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ABSTRACT
The intensity of an isotropically weighted MR image is pro-
portional to a rotationally invariant measure of bulk diffusion, 
Trace (D)  (where ' is the effective diffusion tensor). Such im-
ages can be acquired from as few as two diffusion-weighted 
images (DWIs). Analogously, the intensity of an anisotropically 
weighted MR image is proportional to a rotationally invariant 
measure of diffusion anisotropy derived from ', such as the 
variance of the principal diffusivities of '. By using linear 
algebra, we show that to produce an anisotropically weighted 
MR image requires acquiring at least seven DWIs, which is 
also the minimum number of DWIs sufficient to estimate the 
entire diffusion tensor, as well as the T2 -weighted amplitude 
image, A ( b  = �), in each voxel. A general mathematical frame-
work for constructing isotropically weighted and anisotropi-
cally weighted MR images is also provided. 
Key words: diffusion; anisotropy; teusor; MRI. 

INTRODUCTION 

The trace of the diffusion tensor, Trace�('), is a physically 
and biologically informative MRI parameter (1). Trace�(') 
is proportional to the orientationally averaged diffusivity 
(2) and is thus independent of tissue fiber orientation 
and, more generally, of the laboratory coordinate system 
in which the components of the diffusion tensor are 
measured (1). To date, its clinical utility derives from its 
ability to demarcate ischemic regions in acute stroke (3). 
When one is interested in measuring changes of water 
diffusion in tissues, a map of an intrinsic parameter such 
as Trace�(') (1) is preferable to a map of an apparent 
diffusion coefficient (4), in which the contrast in white 
matter depends on both the local diffusivity of water as 
well as the orientation of the nerve fiber tracts. 

The first reported measurements of Trace�(') were ob-
tained by (a) acquiring diffusion-weighted images (DW,s) 
with diffusion gradients applied in a multiplicity of di
rections and amplitudes, (b) using a model of anisotropic 
diffusion in tissues to estimate an apparent or effective 
diffusion tensor '�in each voxel from these DW,s, and (c) 
calculating Trace�(') in each voxel from '  (1). Recently, 
however, "single-shot" isotropically weighted sequences 
have been developed, which produce an image in which 
the intensity is proportional to Trace�(') (5-7). Their po-
tential benefit is that a smaller number of DW,s and 
postprocessing steps are required to produce an image in 
which the intensity is proportional to Trace�(') than the 
seven DW,s required to acquire the entire diffusion ten-

sor in diffusion tensor MRI. However, intrinsically, iso-
tropically weighted imaging sequences provide no infor-
mation about diffusion anisotropy. 

BACKGROUND 

Whether one is performing diffusion tensor MRI or de-
veloping isotropically or anisotropically weighted pulse 
sequences, the following relationship between the echo 
attenuation and the apparent or effective diffusion tensor 
(8) provides a constraint that must be satisfied: 

 
A(b_) )' 3

ln = - (: (: b· ' = - Trace(b D)( A(b=O) I) l] --
- ... ;~1 j~l 

+ 2 byz Dyz + bzz Dzz) [1] 

Above, b;j is the component of the ith row and jth column 
of the symmetric b matrix, E; DLj is the corresponding 
component of the symmetric effective diffusion tensor, 
A (b)  is the echo intensity for a gradient sequence with b 
matrix. b; and A (b  = Q) is the echo intensity for a gradient 
sequence in which the b is the zero matrix, Q. The b 
matrix used in Eq. (1] is calculated from the pulse gradi-
ent sequence as described elsewhere (8, 9). 

Wong et al. (5-7) produced an isotropically weighted 
MR image by prescribing a pulsed gradient sequence in 
which the resulting b matrix is proportional to the iden-
tity matrix, ,. the diagonal elements of which are all equal 
and the off-diagonal elements of which all vanish. 1 

1 An additional constraint is that each of the phases �N vectors) is refocused 
at the echo, i.e., k(2 W) = 0. 

Thus, 
the b matrix is of the form: 

>2] 

(where a is a constant and GLM is the Kronecker delta). 
Then, by substituting Eq. [2] into Eq. [1]; we see that 

A(b) ) .ln ··· ------- = - a(D[[ + D, + D ) = a Trace1 D)( A(b_ = �_) xx J.V zz ,_ 

[3 l 
The logarithm of the echo attenuation is directly propor-
tional to Trace�('). In general, to produce such an image 
requires obtaining at least two DW,s, one without diffu-
sion weighting, A�(E  = Q), and another with "isotropic 
weighting", i.e., A�(b = a,). 

