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Summary: To describe load bearing and lubrication of cartilage requires 
treating its collagen network and proteoglycan (PG) phases separately in a 
constitutive law of the tissue. We propose a framework for developing such an 
empirical constitutive law that treats the cartilage extracellular matrix (ECM) 
as a composite medium, with a PG phase that exerts a swelling pressure, and a 
collagen network phase that restrains it. We compare and contrast this model 
to a biomechanical constitutive law that aggregates the collagen and PG phases 
into a single "solid-like" elastic tissue matrix, and show that aggregation 
obscures essential differences in the physical-chemical properties of the 
collagen and PG constituents as well as their distinct biological roles within 
cartilage's ECM. We also relate moduli in the aggregate constitutive model to 
quantities measured in an osmotic stress titration experiment. 
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Introduction 
Cartilage is a remarkable material-able to lubricate joints and bear static and dynamic 

loads often throughout one's lifetime [ll. One feature that distinguishes cartilage from 

common engineering materials that perform lubricating and load-bearing functions is that 

its network consists entirely of "squishy" constituents, primarily Type II collagen and 

proteoglycans (PGs), along with water and mobile ions. 

Understanding the physical basis of the functional (material) properties of cartilage is 

fundamental to tissue biophysics. In principle, this knowledge could be embodied in a 

constitutive law of cartilage, which relates the local stress developed within an 

infinitesimal block of tissue to physical-chemical variables that characterize the local state 

of the tissue's components. This constitutive relationship, in tum, could be used in 

conjunction with laws of momentum, mass, and charge conservation (with appropriate 

boundary and initial conditions) to predict the distributions of stress and strain within the 

tissue under various environmental conditions. The successful completion of this modeling 
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program could help us understand better how cartilage microstructure, composition and 

material properties affect its behavior under static and dynamic joint loading. 

The development of such a physically based constitutive law of cartilage is also essential 

for understanding the effects of endogenous and exogenous changes in tissue constituents 

on the functional properties of the aggregate tissue. Endogenous changes can occur 

normally in development or aging, or in degeneration and disease (like osteoarthritis) 

whereas exogenous changes can occur following the addition of a biochemical agent such 

as collagenase or trypsin, or potentially by external genetic manipulation. Moreover, we 

would like to understand differences in functional properties between tissues of different 

species (such as bovine and human), as well as between tissues from same species or even 

from different regions within the same joint. In tissue engineering, one would like to 

design extracellular matrix (ECM) with tailored mechano-chemical properties that ensure 

compatibility with the surrounding tissue and its ultimate integration. 

An impediment to achieving these objectives, however, is that while static and dynamic 

loading processes and joint lubrication occur at the macroscopic or tissue length scale, the 

interactions that give rise to these processes occur at molecular, mesoscopic, and 

microscopic length scales. A challenge in tissue biophysics is to formulate a macroscopic 

constitutive law of cartilage in terms of variables and parameters that embody relevant 

physical and chemical processes and properties of cartilage's constituents at these finer 

length scales. To date, this goal has not been achieved. 

As an interim pragmatic step, we propose an approach for developing an empirical 

constitutive law of cartilage. This is done by considering the three salient contributions to 

the total tissue stress: the retraction stress developed by the three-dimensional collagen 

network, the swelling stress developed by the PGs trapped within it, and the hydrodynamic 

stress developed by the pore fluid. Here, equations of state for the collagen network and 

PG phases are obtained using experimental data [21. We compare and contrast this 

constitutive modeling approach with one promulgated in the biomechanics literature, 

which aggregates the collagen and PG phases into a single "solid-like" elastic tissue phase 
31f . We relate moduli in the biomechanical constitutive model to quantities measured in an 

osmotic stress titration experiment. 

Methods 

The experimental data used here is given in Basser et a!. [21 , in which cartilage specimens 

were compressed osmotically by successively equilibrating them in polyethylene glycol 
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(PEG) solutions having different, known osmotic pressures. Using this "stress titration" 

data, along with a simple mathematical model, it is possible to obtain empirical equations 

of state (i.e., "pressure vs. volume" curves) for both the collagen network and PG phases 

individually. These can be used in constructing a constitutive law of the cartilage ECM. 

