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Neuroimaging studies, using various modalities, have evidenced a link between the general 
intelligence factor (g) and regional brain function and structure in several multimodal 
association areas. While in the last few years, developments in computational neuroanatomy 
have made possible the in vivo quantification of cortical thickness, the relationship between 
cortical thickness and psychometric intelligence has been little studied. Recently, cortical 
thickness estimations have been improved by the use of an iterative hemisphere-specific 
template registration algorithm which provides a better between-subject alignment of brain 
surfaces. Using this improvement, we aimed to further characterize brain regions where 
cortical thickness was associated with cognitive ability differences and to test the hypothesis 
that these regions are mostly located in multimodal association areas. We report associations 
between a general cognitive ability factor (as an estimate of g) derived from the four subtests of 
the Wechsler Abbreviated Scale of Intelligence and cortical thickness adjusted for age, gender, 
and scanner in a large sample of healthy children and adolescents (ages 6–18, n =216)  
representative of the US population. Significant positive associations were evidenced between 
the cognitive ability factor and cortical thickness in most multimodal association areas. Results 
are consistent with a distributed model of intelligence. 

© 2009 Elsevier Inc. All rights reserved. 
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1. Introduction 

A number of reports have shown that scores on various tests 
of intelligence and cognitive ability are correlated with regional 
brain structure and function (Colom et al., 2006; Deary et al., 
2006; Duncan et al., 2000; Gray et al., 2003; Jung & Haier, 2007; 
Schmithorst & Holland, 2006). A recent review and meta-
analysis, suggested that a distributed network of multimodal 
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association areas consisting of the dorsolateral prefrontal cortex 
(DLPF), the inferior and superior parietal lobule, the anterior 
cingulate cortex (ACC) and parts of the temporal and occipital 
lobes, seems to be highly correlated structurally, functionally 
and/or biochemically to general intellectual abilities (Jung & 
Haier, 2007). This resulted in the proposal of a Parieto-Frontal 
Integration Theory (P-FIT) (Jung & Haier, 2007). According to 
the P-FIT, sensory information is first processed by temporal 
and occipital areas for subsequent integration and abstraction 
in parietal areas. Problem evaluation is then implemented by 
the prefrontal cortex and response selection mediated via the 
anterior cingulate. 

Some of the structural imaging data that has served to 
develop the P-FIT model stems from work conducted using 
Voxel-Based Morphometry (VBM); a brain imaging analysis 
method that essentially produces, for each subject, concentration 
maps representing tissue proportion in local neighbourhoods. 

mailto:sherifkarama@gmail.com
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More specifically, to each voxel (ie data point in a subject's brain) 
becomes attached a value representing a distance-weighted 
estimation of the proportion of a tissue of interest (eg gray 
matter) that is present in its vicinity. These VBM-produced 
concentration maps can be influenced by a multitude of factors 
(Ashburner & Friston, 2001). For instance, in the cortex, VBM-
related associations with gray matter concentration for a given 
region can be due, among other things, to differences in gray 
matter volume, shape of cortical folding, and/or misalignment of 
cortical gyri between subjects. Even if it were possible to 
ascertain that VBM-related gray matter associations were due 
exclusively to differences in cortical volume, this would still not 
disambiguate cortical surface-related from cortical thickness-
related volume differences. 

Developments in computational neuroanatomy have now 
made possible MRI-based quantification of cortical thickness. 
(Duncan et al., 2004; Fischl & Dale, 2000; Kim et al., 2005; 
Kriegeskorte & Goebel, 2001; MacDonald et al., 2000; Mangin 
et al., 2004; Thompson et al., 2004; Tohka et al., 2004). In 
contrast to VBM, MRI-based cortical thickness quantification 
follows cortical folding patterns and captures the distance 
between white matter surface and pial gray matter surface, 
producing scalar values measured in millimeters throughout 
the cerebrum. It has been shown to be sensitive to differences 
in cortical thickness as small as 0.29 mm between groups 
with 100 subjects or more (Lerch & Evans, 2005). Not only can 
cortical thickness quantification allow the examination of 
associations between variables of interest and regional 
cortical thickness, but it also can provide a measure of the 
size of an effect in millimeters of cortical thickness per unit of 
variable of interest. Importantly, cortical thickness has been 
shown to be an index of normal brain development 
(O'Donnell et al., 2005; Shaw et al., 2008; Sowell et al., 2004). 

Using fully automated measures of cortical thickness by 
Constrained Laplacian Anatomic Segmentation using Proximity 
(CLASP), Shaw et al. (2006) investigated, in collaboration with our 
lab at the Montreal Neurological Institute (MNI), the relationship 
between IQ and regional cortical thickness using selected subtests 
from age-appropriate Wechsler intelligence scales (Wechsler, 
1989, 1991, 1997). A main finding was that individuals having an 
estimated IQ in the superior range (ie N121) had a generally 
thicker cortex (primarily in frontal areas) during their late 
childhood to early adulthood (ie between 8.6 to 29 years of age) 
than subjects with a lower IQ. However, the pattern was reversed 
for early childhood (ie between 3.8 and 8.4 years of age) as high IQ 
was associated with a thinner cortex in the same areas. 

