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Abstract 

We model diffusion in white matter fascicles as a problem of diffusion in an array of identical thick-walled cylindrical tubes immersed in an 
outer medium and arranged periodically in a regular lattice. The diffusing molecules have different diffusion coefficients and concentrations (or 
densities) within the tubes’ inner core, membrane, myelin sheath, and within the outer medium. For an impermeable myelin sheath, diffusing 
molecules within the inner core are completely restricted, while molecules in the outer medium are hindered due to the tortuosity of the array of 
impenetrable tubes. 
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1. Introduction 

Diffusion tensor imaging (DTI) is a powerful noninva­
sive tool to assess developing, normal and pathological 
white matter in the brain in vivo [1,2]. White matter has an 
underlying fibrous structure giving rise to an observed 
anisotropy in the apparent diffusion coefficient (ADC), that 
is, different ADCs parallel and perpendicular to the fibers. 
The exact relationship between the apparent diffusion 
tensor (ADT) and tissue microstructure and composition 
is not known. In order to probe the dependencies of the 
ADT on tissue structure and composition, we develop 
analytical results for the long-time (times much longer than 
diffusion time across the fibers) ADC and ADT in a 
simplified model of brain white matter, consisting of a 
periodic pack of parallel cylindrical permeable multilayered 
tubes. Specifically, we compute ADCs both parallel and 
perpendicular to the axis of symmetry as well as the ADT, 
and relate these quantities to microstructure and composi­

tional parameters. 
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Recently, Hwang et al. [3] employed the finite-

difference method on histological images for simulating 
restricted diffusion with a view towards assessing neural 
injury and regeneration in myelinated axons. The literature 
had been reviewed well by Hwang et al. [3] who stated 
that the thickness of the myelin sheath had been ignored in 
all studies prior to theirs. They validated their finite-
difference scheme against known analytic solutions for 
diffusion in a cylindrical pore and in a hexagonal array of 
cylinders which do not possess thick skins. Specifically, 
Hwang et al. compared their simulation for cases (a) of a 
cylindrical pore surrounded by an impermeable medium 
and (b) hexagonal arrays of permeable cylinders using the 
results of Perrins et al. [4] for uncoated cylinders. 
Anatomical sections (Fig. 1) of white matter reveal that 
the myelin sheath is thick as shown schematically in Fig. 
2. To model myelin, we incorporate a finite coating 
thickness having transport properties represented by 
myelin’s fluid concentration and diffusion coefficient. 
Numerical studies, such as that by Hwang et al. [3], 
would benefit from the solutions provided here in which 
analytical results for the thick-walled tube pack are 
provided. Below we present results for square and 
hexagonal packs of coated cylinders that could serve as a 
test system for validating such numerical calculations. 
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2. Model calculations 

Chin et al. [3] concluded that the sensitivity of ADC to difference in T2 in different compartments is small, allowing us to 
consider the steady-state diffusion coefficient in a composite media. 

Diffusion currents are driven by gradients in the Gibbs chemical potential, 

l ¼ l0 þ RT ln C þ RT ln a: ð1Þ 

Here, R is the gas constant, T is the temperature, C is the concentration of the substance that is diffusing, a is the activity 
coefficient, and l0 is the chemical potential of the substance in its standard state. l0 is independent of position; we will assume 
either the substance is ideal (ln a u0) or ln a does not vary with position, and the temperature is uniform throughout. To be 
explicit, the particle current density is given by the constitutive relation 

jð Þ ¼ -r D C r ql rð Þ ð Þ
RT ð2Þ ¼ - DqC r :ð Þ

We use the analogy between Eq. (2) and the corresponding constitutive relations between electric currents (displacement 
or conduction) and electric potential gradient via dielectric constant or electrical conductivity. We can apply the solutions for 
electrical conductivity or dielectric constants for composite media made up of coated cylinders [5,6] by replacing the electrical 
potential, V(r, h), by a chemical potential l (r, h)=l0+RT ln[C(r, h)] (we lump position-independent RT ln a with l0). For the 
corresponding diffusion problem, the conductivities or dielectric constants of each region are replaced by the product of the 
diffusion coefficient and the concentration of the corresponding region. The additional factor of concentration plays an 
important role in the tortuosity factor of the effective diffusion coefficient [7,8].