To construct an empirical constitutive law, we use four equations. These are 1) the 

conservation of mass of tissue water and tissue constituents (PG and collagen), 2) the 

conservation of fixed charge, 3) an equation of state for the PGs (relating its concentration 

to the osmotic pressure), and 4) an equation of state for the collagen phase (relating its 

hydration to the osmotic pressure). These four equations relate four dependent variables 

that characterize the equilibrium state of cartilage [4l. We can solve these equations 

simultaneously for their equilibrium state variables as done in [2] 

We can represent these data graphically using a convenient four-quadrant scheme as 

shown in Figure 1. 

Data represented schematically in quadrant III are obtained from solution experiments 

obtained using extracted proteoglycans as described in Urban et al. [SJ and Ehrlich et al. [6l. 

The [FCD]eff is the fixed charge density of the PGs (in mEq per gm of extra-fibrillar 

water). This represents the molar concentration of charges based upon the water volume in 

the compartment accessible to the PGs [4l. 

The equation of the conservation of charge is represented by the relation in quadrant IV, 

which requires that no fixed charge is lost or gained during compression or swelling of the 

tissue. This results in an inverse relationship between the [FCD]eff and the mass or 

volume of extra-fibrillar water in the tissue. 

The equation of conservation of mass of the tissue constituents is shown in quadrant I, 

which just states that the total wet weight of the tissue must be the sum of the weight of 

the water in the extrafibrillar space, the water in the intrafibrillar space, and the dry weight 

of the polymeric components of the tissue. (Intrafibrillar water is the water that is collagen 

fibril associated water and the extrafibrillar water is the water associated with the PG and 

other constituents.) 

The relationship shown in quadrant II illustrates empirical findings of Maroudas et al. [7] 

that the collagen fiber hydration, defined as the mass of intrafibrillar water, m1FH20, divided 

by the measured mass of dry collagen, me, is a function of the net applied pressure acting 

on the collagen fibrils, which in our experiment is IlPG. 

55
 



m 
,)aR�

-I 

[FCD] eff

Figure 1. A four-quadrant model of cartilage tissue behavior and its graphical solution 
calculated from data obtained from a 90-year old normal human hip [2] The first quadrant 
(I) contains the equation of conservation of mass. The fourth quadrant (IV) contains the 
equation of conservation of charge. The third quadrant (III) contains the empirical 
relationship between the effective fixed charge density, FCDeff, and the total equilibrium 
osmotic pressure, TiPG, exerted by the PGs. The second quadrant (II) contains the 
empirical equilibrium relationship between the applied stress acting on collagen network 
(which in this experiment is TiPG) and the hydration of the collagen fibrils. Parameters r 
and s as represent the asympototic value and intercept of the curve. A stable solution 
results when a closed rectangular orbit evolves as shown above. Equilibrium values of the 
four dependent variables are also shown at the intersection points of the stable closed 
trajectory and the four coordinate axes. While these simultaneous equations are solved 
numerically, it is also instructive to see how a stable equilibrium solution evolves 
graphically. This is done simply by choosing a point on one of the curves and move 
clockwise or counter-clockwise parallel and perpendicular to the coordinate axes until a 
stable orbit is achieved. 

The four equations displayed above completely specify the four dependent variables at 

mechanochemical equilibrium, once all experimental parameters for each specimen have 

been determined experimentally. 

We solve these equations simultaneously using the Newton-Raphson method but it ts 

instructive to see how the numerical equilibrium can be achieved graphically, as described 

in the caption to Figure 1. 
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Once the equilibrium value of IlpG is determined, we can use the requirement that the 

tissue is in mechanical equilibrium to calculate the collagen network tensile stress, Pc c from 

IlPEG· Specifically, IlPEG = IlpG - Pc . Typical results are shown in Figure 2 from 

applying this approach for the stress titration experiment described above. 

I 

5DWLR of compressed WR�initial tissue ZHLJKW (0�0R� 

Figure 2. "Balance of forces" concept illustrated in normal adult cartilage specimen 
(obtained with permission from 21E ). The applied osmotic stress, SL�PEG (shown as ) equals 
the osmotic pressure of the cartilage proteoglycans, 7tpa (shown as ) less the collagen 
tensile stress, Fe (shown as ). Each is plotted against the tissue's "wet weight" under 
compression, M, normalized by the tissue's "wet weight" under no load, Mo. Age of 
donor: 55 years. 