Recently, an iterative hemisphere-specific template regis­
tration algorithm that provides an improved between-subject 
alignment of brain surfaces, when compared with the one 
used for the Shaw et al. (2006) study, was developed and 
implemented as a new step in cortical thickness estimation 
using CLASP (Lyttelton et al., 2007). 

As the association between regional cortical thickness and 
psychometric intelligence has been little studied, we aimed to 
examine this relationship in a new sample of children and 
adolescents using the recently developed template registration 
algorithm. Our aims were to further characterize and identify 
brain areas where cortical thickness was associated with 
cognitive performance and to determine whether such areas 
were compatible with the recently proposed P-FIT (Jung & Haier, 
2007). In order to do this, data were obtained from the Pediatric 
MRI Data Repository (database version 2.0) created by the NIH 
MRI Study of Normal Brain Development. This is a multi-site, 
longitudinal study of typically developing children, from ages 
newborn through young adulthood, conducted by the Brain 
Development Cooperative Group and supported by the National 
Institute of Child Health and Human Development, the National 
Institute on Drug Abuse, the National Institute of Mental Health, 
and the National Institute of Neurological Disorders and Stroke 
(Contract #s N01-HD02-3343, N01-MH9-0002, and N01-NS-9­
2314, -2315, -2316, -2317, -2319 and -2320). A listing of the 
participating sites and of the study investigators can be found at 
http://www.bic.mni.mcgill.ca/nihpd/info/participating_cen­
ters.html. The NIH Pediatric MRI study was organized around 
two “objectives”, corresponding to two age groups, the largest 
being Objective 1, comprised of subjects aged between 4:6 to 
18:3 years at Visit 1 (ie time 1). Only data from Objective 1, Visit 1, 
were used here. 

2. Experimental procedures 

2.1. Sampling and recruitment 

The population-based sampling method implemented in the 
NIH Pediatric MRI study was used to minimize biases that can be 
present in samples of convenience in order to maximize the 
generalizability of findings. Based on available US Census 2000 
data, a representative healthy sample of 433 subjects was 
recruited into objective-1 of the NIHPD study at 6 pediatric 
study centers: Children's Hospital—Boston, Children's Hospital 
Medical Center—Cincinnati, University of Texas Houston Medical 
School—Houston, UCLA Neuropsychiatric Institute and Hospital— 
Los Angeles, Children's Hospital of Philadelphia—Philadelphia, 
and Washington University—St. Louis. A  sampling  plan  for  each  
pediatric center was developed from the Census data so as to 
allow neighborhood demographic variables to be estimated for 
corresponding zip codes (so called geocoding). This allowed 
targeted recruitment and comparison to the general population 
by reference to geocoded census data. Recruitment was 
monitored continuously in order to assure that the sample 
recruited across all pediatric centers was demographically 
representative on the basis of variables that included age, gender, 
ethnicity, and socioeconomic status. Once specific demographic 
target goals were reached, enrollment ‘cells’ were closed. As this 
study aimed at recruiting healthy subjects, exclusion criteria 
included (but were not limited to) prior history of most Axis I 
psychiatric disorders, neurological, or other medical illness with 
CNS implications (eg malignancy, systemic rheumatologic illness, 
diabetes), an IQb70, intra-uterine exposure to substances known 
or highly suspected to alter brain structure or function, and prior 
family history (first degree relative) of inherited neurological 
disorder or other inherited illness with CNS implications. For a 
more extensive description of sampling procedures, see (Evans 
et al., 2006). All data were transferred electronically to the data 
coordinating center at the Montreal Neurological Institute, and 
entered into a MYSQL database that allowed full interrogation of 
the data (Evans et al., 2006). 

2.2. Psychometric measures 

Extensive batteries of behavioral measures were obtained 
from recruited subjects on the day of or within a few days of 

http://www.bic.mni.mcgill.ca/nihpd/info/participating_centers.html
http://www.bic.mni.mcgill.ca/nihpd/info/participating_centers.html
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scanning – for a thorough description, see Evans et al. (2006). 
The principal intelligence measure used here was the 
Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler, 
1999) administered to children ages 6 and older. Thus, the 
same test was used to measure intelligence across the age 
range analyzed in this paper. The WASI includes vocabulary, 
similarities, matrix reasoning, and block design subtests. 
Subtest Tscores were subjected to a principal component 
analysis (unrotated method of extraction) to derive a measure 
of their shared variance as an estimate of general cognitive 
ability for each subject. Scree plot analysis and the eigenva­
lues-greater-than-1 rule both indicated that there was a 
single component accounting for about 48.6% of the total 
variance in test performance. Scores on this first unrotated 
component were saved as standardized scores with a mean of 
0 and a standard deviation of 1. Although we used principal 
components analysis, we adopt the much-used convention of 
naming the first unrotated principal component, the general 
cognitive factor derived from the four subtests. 