We use a subscript bcQ to denote the core, bsQ to denote the sheath and bbQ to denote extra-axonal (bath) material. The 
equilibrium concentration and diffusion coefficients of the molecules under investigation inside the core are Cc0 and Dc, those 
inside the myelin sheath are Cs0 and Ds, and those outside are Cb0 and Db. Note that in Eq. (1), Cc(r)=C(r, h), etc., denotes 
perturbations to the equilibrium concentrations Cc0, etc., due to an externally imposed concentration or chemical potential 
gradient, which can be likened to an electric field, Eext, that is used in the corresponding problem of electrical conductivity or 
dielectric constant of composite media [4 –6].

We consider both a square pack and a hexagonal pack of cylinders (Fig. 3). In both the cases, the cylinder centers are 
separated by a distance L, the radius of the inner cylinder is rc and that of the outer is rs, and thus the sheath thickness is given 
by Dt =rs-rc. Only the ratios of these lengths will appear in the answer.
Fig. 1. Histology showing bundles of axons in a section of primate white matter (cross section of corpus callosum). Water diffuses faster parallel to the fibers 
than perpendicular to them. 
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Fig. 2. A schematic diagram of a myelinated axon. The axonal membrane contains short active regions, nodes of Ranvier, which are joined by long passive 
segments insulated by myelin. The outer radius of the axon is rs; its inner radius rc. 
Mathematical details will be presented elsewhere. The effective concentration Ceff is: 

 
2 2 r r c cCeff ¼ ð1 - f ÞCb0 þ f Cc0 þ f 1 - Cs0: 2 2r rs s

ð3Þ 

The effective properties for coated cylinders depend on geometrical structure factors [4–6] and factors c2l-1 that depend on 
the properties of the constituents: 

2 2ð l-1Þ ð2 2l-1ÞðDbCb0 - DsCs0ÞðDsCs0 - DcCc0Þrc þ ðDbCb0 þ DsCs0ÞðDcCc0 þ DsCs0Þrs c2l - 1 ¼ : 
2 2ð l-1Þ ð2 2l-1ÞðDbCb0 þ DsCs0ÞðDsCs0 - DcCc0Þrc þ ðDbCb0 - DsCs0ÞðDcCc0 þ DsCs0Þrs 

ð4Þ 

The longitudinal effective diffusion coefficient Dl,eff is given by the volume averages: 

 
2 2 r r c cDl;eff Ceff ¼ ð1 - f ÞDbCb0 þ f DcCc0 þ f 1 - DsCs0; ð5Þ 
2 2r rs s

for all packing geometries. 
A reasonable measure of diffusion anisotropy can be given by the ratio Dl,eff /Dt,eff, and this ratio is independent of Ceff. 

bADCN , the mean ADC, and the degree of anisotropy, Dl,eff /Dt,eff, are two useful parameters routinely used in characterizing 
white matter. 
L 

L 

Fig. 3. Nearest neighbors around the central cylinder of a portion of a hexagonal array of coated cylinders. To remove clutter, only one cylinder is depicted as 
coated; only the outer radius is shown for the others. Centers of cylinders are separated by a distance L, hence
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; where rs is the outer radius. 
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In square and hexagonally symmetric packs, the symmetry dictates that the diffusion tensor be described by two principal 
diffusion coefficients—one parallel to the axis of the cylinders and the other perpendicular to it, lying in the transverse plane 
(i.e., diffusion is isotropic in the transverse plane and two transverse components of the tensor are identical). 