It is reasonable to ask whether one can also construct 
an anisotropically weighted MRI, i.e., one in which the 
intensity is proportional to a quantitative measure of 
diffusion anisotropy, also by using a small number of 
DW s.,  This question is particularly timely because of the 
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number of in vivo studies indicating that the 
GHgree of diffusion anisotropy is potentially informative, 
such as in the detection of Wallerian degeneration and 
RUJDnized gliosis in humans (10), in the identification of 
Pelizaeus-Merzbacher disease (11), in the "aging" of le-
VLRQs in clinical stroke studies (12), in identifying micro-
Vtructural changes in schizophrenia (13), and in observ-

ittens (14) and neonates (15) and in the spinal cord of 
DQsgenic mice (16). 

Herein we provide a method to construct an anisotro-
Sically weighted MRI, determ.ine the fewest DWIs re-
quired to construct such an image, and consider the 

elative merits of diffusion tensor MRI and anisotropi-

ADMISSIBLE MEAUSRES OF DIFFUSION 
Before developing  anisotropically weighted MR1 se-
quences, one must first identify parameters that are ad-
Lssible quantitative measures of diffusion anisotropy, 
i.e., they are (a) physically meaningful or informative and 

(b) .rotation and translation invariant (17). Although 
�7UDFH��'�� is sufficient to characterize isotropic diffusion, 
KHUH�are numerous admissible measures with which to 
characterize different features of anisotropic diffusion. 
%elow we briefly describe a few to show explicitly how 
they are functionally related to '.

�X �
 Their definitions and 

VHV are described elsewhere (17, 18). 
Whereas Trace�(') is proportional to the first moment 

or mean of the distribution of eigenvalues of D� in a voxel, 
�XVHful anisotropy measures proposed recently depend on 

the. second or higher moments of this distribution (e.g., 
its variance and skewness). These measures have been 
Gerived from '�by using the explicit requirements that (a) 
Whey are scalar invariant quantities and (b) they measure 
a  characteristic of the anisotropic part or deviatoric of the 
diffusion tensor, D (17). where 

A=D- <D> l [4] 

and 

Trace�(D) 
(D) = [5] 

3 

One quantity that possesses these properties is the 
product" (19) of the deviatoric tensor with 

itself, A: A (17), which can also be written as Trace (A2), 
where 

2 
Trace (A2) = Trace (D2) - 3(D) 2 = 3(Dx/ +Dyy2+ Dzz2) 

(DxxDyy + DyyDzz + DzzDxx + 2Dxy2+ 2Dx2
2 + 2Dyz2 

[6] 

It was shown that Trace (A2) is a scalar measure of the 
degree to which the diffusion tensor deviates from isot-

ropy (in a moan-squared sense) and that it is proportional 
to the second moment or sample variance of the principal 
diffusivities of the diffusion tensor (17). It is important to 
note that Trace (A2) is a quadratic function of the ele-
ments of D.
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Another quantity that can be used to characterize dif-
fusion anisotropy is the third moment of tho eigenvalues 
of D. This quantity can be written as trace (A3), which is 
a cubic function of tho elements of the diffusion tensor. 

In general, admissible quantitative measures of diffu-
sion anisotropy to date are functionally related to second 
and higher moments of the eigenvalues of the diffusion 
tensor in each voxel, which can be represented by second 
or higher-order polynomial functions of the elements of D. 