It could be argued that IQ scores could have been used as a 
measure of general cognitive ability instead of a general 
cognitive factor. While IQ provides perhaps a fair estimate of 
‘average’ cognitive ability, a derived general factor is a more 
optimal measure of general intelligence (Carroll, 1993; Colom 
et al., 2006; Johnson et al., 2004; Johnson et al., 2008; Neisser 
et al., 1996; Plomin & Spinath, 2002). This being said, it is 
noteworthy that the general cognitive factor derived here was 
very highly correlated with WASI Full Scale IQ (r=0.99, 
p b 0.001). 

2.3. MRI acquisition protocol 

A 3D T1-weighted (T1W) Spoiled Gradient Recalled 
(SPGR) echo sequence was obtained with 1 mm isotropic 
data acquired sagittally from the entire head. Slice thickness 
of ~1.5 mm was allowed for GE scanners due to their limit of 
124 slices. In addition, T2-weighted (T2W) and proton 
density weighted (PDW) images were acquired using a 2D 
multi-slice (2 mm) dual echo fast spin echo (FSE) sequence. 
Total acquisition time was ~25 min and was often repeated 
when indicated by the scanner-side quality control process. 
Some subjects were unable to tolerate this procedure and 
received a fallback protocol that consisted of shorter 2D 
acquisitions with slice thicknesses of 3 mm (Evans et al., 
2006). 
Table 1 
Demographic and WASI Full Scale IQ (FSIQ) characteristics of original sample and o

   Objective 1 visit 1

Age (yrs) 
n = 433 
10.4 ± 3.8 

Proportion of males 48% 
Proportion with low/medium/high adjusted SES⁎ 22.9%/41.6%/35.5%
WASI-FSIQ⁎⁎ 110.7 ± 12.5⁎⁎ 
Proportion of Whites/African Americans/Other 78.9%/9.2%/11.9% 

When appropriate, means±standard deviations are provided.
 
⁎Based on the US Department of Housing and Urban Development method for com
⁎⁎ WASI IQ data available for only 380 subjects out of 433 that were initially recrui
⁎⁎⁎ The ‘Other’ category includes American Indian, Alaskan Native, Asian, Native Haw
provided or for which parents came from different racial or ethnic background.
 
2.4. MR image processing 

All MR images were submitted to the CIVET pipeline 
(version 1.1.9) (http://wiki.bic.mni.mcgill.ca/index.php/ 
CIVET) developed at the MNI for fully automated structural 
image analysis (Ad-Dab'bagh et al., 2006). The main pipeline 
processing steps include: 

1) Linearly register native (ie original) MR images to standar­
dized MNI-Talairach space based on the ICBM152 data set 
(Collins et al., 1994; Mazziotta et al., 1995; Talairach & 
Tournoux, 1988). This step is implemented in order to 
account for gross volume differences between subjects. 

2) Correct for intensity non-uniformity artifacts using N3 (Sled 
et al., 1998). These artifacts are introduced by the scanner 
and need to be removed to minimize, in the current context, 
biases in estimating gray matter boundaries. 

3) Classify the image into white matter (WM), gray matter 
(GM), cerebrospinal fluid (CSF) and background using a 
neural net classifier (INSECT) (Zijdenbos et al., 2002). 

4) Fit images with a deformable mesh model to extract 2­
dimensional inner (WM/GM interface) and outer (pial) 
cortical surfaces for each hemisphere with the 3rd edition 
of CLASP. This produces high-resolution hemispheric 
surfaces with 81924 polygons each (40962 vertices (ie 
cortical points) per hemisphere) (Kabani et al., 2001; Kim 
et al., 2005; Lyttelton et al., 2007; MacDonald et al., 2000). 
This step places 40962 cortical points on each hemisphere 
for each subject. 

5) Register both cortical surfaces for each hemisphere non­
linearly to a high resolution average surface template 
generated from the ICBM152 data set in order to establish 
inter-subject correspondence of the cortical points (Grab­
ner et al., 2006; Lyttelton et al., 2007;Mazziotta et al.,1995). 

6) Apply a reverse of the linear transformation performed on 
the images of each subject to allow cortical thickness 
estimations to be made at each cortical point in the native 
space of the magnetic resonance image (Ad-Dab'bagh 
et al., 2005). This avoids having cortical thickness 
estimations biased by the scaling factor introduced by 
the linear transformations (ie step 1) applied to each 
subject's brain. 