For a square array, f =pr2s/L
2 is the fraction of volume occupied by the coated cylinders. To the lowest order in multipolar 

concentration, we obtain the Maxwell-Garnett formula: 

2f 
Dt;eff Ceff ¼ DbCb0 1 - : ð6Þ 

c1 þ f 

A truncation to third order gives, 

" -1
0:305828f 4c5Dt;eff Ceff ¼ DbCb0 1 - 2f c1 þ f - ð7Þ 

c3c5 - 1:402960f 8 

While for the square lattice geometry, the maximum value of f is p/4c0.785, published values of the intracellular space 
based on iontophoretic measurements are typically higher, approximately 0.82. In order to treat the physiological range of axon 
spacing, we must consider hexagonal (and possibly other) packing geometries that afford higher packing densities. 

For a hexagonal array, 

2
 
s
f ¼ p 

2pffiffi :
3L2

ð8Þ

Thus, the maximum packing density is about f =0.907. To the lowest order in multipolar expansion, we obtain again the 
Maxwell-Garnett formula, Eq. (6), which is the same as that for a square array. In fact, the Maxwell-Garnett formula holds for 
all structures, including for disordered systems and is accurate for small f, that is, in the dilute limit. Next, the same degree of 
truncation in recursion relations as employed in Eq. (7) gives for hexagonal pack: 

"
0:07542f 6c7Dt;effCeff ¼ DbCb0 1- 2f c1 þ f -

c5c7 - 1:06028f 12

In the absence of a sheath, we recover Eq. (13) of Perrins et al. [4].
In the usual permeability approximation, one takes the limit of thin skin such that Dt =rs- rcY0 with Ds/(Dt)Yj, giving a 

jump condition.
All the results for longitudinal and transverse diffusion coefficients are easily generalized for the thin myelin case by the use 

of an appropriate limit. 
A thick myelin sheath is nearly impermeable and acts as a diffusion barrier. For the nearly impermeable myelin case, the 

effective transverse diffusion coefficient times the effective concentration Dt,eff Ceff does not depend on properties of the core. 
This is intuitively obvious: if the diffusion in the sheath is practically zero, it acts as a barrier and Dt,eff Ceff is dominated by 
diffusion outside the sheath. The core contribution then drops out (is shielded out); however, the effective concentration Ceff 

involves the properties of the core. 
In the extreme limit, when CcDc=Cs Ds=0, all transport comes from the bath molecules, but they have a tortuous path to 

follow in the transverse direction. The Maxwell-Garnett form for transverse diffusivity is Dt,eff=Db/(1+f ), whereas Dl,eff=Db. 
In this case of no myelin, one can use the results from Perrins et al. [4] of uncoated cylinders. The diffusion tensor can still 

be anisotropic, even in the absence of a myelin sheath. Let us illustrate this using the lowest order of the so-called Maxwell-

Garnett form, Eq. (6), for transverse diffusivity: 

Dl;eff ðCbDbð1 - f Þþ CcDc f ÞðCcDcð1 - f Þþ  CbDbð1þ f ÞÞ ¼ 
Dt;eff CbDbðCbDbð1 - f Þ þ  CcDcð1 þ f ÞÞ  

Note that in Eq. (10) above, the anisotropy vanishes when CbDb=CcDc, but the system will be anisotropic even when 
Db=Dc, but CbpCc. 
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Fig. 5. Degree of diffusion anisotropy Dl,eff /D t,eff as a function of the 
myelin sheath radius rs develops from its minimum value of rc to that 
allowed by hexagonal close pack. Here, -rc=6  Am, Db=2X10 9 m2/s, 

-C =0.95, D =7.5X10 10 2
b0 c m /s, Cc0=0.88, Ds =3.X -  10 11 m2/s, Cs0=0.5, 

and L =18.2 Am. 
3. Results and discussions 

Analytical solutions for the ADT and quantities derived 
from it, such as the mean ADC, bADCN , and the degree of 
diffusion anisotropy, can be used to explore the effects of 
small changes in model parameters associated with normal 
conditions as well as a number of developmental and 
disease processes known to affect myelinated axon structure 
and function. 