Comparison of Isotropic and Anisotropic Diffusion 
Weighting 

While a single scalar quantity, Trace (D), which is a linear 
function of only tho three diagonal elements of the dif-
fusion tensor is sufficient to characterize isotropic dif-
fusion in a voxel, polynomial (or more complicated non-
linear) functions of all of the elements of the diffusion 
tensor are required to describe diffusion anisotropy 
quantitatively within a voxel. Moreover, although Eq. [1] 
establishes a simple, linear relationship between the Log 
of the DWI intensity and the six independent elements of 
the diffusion tensor (whose six independent coefficients 
must be specified in order to produce an isotropically 
weighted DWI), it does not suggest a simple linear rela-
tionship between the Log of the DWI intensities and any 
quadratic or cubic functions of the diffusion tensor (e.g., 
given in Eq. [6]) that would furnish a suitable anisotropy 
measure. 

THEORETICAL RESULTS AND DISCUSSION 

Since D  in Eq. [1] has six independent elements, at least 
six ratio images (i.e., log (A (b) A (b = Q))) are required to 
solve for each element (8). No manipulations (e.g., raising 
Eq. (1] to different powers) will reduce that number. 
However, information about diffusion anisotropy is em-
bodied in the deviatoric tensor, A. in Eq. [4], so it may be 
possible to reduce the number of DWIs required to rep-
resent the information contained in it. We will show that 
this is not possible by using linear algebraic reasoning. 

The question of whether one can construct an aniso-
tropically weighted image can be reduced to the question 
of whether one can use Eq. [1] to generate an image from 
a set of DWIs in which the intensity is proportional to an 
admissible quantitative diffusion anisotropy measure. 
Examining Eq. [6] together with Eq. [1] suggests an ap-
proach to solving this problem. First, square Eq. [1]: 

2 

(
.1 ( A (b) ) ) - b 2 D 2 b b n - xx xx + 4 xx xy Dxx Dxy 

It is helpful now to introduce two column vectors, D, a 
six-element vector containing the six independent diffu-
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sion tensor coefficients, 

and b, a six-element vector containing the six corre-
sponding b matrix coefficients 

[8b] 

where the superscript "T" indicates the transpose oper-
ation. We see that the right side of Eq. [7] is a linear 
combination of 21 ( = 6 + 5 + 4 + 3 + 2 + 1) independent 
quadratic terms containing products of elements of the 
diffusion tensor, some of which appear in Eq. [6] and 
some of which do not. In general, the product of the ratio 
images, log (A (b)/A (b) = 0)) and log (A (bj)/A (b) = Q)) 
(where .bi and bj denote b matrices of the ith and jth 
DWIs) produces the same independent quadratic terms 
(as in Eq. [7] above). Accordingly, the b vector associated 
with the ith DW ratio image is also written as a six-
element column vector bi 

b; - {b i b i b i b i b i b i}T (9]xx, yy, zz xy, xz, yz 

just as we have written the elements of the diffusion 
tensor above in Eq. [Ba]. For Eq. (9] and onward, super-
scripts of a, b, b, and Q will denote indices rather than 
exponents. The outer products of the vectors b' and bj are 
6 x 6 matrices, denoted by Qij (for quadratic anisotropy 
measures): 

[10] 

For n + 1 DWIs, (n DWIs with nonzero weighting, and 
one DWI with zero weighting), the most general linear 
combination of the ratio images that is quadratic in the 
elements of the diffusion tensor is: 

[11] 

where a is an n X n matrix with as yet undetermined 
constants. Each quadratic anisotropy measure can also be 
written as a quadratic form in terms of the same quadratic 
terms obtained from the diffusion tensor: 

[12] 

where Ris a symmetric matrix of coefficients, which are 
easily determined from the particular expression of the 
quadratic anisotropy measure. For example, for the an-
isotropy measure Trace (A22) : 

2/3 - 1/3 - 1/3 0 0 0 
- 1/3 2/3 - 1/3 0 0 0 
- 1/3 - 1/3 2/3 0 0 0 

[13]RA= 
0 0 0 2 0 0 
0 0 0 0 2 0 
0 0 0 0 0 2 

Therefore, to make an anisotropically weighted image, 
we require that 

[14] EEn'IQ'I - c R)D ~0 
for any D. Therefore, the quantity in parentheses must 
equal the zero matrix, or 

n 

The equation above still contains some ambiguities of 
scale. The scalar c can he subsumed in the coefficients aif. 
Likewise, the vectors h that produce the Q matrices can 
be scaled arbitrarily, with the scale factors also subsumed 
in the coefficients aii. Hence, without loss of generality, 
we can normalize each b;, restricting it to five degrees of 
freedom (DOFs) rather than six. (After a solution has 
been found, the bi can be rescaled.) 

