineering 
convention applies, with stresses and strains posi­
tive in tension. This implies that λ > 1 in tension 
and λ < 1 in compression. Because indentation is 
viewed as a compressive process, the sign conven­
tion for σ* and ε* are opposite from the standard 
convention. Replacing σ with –σ* and λ with 
(1 – ε*) in Equation (9) yields Equation (13): 
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where the constants C1 and C2 no longer hold the 
same meaning and have been replaced with B1/2 
and B2/2, respectively. 
Substitution of Equations (10) and (11) into Equa­
tion (13) results in a relationship between indenta­
tion force and contact radius. To obtain a more 
practicable equation in terms of force and indenta­
tion, the relationship between contact radius and 
indentation is required. Assuming that the manner 
in which a varies with δ is independent of material 
linearity, we use Equation (2) as a first approxima­
tion. Algebraic manipulation yields Equation (14): 

⎛ ⎞δ − 3R δ2 + 3Rδ
B ⎜ 

25 

21 

1 2 

21 

23 
⎟F = πR 1⎜ ⎟ + 

δ − 2R δ + R⎝ ⎠ 
⎛ R ⎞δ − 3Rδ2 + 3R δπR 21 

21 

B2 
⎜ 

23 

1 2 25 

2121 

23 

23 

3 2 
⎟

⎜ ⎟− δ + 3R δ − 3Rδ + R⎝ ⎠ 
(14) 

where F = Fad + Fn when adhesive interactions are 
present. At infinitesimal strain or indentation depth, 
Equation (1) applies, and Equation (14) reduces to 
Equation (15): 

4E
B + B = 1 2 

0 
2 (15)

9π(1− ν ) 

where E0 is the initial Young’s modulus and ν = 0.5 
for incompressible materials. Equations (14) and 
(15) comprise an approximate Mooney-Rivlin con­
tact mechanics model that can be applied to the 
indentation of rubber-like materials; elastic proper­
ties of the samples are represented by the extracted 
Young’s moduli. The model reduces to the neo-
Hookean form when B2 = 0.  
Justification for the assumption that the contact 
radius is independent of material linearity can be 
found in the results of the finite element analyses 
performed by Mesarovic and Fleck [14] on the 
indentation behavior of elastic-plastic solids. Such 
materials undergo strain hardening in compression, 
as do Mooney-Rivlin solids. Under uniaxial ten­
sion, the Ramberg-Osgood hardening relationship 
employed in the finite element study has the form 
of Equation (16): 

m
ε σ ⎛ σ ⎞ 

= + ⎜ ⎟ (16)⎜ ⎟ε σ σ0 0 ⎝ 0 ⎠ 

where ε0 and σ0 are the strain and stress at the yield 
point, respectively. The strain-hardening exponent 
m defines the deformation behavior, with m = 1 rep­
resenting linear elastic response and m → ∞ corre­
sponding to elastic-ideally plastic response; an 
intermediate value of m = 3 was used by Mesarovic 
and Fleck in their study. The mathematical similar­
ity between the Mooney-Rivlin and Ramberg-
Osgood equations is demonstrated in Figure 3, 
where stress-strain curves are shown for a typical 
hardening material with linear Young’s modulus of 
100 kPa and a linear strain limit of approximately 
15%. Mesarovic and Fleck found that the contact 
radius followed the form of Equation (2) beyond the 
yield point; with further indentation, contact radii 
predicted by Equation (2) became increasingly 
smaller than the actual values. This likely due to the 

Figure 3. Comparison of the Ramberg-Osgood elastic-plas­
tic hardening equation and the Mooney-Rivlin 
equation in tension. Normalized engineering 
stress-strain curves, where σ is stress, E is 
Young’s modulus, and ε is strain, are shown for 
different cases of the two relationships. Follow­
ing Mesarovic and Fleck, a hardening exponent 
of 3 is used in the Ramberg-Osgood equation 
[14]. Yield strains (ε0) of 15% and 25% are 
shown. The two extreme cases of the Mooney-
Rivlin equation, given by Equation (9), are plot­
ted: C2 = 0 (representative of a neo-Hookean 
solid) and C1 = 0.  
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permanent pile-up of material around the indenter, 
which is typically associated with the indentation of 
elastic-plastic materials such as metals [15, 16]. 

4.2. Comparison of the model with experi­
mental results 

Results of the macroscopic compression and AFM 
indentation tests are summarized in Table 1. There 
is generally good agreement between the macro­
scopic Young’s moduli and values obtained from 
the small strain and large strain analyses of the 
AFM indentation data. Adhesion during indenta­
tion was evident only in the retraction strokes, prior 
to tip-sample separation. The small strain analysis 
was performed by truncating the datasets at an 
indentation strain of about 15% and applying Equa­
tion (1). The large strain analysis using Equa­
tion (14) was performed without data truncation. 