Discussion 
One notable feature shown in Figure 2, is the highly non-linear Po c vs M/Mo curve of the 

collagen network. In particular, the collagen network has a non-zero resting or unstressed 

tissue wet weight (not shown) below which the network is effectively buckled, and above 

which, the collagen network resists any increase in tissue volume (or dilatation) at an 

increasing rate. This is indicated by the positive curvature or increasing slope of the Po c vs 

M/M0 curve with increasing tissue volume as shown in Figure 21• The IlPG vs M/M0 curve 

in Figure 2 exhibits a non-linear relationship with a negative slope. As tissue volume 
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1 Qualitatively similar behavior is observed (in one dimension) when stretching a nylon stocking. It too has a 
non-zero unstressed length, and then becomes increasingly stiff as more tensile force is applied 

increases, PGs become more dilute and their osmotic pressure decreases. Qualitatively 

similar behavior is observed in Boyle's law of an ideal gas. 

Modern biomechanical models of cartilage began with McCutchen fSJ, who likened 

cartilage to a poro-elastic medium (like some soils, clays and rocks) that deform elastically 

while expressing fluid when loaded. This viewpoint was formalized and codified in a 

number of subsequent studies in which Biot's theory of poro-elasticity [9, 10] was applied to 

describe cartilage's static and dynamic behavior [3]. Subsequently, mixture models [11] 

were proposed as more ionic phases were introduced to account for various observed 

electrokinetic effects 2fl l, however, the "tissue matrix" in these models was consistently 

treated as a single elastic solid phase. 

McCutchen also contributed significantly to the development of the biophysical picture of 

the cartilage matrix. He wrote, "Articular cartilage is, in effect, a gel dotted with cells, 

and permeated by a network of collagen fibers ... that ... are present in order to withstand 

tensile stresses imposed by the mechanical loads experienced in their service" [13]. Ogston 
4

[1 ] extended this picture of the cartilage ECM, proposing that cartilage's collagen network 

resists the osmotic swelling pressure exerted by proteoglycans. Moreover, he posited that 

the balance of forces between these two phases gives rise to the tissue's overall 

mechanical stiffness and load bearing ability. This idea was further developed and 

advanced by Maroudas and co-workers 6[IS,l J and is embodied in the mathematical model 

and experimental framework described above. 

The simplest way to illustrate the shortcomings of the biomechanical picture of cartilage is 

to consider a "free swelling" experiment in which there are no external loads or stresses 

applied on a cartilage tissue specimen. In the biomechanical model, the total tissue stress 

is given by [3]: 

(1) 

where rLM is the total stress tensor, &ij is the aggregate tissue strain tensor, &kk is the 

aggregate tissue dilatation, GA(c) is the aggregate shear modulus of the tissue, AA(c) is the 

aggregate Lame constant of the tissue, fJA(c) is the aggregate chemical stress (analogous to 
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a thermal stress), P is the hydrostatic pressure, bij is the identity tensor, and c is the 

concentration. 

In mechanical equilibrium, when the tissue is kept at a constant ambient pressure, we have 

P = 0. In normal physiological saline, we can set fJA(c) = 0, which is an appropriate 

reference value. Also, since the applied stress on the cartilage tissue is zero, r,ij(c)= 0, 

which implies that Eij(c)= 0. Thus, the aggregate model of cartilage tells us that in normal 

saline, the unloaded tissue is both stress free and strain free. We see above in Figure 2 that 

this "no-stress condition" for the aggregate tissue corresponds to the case in which the 

tissue is unloaded, i.e., when M/Mo = 1. While the tissues as a whole may be unloaded, 

there are significant internal stresses developed within it. We see above that at M/Mo = 1, 

the collagen network tensile stress is approximately 4 atm., which is exactly balanced by 

the osmotic swelling pressure of 4 atm. exerted by the PGs! This is approximately the gas 

pressure developed in a bicycle tire to keep it inflated. 

We can also relate various moduli in our two-component model of the cartilage matrix 

under isotropic loading to biomechanical models that aggregate the cartilage matrix into a 

single phase. In equilibrium isotropic loading, we have P = 0; and in normal physiological 

saline, again we can set B(c) = 0. We can add up the stress applied, Tij on each face of 

incremental tissue block as follows2 : 

2 Below we use the Einstein convention, in which the recurrence of any index means one should sum over 

that index. 

(2) 

The right hand side of the equation becomes 

(3} 

We can now obtain an expression for the isotropic compressibility: 

DTPEG = 2GA(c);3A.A(c) = KA(c) 
r:kk(c) 

( 4), 

59
 



and recognize this ratio equals the "aggregate" bulk modulus, KA(c). 