7) Calculate cortical thickness at each cortical point using the 
tlink metric (Lerch & Evans, 2005) and blur each subject's 
cortical thickness map using a 20-millimeter full width at 
f analyzed sample. 

 sample Accepted sample Statistics 

n =216  
12.1 ± 3.5 t = 5.51, p b 0.001 
46% χ2 =0.17,  p =.68

 22.6%/40.6%/36.4% χ2 = 0.0071, p N .99
111.0 ± 11.3 t = 0.30, p = 0.77 
76.4%/8.3%/15.3% χ2 = 1.48, p = .48 

paring family income levels as a function of regional costs of living.
 
ted.
 
aiian or Other Pacific Islander, and those for which ethnicity or race was no
 

t
 

http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET
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half maximum surface-based diffusion smoothing kernel 
(a necessary step to impose a normal distribution to 
corticometric data and to increase signal to noise ratio) 
(Chung et al., 2001). 
2.4.1. Subjects with imaging and cognitive data 
Of the 433 subjects recruited, 392 had MRI acquisitions 

that passed raw imaging data quality control (QC). Of these 
392 subjects, 33 were under 6 years of age and had no WASI 
evaluations. Due to the sensitivity of post-acquisition proces­
sing methods that produce corticometric measures on the 
native MR images, all subjects with fallback acquisition 
protocols, whether for T1W or T2W/PDW spectra, were 
excluded from the present study. More specifically, of the 
remaining 359 subjects with the full complement of MRI and 
behavioral data, 107 had T1W and/or T2W/PD fallback 
protocols and so 252 subjects were retained. Finally, a visual 
QC (blinded as to the IQ of the subjects) of the native cortical 
thickness images of each subject was carried out to make sure 
that there were no important aberrations in cortical thickness 
estimations for a given subject. 36 subjects had problems with 
their cortical thickness maps (eg in some cases, gyri were 
fused together or parts of the frontal lobe were truncated) and 
were eliminated from further analysis, leaving a final sample 
size of 216 subjects. For a comparison of demographic and IQ 
Fig. 1. Results of Cortical Thickness regressed against the cognitive factor for the wh
control for multiple comparisons. Colors, representing Pearson correlations as well a
templates generated from the ICBM152 data set. Results are corrected for gender, a
characteristics between the Objective 1 visit 1 sample and the 
analyzed sample, see Table 1. 

2.4.2. Statistical analyses
Statistical analyses were implemented using SurfStat, a 

statistical toolbox (Worsley et al., 2004) created  for MATLAB  7  
(The MathWorks, Inc.) by Dr. Keith Worsley (http://www. 
math.mcgill.ca/keith/surfstat/) at the MNI. Each subject's 
absolute native-space cortical thickness was linearly regressed 
against the general cognitive ability factor at each cortical point 
after accounting for the effects of gender, age, and MRI scanners 
from the six sites. In order to take into account previously 
reported quadratic and cubic effects of age on cortical thickness 
(Shaw et al., 2008), simple linear, quadratic, and cubic models 
were tested for the age term. As quadratic and cubic models did 
not provide a significantly better fit with the data, a simple first 
order linear model was retained. Although handedness was 
initially included as a regressor, it was found to add nothing to 
the model and so was discarded. This is likely in part explained 
by the fact that only 9.7% of the current sample was non right-
handed and that between 31% and 54% of non right-handed 
individuals (ie mixed, ambidextrous, or left-handed) are known 
to have the same pattern of hemispheric dominance as right-
handers (Isaacs et al., 2006). This would lead to an expectation 
of only about 10 to 14 subjects in our sample of 216 having right-
hemispheric dominance. 
ole sample of 216 subjects. A False Discovery Rate threshold of 0.05 is used to 
s Student t values, are superimposed on left and right lateral average surface 
ge, and scanner. 

http://www.math.mcgill.ca/keith/surfstat/
http://www.math.mcgill.ca/keith/surfstat/
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Table 2 
Cortical point coordinates within areas of association between cortical 
thickness and general cognitive ability for the whole sample (FDR 
threshold =0.05). 

Brodmann area Region name X, Y, Z coordinates 
in MNI space 

Left frontal 
BA 4 Dorsal Precentral gyrus − 31, −19, 73 
BA 6 Superior frontal gyrus − 21, 16, 63 
BA 6 Ventral Precentral gyrus − 60, 0, 23 
BA 8 Medial frontal gyrus − 4, 44, 47 
BA 9 Middle frontal gyrus − 26, 51, 31 
BA 10 Middle frontal gyrus − 18, 66, − 5 
BA 45 Inferior frontal gyrus − 55, 28, 4 
BA 46 Middle frontal gyrus −43, 45, 21 
BA 47 Inferior frontal gyrus −50, 39, −3 

Right frontal 
BA 4 Dorsal precentral gyrus 44, −13, 63 
BA 6 Superior frontal gyrus 22, 16, 63 
BA 8 Medial frontal gyrus 4, 42, 49 
BA 9 Superior frontal gyrus 13, 46, 40 
BA 10 Middle frontal gyrus 14, 63, − 9 
BA 46 Middle frontal gyrus 46, 42, 21 

