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Abstract
This article describes an accurate and fast method for fiber orientation 
mapping using multidirectional diffusion-weighted magnetic resonance 
(MR) data. This novel approach utilizes the Fourier transform 
relationship between the water displacement probabilities and diffu
sion-attenuated MR signal expressed in spherical coordinates. The 
radial part of the Fourier integral is evaluated analytically under the 
assumption that MR signal attenuates exponentially. The values of the 
resulting functions are evaluated at a fixed distance away from the 
origin. The spherical harmonic transform of these functions yields the 
Laplace series coefficients of the probabilities on a sphere of fixed radius. 
Alternatively, probability values can be computed nonparametrically 
using Legendre polynomials. Orientation maps calculated from excised 
rat nervous tissue data demonstrate this technique’s ability to accurately 
resolve crossing fibers in anatomical regions such as the optic chiasm. 
This proposed methodology has a trivial extension to multiexponential 
diffusion-weighted signal decay. The developed methods will improve 
the reliability of tractography schemes and may make it possible to 
correctly identify the neural connections between functionally connected 
regions of the nervous system. 
D 2006 Elsevier Inc. All rights reserved. 
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Introduction 

The diffusional attenuation of MR signal in pulsed field gradient 
experiments (Stejskal and Tanner, 1965) has been exploited to 
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characterize diffusional anisotropy in fibrous tissues like muscle 
(e.g. Cleveland et al., 1976) and white matter in animal (e.g. 
Moseley et al., 1990) and human (e.g. Chenevert et al., 1990) 
nervous tissue. When the narrow pulse condition is met, i.e. the 
duration of the applied diffusion sensitizing gradients (d) is much 
smaller than the time between the two pulses (D), the fundamental 
relationship between the MR signal attenuation and average 
displacement probabilities P(R) is given by a Fourier integral 
(Callaghan, 1991): 

P R E q ð 2piq IRÞdq;ð Þ exp - ð1Þ

where R is the displacement vector and q is the reciprocal space 
vector defined by q = gdG/2p, where g is the gyromagnetic ratio 
and G is the gradient vector. In the above expression E(q) = S (q)/ 
S0, where S(q) is the signal value associated with the reciprocal 
space vector q and S0 is the signal when no diffusion gradient is 
applied, i.e. when q = 0.

Diffusional anisotropy is well-reflected in the water displace
ment probabilities, and it is expected that, in fibrous tissues, the 
orientations specified by large displacement probabilities will 
coincide with the fiber orientations. One could in principle 
estimate these displacement probability functions by using Eq. 
(1) and the fast Fourier transform (FFT), however, this would 
require data points all across the space spanned by the diffusion 
gradients (or q vectors). This q-space approach would require very 
high gradient strengths and long acquisition times that are difficult 
to achieve in clinical settings (Basser, 2002). Although attempts 
have been made to acquire such data sets in vivo (Wedeen et al., 
2000), the results typically suffer from undersampled q-space and 
sacrificed spatial resolution.

More than a decade ago, Basser et al. (1994a,b) introduced an 
imaging method called diffusion tensor imaging (DTI) that replaced 
the apparent diffusion coefficients that had been calculated in 
diffusion-weighted imaging studies with a symmetric, positive
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Fig. 1. Apparent diffusivity (left column) and displacement probability 
(right column) profiles calculated from simulations of 1-, 2- and 3-fiber 
systems (top to bottom). Black lines depict the exact orientations of the 
simulated fibers specified by the azimuthal angles /1 = 30, /2 = {20-, 100-} 
and /3 = {20-, 75-, 135-} for the 1-, 2- and 3-fiber systems respectively. 
Polar angles for all fibers were taken to be 90- so that all fibers lie on the 
image plane. The peaks of the diffusivity profile do not necessarily yield the 
orientations of the distinct fiber populations. This can sometimes lead to 
erroneous fiber structure interpretation from HARDI data. 
definite, second-order tensor. This model required only 7 diffusion-
weighted images with clinically feasible diffusion gradient 
strengths. This approach enabled simple estimation of diffusional 
anisotropy and predicted a fiber orientation specified by the 
principal eigenvector of the diffusion tensor. Despite its modest 
requirements, the results achieved using DTI have been very 
successful in regions of the brain and spinal cord with substantial 
white matter coherence and have enabled the mapping of some 
anatomical connections in the central nervous system (e.g. Conturo 
et al., 1999; Mori et al., 1999; Basser et al., 2000). 