Since R is a svmrnetric 6 X 6 matrix, it contains 21 
independent entries, each of which is to be matched by a 
sum of terms linear in the as and quadratic in the bs, i.e., 
21 equations in several unknown as and bs. A physical 
requirement placed on each 3 x 3 b matrix is that it be 
non-negative definite; otherwise, we could always find a 
coordinate transformation in which an increase in diffu-
sion weighting would produce an increase (not a de-
crease) in the measured echo amplitude. One implication 
of this condition is that each of the diagonal elements of 
b, bxx, byy, and bzz is non-negative. One further restriction 
placed on a is that it is symmetric, i.e., a'' = aji. The 
number of independent coefficients a1i for n diffusion-
weighted ratio images is given by n(n + 1)/2, yielding the 
following apparent DOFs: 

[16]

No. of
DWIs 

No. of 
ratios 


images 

'!App
b

No. 
a 

s fro
total

2 1 5 1 6 
3 2 10 3 13 
4 3 15 6 21 
5 4 20 10 30 
6 5 25 15 40 
7 6 30 21 51 

Referring to Eq. [16] above, it is tempting to speculate 
that only three diffusion-weighted ratio imagos or four 
DWIs could provide 21 total DOFs, which would be 
sufficient to solve the 21 equations. Therefore, one might 
suspect that only four DWIs would be sufficient to con-
struct an an.isotropically weighted MRI. However, we 
will now show below that at least six linearly indepml-
dent ratio images or seven DWIs are required. 

The particular R matrix we use is given above in Eq. 
[13]. This is a rank-5 matrix. It has one zero 
corresponding to the eigenvector [1, 1, 1, 0, 0, 0]Tthat 
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the null space of R. The form of Qij implies that each of its 
rows is proportional to b; and each of its columns is 

iiiiii deleted eeeee deleted deletedeeeee delted 
•... .I': ddij1f name y. onedratio, an on 1y image, one coe deletedicienddddeletedW  , a soso othnlytotnhea e 

equation to solve would reduce to: 

.. .. 

... ... .... ... 
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  p = 5�where 3 = a11 Q�� [17] 

:e know that this equation has no solution because 3�
has a lower rank than R and matrices whose ranks differ 
cannot be equal. With the addition of a second indepen-
dent image, the equation is more complex: 

32 = R where 32 = D11 Q11 + D12(Q12+ Q�1) + a22 Qzz 
[18] 

7here are now three terms in 32� but one can see by the
form of Q that the rows of 2are all linear combinations 
of b1 and b2 , and hence, 2 is only of rank 2, not rank 5. 
/ikewise, with the addition of a third independent DWI,
P2 has six terms, but is only ofrank 3, so there is no hope
Rf finding a solution for an image weighted by drace (Dd) 
Xsing only three ratio images. To complete the thought, n 
linearly independent ratio images produce a 3n of (at 
Post) rank n, up to a maximum of rank 6. Since R is of 
Uank 5, at least five ratio images or six DW,s are neces-
sary. 

What remains is to show that oven five ratio images is 
Qot sufficient. The matrix 5  is of order 6, rank 5, and 
nullity 1. The rows of R span only five of the six dimen-
sions available to them. The null space (the space not 
spanned by the rows of5) is one-dimensional. Moreover, 
any six-vector in the row space of R must be orthogonal 
to [1,�1,�1,�0,�0,�0]7, the vector that spans the null space of R. 
For five ratio images to form a basis for the row space of 
R, all five of the corresponding b; that form the basis of�3�
must also be orthogonal to tho null space of5. The rank-5 
Patrices, 5 and p, cannot be equal unless their null 
spaces coincide. So the problem reduces to finding five 
such vectors that are perpendicular to [1,�1,�1,�0,�0,�0@7. But 

:recall that the first three elements of any admissible b are.non-negative (except for the trivial image that is reserved 
for scaling and is not included in this proof). So, at least 

dddeleteddeletedd 

onal to [1,�1,�1,�0,�0,�0@7��  Therefore, any 

dddeleted
solution requires 

orthog-
at 

least six ratio images or a total of seven DW,s. 