Left parietal 
BA 1, 2, 3 ⁎ Postcentral gyrus −62, −11, 35 
BA 7 Precuneus −6, − 65, 52 
BA 39 Angular gyrus −47, 62, 47 
BA 40 Supramarginal gyrus −64, −45, 27 

Right parietal 
BA 1, 2, 3 ⁎ Postcentral gyrus 58, −17, 48 
BA 7 Precuneus 4, − 54, 59 
BA 7 Superior parietal lobule 17, −47, 72 
BA 39 Angular gyrus 31, −62, 53 

Left temporal 
BA 20 Inferior temporal gyrus −55, − 8, −39 
BA 21 Middle temporal gyrus −60, 1, − 27 
BA 22 Wernicke's area − 65, − 43, 20 
BA 28 Parahippocampal gyrus − 25, − 10, −35 
BA 36 Lingual gyrus − 17, − 48, −9 
BA 36 Medial occipito-temporal gyrus − 28, − 50, −18 
BA 37 Lateral occipito-temporal gyrus − 47, −47, −14 
BA 38 Temporal pole − 48, 17, −27 
BA 41 Planum temporale − 37, −30, 16 

Right temporal 
BA 20 Inferior temporal gyrus 53, − 7, −40 
BA 21 Middle temporal gyrus 63, − 7, −22 
BA 28 Parahippocampal gyrus 22, − 23, −27 
BA 36 Medial occipito-temporal gyrus 29, − 52, −18 
BA 38 Temporal pole 47, 19, − 26 

Left occipital 
BA 18 Lateral occipital gyrus − 36, −92, −1 
BA 19 Lateral occipital gyrus − 48, − 82, 2 

Right occipital 
BA 18 Lateral occipital gyrus 32, − 94, −6 
BA 19 Lateral occipital gyrus 50, − 75, 7 

Left cingulate 
BA 23, 26, 29, 30, 31 ⁎ Posterior cingulate gyrus − 6, − 42, 33 
BA 24, 33 ⁎ Anterior cingulate gyrus − 4, 38, 6 

Right cingulate 
BA 23, 26, 29, 30, 31 ⁎ Posterior cingulate gyrus 3, −47, 27 
BA 24, 33 ⁎ Anterior cingulate gyrus 4, 38, 5 
BA 25 Subcallosal area 2, 8, − 9 

⁎ These BA could not be distinguished from each other. 
In summary, the following model was fitted to each one of 
the 81924 cortical points: 

Y
e b0 + b1CF + b2Age + b3Gender + b4Scanner + e 

where: 

Y Cortical Thickness 
CF Cognitive Factor 
b0 Y intercept 
b1 to b4 regression coefficients for effects of the different 

regressors 
ε error term 

For each cortical point, the  coefficient of the CF regressor, 
b1, was estimated and a resultant t-test value calculated, 
thereby producing a 3D t-statistic map. A t-value threshold 
of statistical significance was established, taking into 
account multiple comparisons via the False Discovery Rate 
(FDR) method (Benjamini & Hochberg, 1995; Genovese 
et al., 2002). The FDR value is the expected proportion of 
false positives among all cortical points where the t-value is 
above the selected threshold. Thus, setting the threshold to 
an FDR of 0.05 implies that it is expected that 5% of all 
cortical points having a t-value above threshold, are false 
positives. For the purpose of visualization, resultant thre­
sholded t-value and Pearson correlation maps were pro­
jected on an average surface template generated from the 
ICBM152 data set. 

In addition to examining results for the whole sample, 
the cohort was split into two equal subgroups of 108 subjects 
each in order to see whether or not the same areas were 
associated with intelligence differences in both young 
children and adolescents. After generating results for the 
entire selected sample (n =216), analyses were performed 
separately for young children (age range: 6 to 11.9 years) 
and adolescents (age range: 12 to 18:3 years). A ‘Group by 
CF’ interaction term (ie b5Group⁎CF) was added to the 
model in order to make a formal statistical comparison 
between the groups. The interaction was evaluated at each 
cortical point to identify regions where the association 
between cortical thickness and intelligence was significantly 
stronger in adolescents than in young children, and vice 
versa. This being done, the overall effect of age was 
estimated on the whole sample by replacing the ‘Group by 
CF’ interaction term by an ‘Age by CF’ interaction term (ie
b5Age⁎CF). 

3. Results 

Except for mean age, no statistically significant demo­
graphic differences were evidenced between the full NIH 
Pediatric MRI sample and the analyzed subjects (for whom 
WASI IQ data, good raw scan data, and good cortical 
thickness estimations were available) (see Table 1). The 
greater mean age for the analyzed sample is mostly due to 
excluding children below age 6 (ie the lower age limit of the 
WASI). 