Many studies suggest the existence of diffusion anisot­
ropy in white matter prior to the appearance of myelin 
[9,10]. That there can be anisotropy even in the absence of a 
myelin sheath is obvious. For example, when cylinders with 
high values of CcDc (containing highly diffusive molecules) 
are inserted in a bath with small values of Cb Db (containing 
poorly diffusive molecules), the longitudinal transport can 
be high; while the transport perpendicular to the cylinder 
axes will be low, as the molecules within the cylinders have 
to diffuse through the bath in the transverse direction but not 
in the longitudinal direction. This phenomenon can be 
likened to resistors in series (transverse direction) and 
resistors in parallel (longitudinal direction). 

When present, myelin is the major barrier to diffusion 
and cause of anisotropy. In normal white matter develop­
ment, the thickness of the myelin sheath increases. We can 
mimic this process heuristically by considering the case in 
which the normalized thickness of the myelin sheath, 
(rs -rc)/rc, grows from zero to a finite value. Fig. 4 shows 
the mean bADCN as a function of the radius of the myelin 
sheath. As myelin thickness increases, the mean ADC 
progressively drops, a change that is in qualitative agree­
ment with the findings of Neil et al. [9]. In Fig. 5, the 
anisotropy ratio is plotted vs. the radius of the myelin 
sheath. Some diffusion anisotropy is observed when no 
myelin is present, but the fact that anisotropy increases with 
increasing myelin thickness supports the hypothesis that, 
although not the only determinant of diffusion anisotropy in 
white matter, myelin can significantly contribute to it. 

In DT-MRI, one measures an attenuation in the magne­

tization due to random phases that the spins acquire during 
<ADC> x109 m2/s 
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Fig. 4. Mean diffusion coefficient
( )

bADCN ¼ 2Dt;eff þ Dl;eff =3 as  a  
function of the myelin sheath radius rs develops from its minimum value 
of rc to that allowed by hexagonal close pack. Here, rc X -  =6  Am, D 9

b=2 10

m

 
2/s,  X - 10 11 2

c0  -C 2
b0=0.95, Dc=7.5 10 m /s, C =0.88, Ds =3.X10 m /s, 

Cs0=0.5, and L =18.2 Am. 
its random motion. In the lowest order of approximation, the 
attenuation exponent depends on the mean square displace­
ment. Here, we have considered only the long-time limit of 
diffusion coefficient, which is the mean square displacement 
divided by time. For hindered motion or permeable myelin, 
one can use the diffusion coefficient times time to recover 
the mean square displacement. However, for fully restricted 
motion of axonal fluid molecules, as in the case of an 
impermeable myelin, the mean square displacement is 
bounded, and the long-time diffusion coefficient of restrict­
ed axonal fluid molecules becomes zero. Thus, the mean 
square displacement is nonrecoverable from the long-time 
diffusion coefficient. The implications for DT-MRI have 
been studied in a recent paper [11]. To characterize water 
diffusion in brain white matter, Assaf et al. [11] proposed a 
framework that incorporates both hindered and restricted 
models of water diffusion and an experimental methodology 
that embodies features of diffusion tensor and q-space MRI. 
They propose a model of white matter diffusion anisotropy 
that contains a hindered extra-axonal compartment, whose 
diffusion properties are characterized by an effective

diffusion tensor, and an intra-axonal compartment, whose 
diffusion properties are characterized by a restricted model 
of diffusion within cylinders. The hindered model primarily 
explains the Gaussian signal attenuation behavior observed 
at low b (or q) values; the restricted non-Gaussian model 
does so at high b (or q).
4. Conclusion 

Here, we have presented a simplified, but self-consistent 
modeling framework for predicting the long-time ADCs of 
water parallel and perpendicular to a pack of myelinated 
axons. Values assumed for white matter suggest that the 
orientationally averaged ADC (mean ADC) and diffusion 
anisotropy ratio are fairly insensitive to intracellular 
dimensions and diffusion properties, and are primarily 
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affected by changes in the outer diameter of the axons, the 
extracellular volume fraction, and inter-axonal spacing. 
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