Viewed in another way, by referring to Eq. [2], we can
decompose '  into its isotropic and anisotropic parts, as 
in�Eqs. [5] and [4], and substitute these definitions into 
Eq. [1]: 

[19] 
ootrace ()(D) - otrace (b a) 

isotropic anisotropic 

weighting weighting 


Because, by construction, b is a positive semidefinite 
matrix, Trace�(E) is positive. Moreover, the mean diffusiv-
ity must be positive (i.e., �D!  > 0). Therefore, according to 
the equation above, all DW,s must possess some diffu-
sion attenuation ascribable to D  (i.e., some isotropic 
weighting). Generally, while it is possible to sensitize the 
DWI exclusively to lhe isotropic part of�'  without also 
producing some attenuation caused by anisotropic diffu-
sion, it is impossible to sensitize the DWI exclusively to 
tho anisotropic part of '  without also producing some 
attenuation caused by isotropic diffusion. 

So far, wo have shown that six ratio images (or seven 
DW,s) are required to satisfy the condition of anisotropic 
weighting, Eq. [15], when U�is full-rank, or when 5  has 
the one-dimensional null space: 

  Ro= [1, 1, 1, 0, 0, �@7 [20@ 

Still, one could imagine choosing R with a null space 
other than R0 ,  or with more null dimensions (so that R 
spans fewer dimensions). However, one cannot do this 
without diminishing the generality of the weighting. The 
vector R0 holds a special place in that it represents pure 
isotropic weighting. That is 1/3 R0 T D R0 is the isotropic 
part ofD (i.e., tho projection ofD onto the null space Ru), 
whereas D - 113 R T 0 D R0 is the anisotropic part of D 
(i.e., the projection of D onto the range space of 5). It is 
easily demonstrated that D spans all six dimensions, 
which means that $  spans a five-dimensional subspace 
that is orthogonal to R�  A null space that would overlap 
this five-dimensional subspace would reduce some of the 
required degrees of freedom. Thus, the null space 
spanned by R 0 is the only one that permits the complete 
characterization of diffusion anisotropy. 

Our demonstration is now complete. Using A rather 
than�'  does not allow one to economize on the number of 
DW,s required to characterize diffusion anisotropy, un
less one can justify ignoring certain dimensions, e.g., by 
assuming symmetry, which we discuss below. In the 
process, we have also developed a general framework for 
considering both isotropically and anisotropically 
weighted MR,s. We see that a DWI in which b lies en-
tirely in the null space of R, i.e., b = [1,�1,�1,�0,�0,�0 7] , results 
in an isotropically weighted image. This is the same 
requirement used by Wong et al. (6) (see Eq. [2]) to 
produce such an image. Moreover, any six linearly inde-
pendent bt that span the range and null space of R can be 
used to produce an anisotropically weighted image. Fi-
nally, this linear algebraic formulation highlights the or-
thogonality or complementarity of the information re-
quired to characterize the isotropic and anisotropic 
contributions to diffusion. 

Interestingly, our results are not dependent on the 
details of the experimental design (e.g., the gradient mag-
nitudes, directions, timing parameters, etc.). Almost any 
choice of six ratio images yields a sot of as that satisfies 
Eq. [15]. An obvious exception is a linearly dependent set 
of bL, e.g., in which at least two DW,s have diffusion 
gradient vectors that are collinear and thus provide re-
dundant directional information. Any set of 21 linear 
equations in 21 as can be solved analytically. However, 
one could choose the gradient strengths and directions (b 
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matrices) of these images to minimize the effect of mea-
surement error, e.g .. by minimizing the condition num-
ber of the 21 linear equations. 
To produce a single image in which the contrast is 

proportional to a quadratic anisotropy measure, we must 
satisfy 21 independent equations simultaneously, one for 
each independent component or direction.2 

2 N.8. To use Eq. [1] to estimate a cubic function of the diffusion tensor 
elements is more complicated but proceeds in the same way. 