Regression of cortical thickness against the general 
cognitive factor at each cortical point — while controlling 
for age, gender, and scanner — revealed a positive association 
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Fig. 2. Results of Cortical Thickness regressed against the cognitive factor for the sample of adolescents (n = 108). A False Discovery Rate threshold of 0.05 is used to 
control for multiple comparisons. Colors, representing Pearson correlations as well as Student t values, are superimposed on left and right lateral average surface 
templates generated from the ICBM152 data set. Results are corrected for gender, age, and scanner. 
between cortical thickness and the general cognitive factor 
in several areas distributed throughout the brain. Statisti­
cally significant foci were largely localized in multimodal 
association areas and, while tending to be symmetrical, 
were slightly more extensive on the left hemisphere (see 
Fig. 1 and Table 2). Correlations in statistically significant 
foci were in the modest to moderate range (0.15 to 0.32) 
(see Fig. 1). 

Stratifying the sample into a subgroup of young children 
(mean IQ = 111.7, SD = 11.3) and a subgroup of adolescents 
(mean IQ =110.3, SD =11.4), revealed a similar picture to 
the one obtained with the whole sample for the group of 
adolescents but, as would be expected due to decreased 
power, with less extensive areas of association between 
cortical thickness and the general cognitive factor (see Fig. 2 
and Table 3). For the group of young children, no association 
was found between cortical thickness and the general 
cognitive factor under the FDR threshold of 0.05. However, 
relaxing the threshold to 0.2, revealed a similar picture (see 
Fig. 3 and Table 4) to the one obtained for adolescents. In 
both groups, the most consistent areas of association 
between cortical thickness and the general cognitive factor 
were in lateral prefrontal, occipital extrastriate, and para­
hippocampal areas. In statistically significant foci, correla­
tions ranged between .25 and .44 for adolescents and 
between .2 and .33 for young children. Examination of the 
regressor coefficients of the ‘Group by CF’ and ‘Age by CF’ 
terms revealed no statistically significant group or age 
effects on the  associations  between cortical thickness  and
the cognitive ability factor. This remained the case for all 
cortical points even after relaxing the threshold to an FDR 
value of 0.5. 

4. Discussion 

Positive bilateral associations between cortical thickness 
and a general cognitive factor derived from the four WASI 
subtests were detected in many areas of the frontal, 
parietal, temporal, and occipital lobes for a large, repre­
sentative sample of the US population between 6 and 
18:3 years of age. Regions with the greatest relationship 
between cortical thickness and a general cognitive factor 
were observed in multimodal association areas. Young 
children (ie 6 to 11.9 year-olds) and adolescents (ie 12 to 
18:3 year-olds) exhibited associations in the same areas and 
no statistically significant differences were observed 
between them. 

Overall, results are consistent with distributed models of 
intelligence like the P-FIT (Jung & Haier, 2007). Our results, 
however, include more brain regions than highlighted by the 
P-FIT and place greater importance on medial structures than 
the P-FIT model does. Indeed, while absent from the P-FIT, the 
precuneus (part of the medial parietal lobe), the posterior 
cingulate, the dorsomedial prefrontal cortex, as well as the 
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Table 3 
Cortical point coordinates within areas of association between cortical 
thickness and general cognitive ability for the subgroup of adolescents (FDR 
threshold =0.05). 

Brodmann area Region name X, Y, Z coordinates 
in MNI space 

Left frontal 
BA 4 Dorsal Precentral gyrus − 30, − 15, 73 
BA 6 Superior frontal gyrus − 8, 6, 71 
BA 6 Middle frontal gyrus − 37, 4, 40 
BA 9 Middle frontal gyrus − 26, 53, 26 
BA 10 Middle frontal gyrus − 18, 66, − 5 
BA 45 Inferior frontal gyrus −52, 35, 4 
BA 46 Middle frontal gyrus −45, 42, 19 

Right frontal 
BA 6 Superior frontal gyrus −45, 42, 19 
BA 10 Superior frontal gyrus 28, 62, −11 

Left parietal 
BA 1, 2, 3 ⁎ Postcentral gyrus −61, −13, 34 
BA 7 Precuneus −65, −55, 39 
BA 39 Angular gyrus −47, 61, 46 
BA 40 Supramarginal gyrus −60, − 37, 46 

Right parietal 
BA 1, 2, 3 ⁎ Postcentral gyrus 59, −16, 41 
BA 7 Precuneus 4, − 54, 59 
BA 7 Superior parietal lobule 17, −47, 72 
BA 39 Angular gyrus 31, −62, 53 

Left temporal 
BA 21 Middle temporal gyrus −60, 1, − 27 
BA 22 Wernicke's area −45, − 54, 29 
BA 28 Parahippocampal gyrus −23, − 11, −35 
BA 36 Medial occipito-temporal gyrus −28, − 50, −18 
BA 38 Temporal pole − 49, 16, −26 