Since in an equilibrium experiment in which the tissue is isotropically loaded by a small 

applied pressure, .MlPEG, the tissue dilatation, Ekk(c), can be approximated by 

(5) 

where V'eqis the volume of tissue in the unloaded equilibrium state, and V'eq is the volume 

of tissue in equilibrium subject to the isotropic load, DP PEG. It is not difficult to show that 

the change in the applied isotropic stress on the cartilage network divided by its fractional 

change in equilibrium volume can be 

approximated by: 

L1I1rEc ""Vqldllpcl 
V"1 - Veq dV v"V'' 

GaO� J 
dV v"V'' 

(6) 
veq 

From this expression, we see that the ability of the cartilage network to resist isotropic 

compression arises from the PG's osmotic compressibility AND that of the collagen 

network's. Moreover, combining the three equations above, we see that 

(7) 

Therefore, we have related the aggregate bulk modulus of the tissue to the individual 

pressure vs. volume curves of the PG and collagen network phases. 

Because P c vs V and IlPG vs V are both monotonic functions, the stability of mechanical 

equilibrium is assured. The system always returns to its equilibrium state after a 

perturbation from it. This is crucially important, because cartilage, like man-made 

composites, such as reinforced concrete, would be poor structural materials if they could 

assume a multiplicity of equilibrium configurations under the same static loading 

conditions. Such an elastic instability could lead to a catastrophic structural failure. Many 

non-electrolyte and polyelectrolyte gels [I?J that exhibit multiple stable equilibrium states 

can change volume discontinuously at thermodynamic equilibrium. If cartilage exhibited 
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such behavior, then, for the same IT3* there might be several stable (or unstable) 

equilibrium tissue volumes, likely leading to a mechanical failure of the tissue. However, 

one fundamental difference between the architecture of cartilage and that of a simple 

cross-linked polyelectrolyte gel is that in cartilage, the PG constituent that produces the 

osmotic swelling pressure and the collagen network that resists it are distinct, whereas in 

simple cross-linked polyelectrolyte gel the charged groups causing the swelling and the 

cross-links producing the elastic restraint are all part of the same polymer. By separating 

these two phases, Nature may have precluded the possibility that cartilage exhibits these 

catastrophic critical phenomenon (at least in the physiological regimes we have studied). 

One could also speculate that this is why organisms do not make cartilage using only 

cross-linked, long-chain polyelectrolyte gels (such as hyaluronic acid) even though they 

could be synthesized at a lower metabolic cost. 

Besides drawing distinctions between cartilage and polyelectrolyte gels, it 1s also 

important to distinguish it from a sponge or a clay. Following McCutchen's seminal 

suggestion that in dynamic loading, cartilage deforms like a sponge or saturated soil [8], 

subsequent biomechanical models of cartilage behavior described its material properties 

using constitutive laws that are identical to those used to describe rocks and soils [ISJ. 

Cartilage was modelled like a clay, consisting of a "pore fluid" phase and a single "elastic 

network" phase. As our study demonstrates, to understand even the simple equilibrium 

behavior of cartilage requires a more biologically realistic model of the ECM. 

Regrettably , aggregation of the distinct cartilage matrix phases into a single phase has 

lead to the widespread use of the equilibrium (unstressed) state of the tissue specimen as 

the reference state from which the tissue's strain is measured, and from which the tissue's 

stress is calculated. As we have shown, when the cartilage tissue matrix is in its 

"unstrained" (unloaded equilibrium) state, i.e., Eij = 0, the collagen matrix is swollen to 

about 115% of its rest volume and is supporting a tensile stress of 4 atm (0.4 MN/m2)! 

Moreover, our previous data obtained from normal, osteoarthritic, and enzyme depleted 

cartilage samples, show that biological changes associated with degeneration or 

degradation significantly affect the equilibrium tensile stress and PG osmotic pressure, as 

well as the degree of deformation of the collagen network in the unloaded equilibrium 

state [lJ. When we try to make comparisons between different tissues, we should make 

them with their collagen networks in the same state of deformation. Otherwise, 

comparisons among tissues obfuscate rather than clarify differences in mechanical 

properties. 
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By separating individual contributions of the collagen network and PG phases, we are for 

the first time able to predict behavior that cannot presently be gleaned from existing 

aggregation models. For example, we can now determine a) collagen's unstressed volume 

or hydration, b) its deformation with respect to its unstressed state c) the network tensile 

stress and the PG osmotic pressure when the tissue is unloaded in equilibrium, d) the 

network tensile stress and the PG osmotic pressure when the tissue is isotropically loaded 

in equilibrium; and e) the compressibilities of the collagen network or PG at equilibrium 

and their dependence upon tissue volume. 