When imag-
ing gradients contribute negligibly to the b matrix, then b 
can be factored as follows: 

[21] 

where G is the column vector of peak diffusion gradient 
values and v is a constant (88). In this case, only three 
elements of the b matrix are independent, bxx, byy, and 
bzz. Therefore, it is algebraically impossible to satisfy 21 
independent equations required to specify the contrast of 
a computed anisotropically weighted image with fewer 
than seven DWIs. One might have suspected that if im-
aging gradients do contribute significantly to the attenu-
ation of each echo, that each b matrix might contribute 
more than three DOFs, and thus, fewer than seven images 
might be sufficient to obtain an anisotropically weighted 
image. However, because of intrinsic algebraic properties 
of the b matrix and the form of the quadratic scalar 
invariant anisotropy measures, we have shown that this 
is not the case. 
Is it reasonable to try to design specialized pulse se-

quences exclusively to construct an anisotropically 
weighted MRI? Our findings here suggest that the answer 
is "No." We have seen that seven DWIs are required to 
provide enough independent information to calculate a 
new image in which the contrast is a useful quadratic, 
rotationally invariant measure of diffusion anisotropy. 
However, this is the same number of DWIs required to 
calculate each element of the diffusion tensor analyti-
cally, as well as the T2-weighted signal A(b = Q) (8). It is 
clearly preferable to determine D directly from a set of 
seven DWIs, since with it one is able to calculate the 
tensor's three eigenvectors and eigenvalues, its Trace, 
and other invariant quantities, along with information 
about diffusion anisotropy per se. Moreover, if we are 
interested in displaying anisotropy measures other than 
one for which the b matrices were determined, we would 
have to recalculate a new set of a coefficients for each 
measure. Finally, anisotropically weighted sequences 
would provide no estimates of uncertainty of the diffu-
sion anisotropy measure itself. This is not the case with 
conventional diffusion tensor imaging using more than 
seven DWI , which is intrinsically a statistical technique. 
One could speculate that the number of ratio images 

required to produce an anisotropically weighted image 
would be reduced by assuming cylindrical or spherical 
symmetry a priori. In general, there is a significant risk in 
doing so. In vivo diffusion tensor MRI studies of monkey 
(20) and of human brains (21) produced many voxels that 
did not satisfy either hypothesis. Although the assump-
tion of cylindrical symmetry of the diffusion tensor 
should reduce the number of ratio images required to 

characterize anisotropy from six to four, and the assump-
tion of spherical symmetry should further reduce the 
number from four to one, one should not apply these 
assumptions a priori. Instead, it is preferable to establish 
the degree of symmetry a posteriori (e.g., by hypothesis 
testing) (22). 

CONCLUSIONS 

By exploiting properties of the b matrix and by using 
linear algebraic reasoning, we show that the minimum 
number of DWIs required to produce an anisotropically 
weighted MRI is seven for the simplest admissible diffu-
sion anisotropy measures. Clearly, "single-shot" anisu-
tropically weighted MRI is an impossibility. These find-
ings are quite general, since they do not require 
specifying the functional form of the b matrix or the 
pulsed-gradient sequence used to produce it. Seven is 
also the minimum number of DWIs required to determine 
the entire diffusion tensor, D, as well as the T2 -weightnd 
amplitude image, A (b = Q) in each voxel (8), from which 
one can compute Trace (D), the principal diffusivities, 
and the principal directions (which are not readily cal-
culated from a series of specialized anisotropically 
weighted imaging sequences). Now, when we generate 
maps of admissible measures of diffusion anisotropy us-
ing seven DWIs, it is with the knowledge that we are 
being as efficient as possible. 
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