DTI assumes a displacement probability characterized by an 
oriented Gaussian probability distribution function (PDF) whose 
covariance matrix is proportional to the diffusion tensor. Such a PDF 
has only one orientational mode and, as such, cannot resolve more 
than one fiber orientation inside a voxel. This shortcoming of DTI 
has prompted interest in the development of more sophisticated 
models. Tuch et al. (1999) introduced a high angular resolution 
diffusion imaging (HARDI) method that suggested that the apparent 
diffusion coefficients could be evaluated along many orientations 
independently without fitting a ‘‘global’’ function to the data, i.e. 
using the Stejskal–Tanner expression (Stejskal, 1965): 

-bD uE u e ð Þ; ð2Þð Þ ¼

where u is a unit vector specifying the direction of the diffusion 
sensitizing gradient and E(u) is the signal attenuation value on a 
sphere in q-space whose radius is related to the diffusion weighting 
factor b (where b = 4pq 2t and t = D - d/3 is the effective diffusion 
time). The result is an angular distribution of apparent diffusivities, 
D(u), herein referred to as the diffusivity profile. It has been shown 
that the diffusivity profile has a complicated structure in voxels with 
orientational heterogeneity (von dem Hagen and Henkelman, 2002; 
Tuch et al., 2002). Several studies proposed to represent the 
diffusivity profile using a spherical harmonic expansion (Frank, 
2002; Alexander et al., 2002). A schematic description of this 
approach is given below: 

SHT

Dð Þu V alm; ð3Þ
LS

where SHT and LS stand for spherical harmonic transform and 
Laplace series respectively. 

However, one major difficulty with employing HARDI in 
studies involving orientation mapping has been that the peaks of the 
diffusivity profile do not necessarily yield the orientations of the 
distinct fiber populations (Fig. 1). Ö zarslan and Mareci (2003) have 
shown that the (SHT) approach could be seen as a generalization of 
DTI since the coefficients of the Laplace series (obtained from the 
SHT of the diffusivity profile) are related to the components of 
higher-order Cartesian tensors. Later, Ö zarslan et al. (2004a,b) 
proposed to use the higher-order Cartesian tensors to generate 
signal values (assuming exponential attenuation) on the three-
dimensional q-space and evaluated an FFT to approximate the 
displacement probabilities. Jansons and Alexander (2003) proposed 
a method to calculate a displacement probability map from HARDI 
data sets by enforcing the unusual condition that the probabilities 
are nonzero only on a spherical shell. Although the results are 
encouraging, both of these schemes are computationally expensive. 

Another generalization of DTI that employs higher-order 
Cartesian tensors was proposed by Liu et al. (2003). This 
approach necessitates sampling of q-space in several spherical 
shells, undesirably increasing the required number of acquisitions. 
Furthermore, it is difficult to reliably extract the phase of the MR 
signal required by this scheme. Tuch et al. (2003) proposed a 
method in which the radial integral of the displacement PDF is 
obtained by the spherical Radon transform. This scheme provides 
an approximation to the true radial integral because the result is a 
convolution of the probability values with a 0-th order Bessel 
function (Tuch, 2004) that may give rise to an undesirable 
‘‘contamination’’ of the probability along one direction with 
probabilities from other directions. Finally, there have been 
several studies that have modeled diffusion using multicompart

mental models. These studies assume distinct fiber populations 
with no exchange. Moreover, the number of such compartments 
has to be prespecified (Inglis et al., 2001; Parker and Alexander, 
2003; Maier et al., 2004; Assaf et al., 2004) or the signal from 
each fiber population is undesirably forced to have prespecified 
attributes (such as anisotropy) (Tournier et al., 2004). 