Since the collagen network is largely uncharged at physiological pH, its properties are 

largely independent of perturbations of ionic strength around physiological conditions. 

Although they are may not directly be affected by charge, the collagen network state will 

be influenced by changes in ionic strength because it has a dramatic effect on the osmotic 

swelling pressure exerted by the GAGs on the collagen network (primarily by affecting 

their mutual electrostatic repulsion, and secondarily, entropic interactions). In general, 

aggregation masks effects of any physical-chemical or biochemical process that affects 

collagen and GAGs selectively or differentially. This includes changes in temperature, 

pH, solvent composition, and ionic strength, enzymatic digestion, etc. 

Since the "biphasic" and subsequent "triphasic" models aggregate the contributions of the 

collagen network and GAGs into a single "solid-like" tissue. Thus, they cannot be used 

retrospectively to predict the individual states of stress or strain of these constituents. For 

example, the triphasic theory does not allow us to predict how inflated or distended the 

collagen network is with respect to its own unstressed or resting state for a particular set of 

environmental conditions, or even what the collagen's unstressed configuration is. It 

cannot tell us how much osmotic pressure the GAGs exert on the collagen network at 

equilibrium. It cannot tell us what the individual compressibilities of the collagen network 

or GAGs molecules are at equilibrium. 

Conclusions 

Although not analytically derived, the new empirical constitutive law represents a 

departure from existing continuum models of cartilage behavior. Moreover, the 

mechanical, electrical and chemical consequences of changes in their properties can also 

be examined both qualitatively and quantitatively. 

Model assessment is also simple to implement either graphically or numerically. This 

simplicity is achieved, in part, by combining conservation laws (e.g., conservation of 
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momentum and charge) that must hold, with phenomenological constitutive laws of each 

polymeric phase that we measure. Our use of this empirical approach, however, is a 

pragmatic requirement as existing theoretically derived constitutive laws do not predict 

experimental findings adequately. In particular, there is no adequate mathematical model 

of electrostatic and entropic interactions between PGs to replace our empirical relationship 

between osmotic pressure and fixed charge density. There is also no adequate model of 

the non-linear behavior of the collagen network that we observed in our free-swelling 

experiments to replace our constitutive relationship between collagen network pressure, Pc 

and tissue volume, V. We would strongly encourage more physics-based research directed 

to deriving the form of these empirical constitutive laws from basic principles. 

This constitutive model expresses formally what the biochemical and physiological 

communities have known intuitively for decades, but was not incorporated into 

mathematical models of cartilage behavior -- that in cartilage, at a sub-microscopic scale, 

PGs produce the osmotic swelling pressure and the collagen network resists it. The subtle 

Yin-Yang balance between these two physically and chemically distinct constituents of 

cartilage, with distinct physiological functions, and distinct roles in the etiology of 

extracellular matrix pathologies, is essential to our understanding of cartilage behavior. 

While in equilibrium free-swelling, the importance of the contributions of each constituent 

is immediately apparent, in other biologically relevant loading regimens, such as those 

occurring during locomotion, the proper characterization of cartilage dynamics will also 

require treating the PGs and collagen as separate phases. 

In our model, the contributions of the PG phase that causes the tissue to swell, and the 

collagen network that resists swelling, are treated separately. This simplification requires 

further examination. While the PG and collagen constituents of cartilage have distinct 

physico-chemical properties, as well as perform distinct physiological and biochemical 

functions which aggregation into a single "solid-like" phase obscures, we must still test for 

and allow for the possibility that they interact beyond the simple fact that they both 

"compete" for the same water molecules and ions. 

A challenge remains to develop an analytical continuum model that can describe the 

dynamic behavior of cartilage under loading (such as consolidation and lubrication) while 

still treating the collagen and PG phases separately (albeit interacting). Any description of 

cartilage dynamics in the limit of equilibrium free swelling, however, should be 

comparable to what we have reported here. 
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