Right temporal 
BA 20 Inferior temporal gyrus 56, − 12, − 31 
BA 21 Middle temporal gyrus 64, −10, −20 
BA 36 Medial occipito-temporal gyrus 39, − 20, −31 

Left occipital 
BA 18 Lateral occipital gyrus − 37, −90, 0 
BA 19 Lateral occipital gyrus − 48, − 82, 2 

Right occipital 
BA 18 Lateral occipital gyrus 33, −93, − 6 
BA 19 Lateral occipital gyrus 50, −78, 3 

Left cingulate 
BA 23, 26, 29, 30, 31 ⁎ Posterior cingulate gyrus − 3, −48, 30 

Right cingulate 
BA 24, 33 ⁎ Anterior cingulate gyrus 4, 38, 6 
BA 25 Subcallosal area 3, 11, −9 

⁎ These BA could not be distinguished from each other. 

 

lingual and parahippocampal gyri, have all been identified 
here as being associated, bilaterally, with the general 
cognitive factor. Importantly, these are all known to be 
areas where information from different parts of the brain 
converges for high-level processing and have been shown 
to be involved with cognitive performance (Cavanna & 
Trimble, 2006; Eisenberg et al., 2005; Geake & Hansen, 
2005; Gong et al., 2005; Haier et al., 2004; Hulshoff Pol 
et al., 2006; Shaw et al., 2006; Stoitsis et al., 2008; Westlye 
et al., 2008). While they are good candidates as modulators 
of general intelligence, these regions generally reached here 
lower levels of statistical significance than the regions 
highlighted by the P-FIT. It could be speculated that this 
reflects a genuine but relatively weaker association with 
intelligence than the P-FIT regions, making them less 
consistently detected across studies and leading to their 
exclusion from the P-FIT. 

Observing a decrease in statistical significance in both 
children and adolescents, when compared with the group as a 
whole, could be attributed to several factors. However, in both 
subsamples, this decrease is most likely due to reduced 
statistical power due to dividing the sample in two. The 
relative greater decrease observed for the subsample of young 
children (ie 6 to 11.9 years of age) may have been due to the 
difficulty that many of them may have had with being 
immobile for a prolonged period of time in a scanner (Evans 
et al., 2006). Indeed, micromovements, which may not have 
been sufficient to grossly distort the image and result in 
rejection as part of the quality control procedures, may have 
nonetheless induced a slight blurring effect on the white/gray 
matter interface and lead to a deterioration in the precision of 
cortical thickness estimations. Alternatively, it could be 
speculated that the association between cortical thickness 
and the cognitive ability factor is weaker or less homogeneous 
in young children in that age group, leading to a decrease in 
statistical significance. 

Generally, current results are compatible with findings 
from the Shaw et al. study (2006) in terms of brain regions 
involved with intelligence differences (Shaw et al., 2006). In 
that previous study, while associations were predominantly 
in the prefrontal cortex, they also included significant areas 
of the parietal lobe and small areas of the occipital and 
temporal lobes. Here, we confirm and extend these findings, 
using the same FDR threshold as that used by the Shaw et al. 
study (2006), to encompass most if not all known cortical 
association areas. Such a finding is meaningful as these areas 
are specifically those known to be 1) involved in the 
processing of multimodal information converging from 
various regions of the brain, 2) those most likely to lead to 
post-lesional cognitive deficits and 3) the ones that have 
most frequently been theorized to be linked to intelligence 
differences (Jung & Haier, 2007). While finding an extension 
of the areas involved when compared with those reported in 
the Shaw et al. study may be due to important differences in 
the sample selection  process,  it  is  most  likely  due to
improved surface alignment within CLASP (Lyttelton et al., 
2007). 

A strength of the current study is the use of a relatively 
large representative sample of the US population with ages 
ranging from 6 to 18:3 years. As the cost of scanning a large 
sample of subjects and as the methodological complications 
of recruiting one that is representative of a general population 
are both generally prohibitive, most imaging studies have 
been limited to recruiting relatively small samples of 
convenience. Another strength of the current study is the 
reliance on the same IQ test (ie the WASI) across the entire 
age range analyzed. The earlier study (Shaw et al., 2006) 
relied on measures that differed among the subjects studied 
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Fig. 3. Results of Cortical Thickness regressed against the cognitive factor for the sample of young children (n =108). A False Discovery Rate threshold of 0.2 is used 
to control for multiple comparisons. Colors, representing Pearson correlations as well as Student t values, are superimposed on left and right lateral average surface 
templates generated from the ICBM152 data set. Results are corrected for gender, age, and scanner. 
(different number of subtests administered as well as 
different tests). While the use of a general cognitive factor 
derived from four disparate mental subtests is also a strength 
here, a limitation is that this general factor was derived from a 
relatively small group of subtests. 