In this work, we introduce a new method, called the diffusion 
orientation transform (DOT), that describes how the diffusivity 
profiles can be transformed into probability profiles. Our method is 
based on the HARDI acquisition scheme and can be extended to 
more general acquisition strategies. We express Eq. (1) in spherical 
coordinates then, under the monoexponential attenuation assump

tion, evaluate the radial part of the integral analytically. The 
probability values on a fixed radius can be reconstructed either 
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directly or parametrically in terms of a Laplace series. We prove 
that this expansion converges to the true probability profile. Our 
technique can be regarded as a transformation of diffusivity to 
probability profiles whose peaks correspond to distinct fiber 
orientations (Fig. 1). Our method is robust and fast. Although we 
present results on excised, chemically fixed rat nervous tissue, the 
requirements of our method make it suitable for the clinical 
environment. We discuss our assumption that the MR signal 
decays monoexponentially and further demonstrate that a trivial 
extension to multiexponential attenuation results in improved 
reconstruction of the probabilities. 
Theory 

In this section, we show that, starting from the signal attenuations 
of a HARDI acquisition, it is possible to calculate the orientation 
maps without the need to fit a particular model to the data. We 
achieve this by two different approaches. 

Parametric reconstruction 

The Fourier transform that relates the signal attenuation to the 
water displacement probability Eq. (1) can be written in spherical 
coordinates. This is a consequence of the pointwise convergent 
expansion of the plane wave in spherical coordinates (Schwabl, 
1989) given by 

V l
 
l


X
eF2piq IR ¼ 4p Fi jl Þ u 4Ylmð Þ;ð Þ ð2pqr Ylmð Þ r ð4Þ

l ¼ 0 m¼-1

where q = qu and R = rr, with q = |q| and r = |R|. Note that 
jl(2pqR) is the l-th order spherical Bessel function whereas Ylm(u) 
is the spherical harmonic function. Inserting this expression into 
Eq. (1), we get 

ZV l

P Rð 0rÞ ¼ ð -iÞ Ylmð Þ duYlm u 4Ilð Þ; ð
X

l
r ð Þ u 5Þ

l ¼ 0 m ¼ -l

where 

V
2 2Il u dqq2 ð2pqR0Þ exp -4p q tD u : ð6Þð Þ ¼ 4p jl ð Þ

0

Here, r was set to a particular radius R0, and it is assumed 
that signal attenuates along each radial line in q-space as 
described by the Stejskal–Tanner relationship given in Eq. (2). 
Note that the function P(R0r) is not the isosurface of the three-
dimensional displacement probability function, but it is the 
probability of finding the particle, initially at the origin, at the 
point R0r, that is, we will be interested in the probability values 
on a sphere of radius R0. 

The integral in Eq. (6) can be evaluated analytically which 
makes it possible to efficiently compute the values of the Il(u) 
function. See Appendix A for a detailed description. Since Il(u) is a  
function of orientation, we can expand it in a Laplace series, i.e. 

V lV

Il u ð Þ;
X

ð Þ ¼ allVmVYlVmV u ð7Þ
lV¼ 0 mV¼-lV

where the coefficients allmV Vare given by an SHT, 

allVmV ¼ YlVmVð Þ u du: ð8Þu 4Ilð Þ
Comparing the integration over u in Eq. (5) with the expression 
in Eq. (8), it can be seen that P(R0 r) has the Laplace series expansion 

V lX
P R0rÞ ¼ r ð9Þð plmYlmð Þ 
  

l ¼ 0 m ¼ -l
 

with 

l 1=2
plm ¼ -i ð 1Þ 10Þð Þ allm ¼ - allm; ð

where in the last step we have used the fact that l is even. The 
convergence of the resulting series in Eq. (5) to the desired 
probability value is proved in Appendix D. Note that the coefficients 
of this Laplace series for a particular value of l come from the l-th 
order Laplace series coefficients of Il(u). 

