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MR signals are complex numbers where the real and imaginary components are independently Gaussian distributed [1]. 
The phase of the complex MRI signal is highly sensitive to many experimental factors, e.g., see [1,2], and as such, the  
magnitude of the complex MR signal (hereafter, magnitude MR  signal) is used instead. However, the magnitude MR 
signal is not an optimal estimate of the underlying signal intensity when the signal-to-noise ratio is low because magnitude  
MR signals follow a Rician distribution rather  than a Gau ssian distribution [3]. Here, we present a scheme to remove the 
noise-induced bias in noisy magnitude MR signals by making noisy Rician signals Gaussian-distributed.  

A simple  example illustrates the idea behind the proposed framework: suppose the noisy magnitude signals are drawn 
from a family of Rician distributions all of which are characterized by different location parameters but with the same  scale 
parameter (e.g., diffusion-weighted signal as  a function of q-value or  b-value). The proposed framework attempts to  
transform the noisy magnitude signals such that each of the noisy transformed signals may be thought of as if it were  
drawn from a Gaussian distribution with different mean but the same standard deviation. There are three stages in the 
proposed scheme. First, a data smoothing method (one, two, or higher-dimensional methods) is used to obtain the 
average values of the noisy magnitude signals (a penalized  spline model [4] is used in this work). Second, a novel 
iterative method similar to  [3] is used to take both an estimate of the average value of a noisy magnitude signal and an  
estimate of the standard deviation of the Gaussian noise, obtained from the image background [1], to an  estimate of the  
average value of the underlying signal intensity. Third, the corresponding noisy Gaussian signal of each of the noisy 
magnitude signals is found through a composition of the inverse cumulative probability function of a Gaussian random 
variable and the cumulative probability function of a Rician random variable. Complete detail can be found in Ref.[6].   

We illustrate the performance of our approach on an excised rat hippocampus data set acquired in a 14.1T narrow-bore 
spectrometer with a pulsed gradient stimulated echo pulse sequence. The imaging parameters were: TE=12.6ms,  
TR=1000ms, resolution=(78x78x500)μm3, matrix size=(64x64x3), number of repetitions=4, diffusion  gradient pulse 
duration (δ)=2ms, and diffusion gradient separation (Δ)=24.54ms. The data set contains a total of 33 images with different 
diffusion gradient strengths increasing from 0 to 2935mT/m in steps of 91.75mT/m. One diffusion weighted image is  
shown in Figure 1A. Two neighboring pixels indicated with a red square were selected for further analyses. The noisy 
magnitude signals of each of the pixels as a function of b-value are shown in Figs. 1B-1C as red dots. The red curve in 
each of the panels is obtained through a least squares fit of a bi-exponential function to the noisy magnitude signals. We 
applied the proposed scheme on the noisy magnitude signals (red dots); the resultant or transformed signals are  
displayed as  blue dots in Figs. 1B-1C. The blue  curve in each of the panels is obtained through a least square fit of a bi-
exponential function to the noisy transformed signals (blue dots) based on the proposed framework. Note that the 
penalized  spline with a truncated polynomial basis of  degree 4 and with 4 knot s was used in this example.  The estimated  
Gaussian noise standard deviation was 0.88. If both the estimated Gaussian noise SD and each of the blue curves  are  
assumed to be the ground truth values then the expected value (or the first moment) of a Rician distribution as a function  
of b-values can be computed and is shown in dark gray; these expected values are in good agreement with the red curve, 
which is an indication that the blue curve is a good approximation of the underlying signal intensities. Increase in 
variability in the transformed signals at low signal-to-noise ratio is not unexpected [3]. 

Fig. 1. (A) A diffusion-weighted image of a hippocampus with a  
red square indicating two neighboring pixels selected for further  
analyses. The data and results are shown in (B) and (C). In each  
of the figures (B and C) above, the red points are the noisy 
magnitude signals and the blue points are the corrected signals 
obtained through the application of the proposed scheme on the 
red points. Each of the red curves is  a smoothed  curve obtained 
through a bi-exponential fitting to the noisy magnitude signals while 
each of the blue curves is a smoothed curve obtained through a bi-
exponential fitting to the transformed noisy signals obtained  
through the proposed scheme. 

The proposed scheme is general and is not 
restricted to diffusion MRI or MRI. The proposed  
scheme is the first method capable of obtaining 
corrected data that are distributed evenly in both the 
positive and negative axes when the signal-to-noise  
ratio is very close to zero, which is a very important  
but simple criterion for testing the accuracy or lack 
thereof of a correction scheme. To conclude, the  
proposed scheme is  a practical and effective method  
for removing the noise-induced bias in noisy 
magnitude MR signals. The present approach is a 
major advance in facilitating and improving all 
subsequent data analysis  and processing steps in a  
quantitative MRI pipeline.  
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