Being correlational in nature, the results presented here 
are bound by the usual limitations associated with such data. 
For instance, finding associations between a general cognitive 
ability factor and a distributed network does not necessarily 
imply an involvement of the whole network in cognitive 
ability differences. Indeed, it is possible to imagine a 
mechanism influencing cortical thickness throughout a 
given network but with only a subset of this network being 
responsible for intelligence differences. As the same mechan­
ism would influence cortical thickness throughout the net­
work, and assuming the existence of an association between 
cortical thickness and intelligence, cortical thickness estima­
tions in components of this network would correlate with 
each other as well as with intelligence. Yet, only cortical 
thickness in the subset of this network responsible for 
intelligence differences would really be of importance. This 
being said, finding a correlation between cortical thickness 
and a general cognitive ability factor preferentially distrib­
uted in known multimodal association areas is pleasing to the 
mind and suggests that links between mental ability and 
cortical thickness in these areas are not simply inconsequen­
tial findings. 

In summary, using the recently developed cortical thick­
ness metric with improved between-subject alignment of 
brain surfaces, regional cortical thickness in multimodal 
association areas was found to be positively associated with 
a general cognitive factor. While previous studies have shown 
an involvement of cortical association areas, it is the first time 
that an association between a general cognitive ability factor 
and essentially most if not all cortical association areas is 
evidenced in the same study. Results further suggest that 
similar areas of the cortex are related to intelligence 
differences in both children and adolescents. Results exhibit 
a good level of generalizability as they have been evidenced 
on a relatively large representative healthy young sample of 
the US population. As a next step, it would be informative to 
conduct the same analyses on a sample of individuals that 
spans the whole adult age range. Also, it is noteworthy that 
cortical thickness is not, on its own, sufficient to describe all 
aspects of cortical shape. Cortical surface area, cortical 
complexity (or gyrification), and cortical volume complete 
the corticometric measurements that are possible and would 
further add to the characterization of cortical shape associations 
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Table 4 
Cortical point coordinates within areas of association between cortical 
thickness and general cognitive ability for the subgroup of young children 
(FDR threshold =0.2). 

Brodmann area Region name X, Y, Z coordinates 
in MNI space 

Left frontal 
BA 4 Dorsal Precentral gyrus − 34, − 31, 73 
BA 6 Ventral Precentral gyrus − 56, − 2, 27 
BA 8 Medial frontal gyrus − 4, 42, 47 
BA 9⁎ Middle frontal gyrus − 26, 47, 37 
BA 45⁎ Inferior frontal gyrus − 54, 36, −2 
BA 46⁎ Middle frontal gyrus − 40, 71, 8 
BA 47⁎ Inferior frontal gyrus − 51, 37, −10 

Right frontal 
BA 8 Medial frontal gyrus 5, 51, 41 
BA 9⁎ Superior frontal gyrus 15, 45, 44 
BA 46 Middle frontal gyrus 41, 42, 24 

Left parietal 
BA 1, 2, 3 ⁎ Postcentral gyrus − 62, − 11, 39 
BA 7 Precuneus − 6, − 66, 54 
BA 40 Supramarginal gyrus − 64, − 46, 26 

Right parietal 
BA 1, 2, 3 ⁎ Postcentral gyrus 56, − 17, 48 
BA 7 Precuneus 12, − 59, 58 

Left temporal 
BA 20 Inferior temporal gyrus − 51, −6, −35 
BA 22 Wernicke's area − 63, −48, 27 
BA 28 Parahippocampal gyrus −28, −15, −32 
BA 36 Lingual gyrus − 16, −48, −8 
BA 36 Medial occipito-temporal gyrus − 30, − 45, −19 
BA 37 Lateral occipito-temporal gyrus − 47, −41, −19 
BA 38 Temporal pole − 38, 6, − 42 
BA 41 Planum temporale − 43, − 33, 20 

Right temporal 
BA 20 Inferior temporal gyrus 44, −11, −41 
BA 21 Middle temporal gyrus 66, −11, − 16 
BA 36 Medial occipito-temporal gyrus 42, −24, − 22 
BA 38 Temporal pole 45, 19, − 29 

Left occipital 
BA 18 Lateral occipital gyrus − 31, −94, 3 
BA 19 Lateral occipital gyrus − 33, −91, 15 

Right occipital 
BA 18 Lateral occipital gyrus 28, − 93, 20 
BA 19 Lateral occipital gyrus '24, −98, 10 

Left cingulate 
BA 23, 26, 29, 30, 31 ⁎ Posterior cingulate gyrus − 11, − 42, 34 
BA 24, 33 ⁎ Anterior cingulated gyrus − 5, 40, 4 

Right cingulate 
BA 23, 26, 29, 30, 31 ⁎ Posterior cingulate gyrus 3, −47, 27 
BA 24, 33 ⁎ Anterior cingulated gyrus 4, 38, 5 

⁎ These BA could not be distinguished from each other. 
with intelligence. We are currently in the process of imple­
menting these analyses. 
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