Table 1. Young’s moduli of PVA gels from compression and AFM indentation (mean ± SD) 

% Macro. [kPa] 
Small strain, linear elastic Large strain, Mooney-Rivlin 

Extend [kPa] Retract [kPa] Extend [kPa] Retract [kPa] 
6 21.51 ± 0.59 16.55 ± 2.74 19.39 ± 3.26 18.23 ± 2.38 19.51 ± 4.69 
12 115.50 ± 1.86 113.66 ± 6.06 108.98 ± 9.17 115.82 ± 7.21 110.08 ± 13.17 

In fitting the macroscopic compression data with 
Equation (9) over a large range of λ (0.6 < λ < 1), it 
was found that C2 ~ 0 within the experimental 
error. This is consistent with the macroscopic, neo-
Hookean behavior of PVA gels tested under similar 
conditions [17, 18] and of lightly crosslinked, 
highly swollen gels in general [12, 19]. Values of 
the Mooney-Rivlin fitting parameters B1 and B2 

from fitting of the indentation data with Equa­
tion (14) are summarized in Table 2. At the micro­
scopic length scale probed by the AFM, the large 
variability in B2 may reflect inhomogeneities due 

Table 2. Mooney-Rivlin fitting coefficients for large strain 
analysis (mean ± SD) 

% 
Extend Retract 

B1 [kPa] B2 [kPa] B1 [kPa] B2 [kPa] 
6 4.92 ± 0.97 –1.49 ± 0.55 8.08 ± 2.28 –4.09 ± 1.49 

12 39.60 ± 4.46 –17.76 ± 3.15 43.48 ± 10.20 –21.50 ± 7.32 

Figure 4. Sample dataset from the indentation of the 12% gel. d is the cantilever deflection and z is the base displacement. 
The extension and retraction curves (every fifth point is plotted) are offset from one another and each is shown 
with the small strain linear elastic fit and the large strain Mooney-Rivlin fit. The linear elastic fits have been 
extended beyond 15% strain for comparison (extended portions are shown in gray). Plots of the residual errors for 
each fit are displayed in the inset. 
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likely to local differences in polymer concentration. 
Equation (14) therefore allows us to detect these 
structural nonuniformities and quantifies the local 
deviation from neo-Hookean behavior. It should be 
mentioned that the Mooney-Rivlin formalism is not 
a constitutive material law since the values of the 
material constants may depend on the mode of 
deformation. Hence, extreme caution should be 
exercised when applying Equations (9) and (14). 
Strains at maximum indentation depth were 
approximately 22% and 30% for the 12% and 6% 
gels, respectively. The 12% gel exhibited a linear 
regime that was significantly wider than that of the 
6% gel, as illustrated by the examples in Figures 4 
and 5. In fact, the residual errors shown in Figure 4 
indicate that the 12% gel behaved linearly up to the 
maximum indentation depth. Strain hardening in 
the 6% gel is manifested in the poor fit of Equa­
tion (1) to the data beyond ~15% strain, as shown 
in Figure 5. Regardless of the degree of nonlinear­
ity at maximum indentation depth, Equation (14) 
was found to be a good fit of both extension and 
retraction data. Compared to the small strain, linear 
analysis using Equation (1), the large strain analy­

sis using Equation (14) yielded smaller differences 
between Young’s moduli in extension and retrac­
tion. We attribute the improved agreement to the 
inclusion of more data points in the large strain 
analysis. 

Figure 5. Sample dataset from the indentation of the 6% gel. d is the cantilever deflection and z is the base displacement. 
The extension and retraction curves (every fifth point is plotted) are offset from one another and each is shown 
with the small strain linear elastic fit and the large strain Mooney-Rivlin fit. The linear elastic fits have been 
extended beyond 15% strain for comparison (extended portions are shown in gray). Plots of the residual errors 
for each fit are displayed in the inset. 

Synthetic gels prepared by the crosslinking of poly­
mer chains in solution can be considered isotropic 
and homogeneous at macroscopic length scales. 
However, at the submicron level probed by the 
AFM, spatial variations in mechanical properties 
due to local concentration nonuniformities become 
detectable. In biological materials, such variations 
are much more pronounced, even over regions as 
small as a few tens of square nanometers. AFM 
nanoindentation has therefore become a powerful 
technique for generating elasticity maps of living 
cells [20–25] and the extracellular matrix [26–31]. 
To illustrate the differences between relatively 
homogeneous synthetic polymer gels and biologi­
cal tissues, Young’s modulus maps from 6% and 
12% PVA gels and from a region of mouse articular 
cartilage are shown in Figure 6. Over regions of 
comparable size, local Young’s moduli of the PVA 
gels varied over a much narrower range (approxi­
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mately 16 to 24 kPa for the 6% gel and 90 to 
120 kPa for the 12% gel) than in the cartilage (< 1 
to 120 kPa). The variability in stiffness in the carti­
lage corresponds to a high degree of local inhomo­
geneity, which is a characteristic feature of many 
biological tissues. 

Figure 6. Sample Young’s modulus (E) maps from the ‘force-volume’ indentation of (a) a 6% PVA gel probed using a 
5.5 μm glass bead over a 20 μm × 20  μm region at a resolution of 16 × 16, (b) a 12% PVA gel probed using a 
9.6 μm polystyrene bead over a 20 μm × 20  μm region at a resolution of 16 × 16 and, (c) a one-day old mouse 
articular cartilage sample of approximately 60 μm thickness probed using a 5 μm polystyrene bead over a 
30 μm × 30  μm region at a resolution of 32 × 32. The shapes of the force-indentation curves were similar in all 
cases. Identical color maps are used to compare the degree of inhomogeneity between the samples. The soft 
regions in the cartilage (E < 25 kPa) indicate the presence of several cells. 

5. Conclusions 

In rubber-like materials, measurements of elastic 
moduli using the AFM have been mostly limited to 
indentation in the linear stress-strain regime. While 
small strain nanoindentation is practicable in many 
situations, excessive noise in the vicinity of the 
contact point can hinder and even preclude its accu­
racy in other cases. Hence, an easily implemented, 
large strain contact mechanics model is desirable. 
The Mooney-Rivlin force-indentation relationship 
introduced here satisfies this criterion and was 
shown to be accurate in modeling the indentation 
behavior of swollen PVA gels. In the AFM probing 
of any material that exhibits rubber elasticity, it can 
be applied without the need to limit indentation 
strains to the linear regime. 
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