Implementation aspects 
In summary, given the HARDI data, the estimation of the 

probability of finding the particle at the point R0r away from the 
origin involves the following steps: 

(1) Compute the diffusivity D(u) along each direction using Eq. 
(2). 

(2) Then, compute Il(u) using Eq. (27) or Eq. (28) with Table 2. 
(3) For each l, compute allm, the l-th order spherical harmonic 

transform of Il(u). 
(4) Then, evaluate Eq. (9). 

Implementation of the items 1, 2 and 4 above are trivial. Our 
data acquisition scheme involves sampling the sphere on the 
vertices of a tessellated icosahedron. With this method, 46 or 81 
points are sampled on the unit hemisphere from second- or third-
order tessellations respectively. Following Ritchie and Kemp 
(1999), we compute the spherical harmonic transform given in 
Eq. (8) by discretizing the integrals on the sphere with integration 
weights calculated from the areas of the polygons specified by 
the dual tessellation. We also exploit the fact that the probabilities 
are real. This condition ensures that the expression 

m 4plð-mÞ ¼ -ð Þ plm 11Þ1 ð

holds. Thus, it is unnecessary to evaluate the integrals that generate 
plm coefficients with negative m values. The calculation of the allm 

coefficients takes only 25 to 60 s for the entire data set, depending on 
the matrix size and number of angular samples, when using a modest 
Athlon XP 1800 processor (AMD, Sunnyvale, CA). 

Schematic description of the method is described below. Note that 
this is our revision of Eq. (3) provided in the Introduction section. 

Eq: 28 SHT ð 1Þ LSð Þ x - l=2

D u ! u! plm! ð ð12Þð Þ Ilð Þ allm! P R0rÞ

Nonparametric reconstruction 

An alternative form to the Rayleigh expansion in Eq. (4) is 
given by 

V
F2piq IR ¼ l
e Fi ð2l þ 1Þjlð2pqrÞ ðu I rÞ; ð13Þð Þ Pl
 

l ¼ 0

which is just a consequence of the addition theorem for spherical 
harmonics provided in Eq. (42). In Eq. (13), Pl is the l-th order 
Legendre polynomial. Employing this form of the Rayleigh 
expansion in our formalism does not change the radial integral, 
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1 The expression for the entropy is a slightly modified version of the 
expression in Ö zarslan et al. (2005), where the 3 in the argument of the 
natural logarithm is replaced by 4p. The reason for this modification stems 
from the difference between the normalization conditions imposed on the 
functions D (u) in  Ö zarslan et al. (2005) and P(R r) in this work. 
and the probability values are given by ZV
l

P R0rÞ -i ð2l þ 1Þ duIlð Þ ðu I rÞð ¼
4
1
p ð Þ u Pl
 
l ¼ 0
 ð14ÞV

1=2 2l þ 1¼ duð-1Þ ðu I rÞIlð Þ;Pl u
4p

l ¼ 0

with the definition of Il as in Eqs. 6, 27, 28. 
The above expression provides an alternate estimation of the 

results that could be obtained from the parametric reconstruction. 
The schematic description of the nonparametric reconstruction is 
given by 

Eq:ð Þ28 Eq: 14ð Þ
D u ! u ! ð ð15Þð Þ Ilð Þ P R0rÞ

The above formulation can be easily expressed in matrix form. 
Suppose that the HARDI experiment is performed with diffusion 
sensitizing gradients applied along NG directions. The direction 
describing the j-th gradient will be represented with the unit vector 
uj. Similarly, let ri denote the unit vector describing the i-th 
direction along which the probability will be estimated where the 
total number of such directions is NR. Then, Eq. (14) can be 
expressed simply by 

V

T ¼ MlZ l; ð16Þ
l ¼ 0

where T is the NR dimensional vector of probabilities. In Eq. (16), 
the components of the NG dimensional vector Zl are given by 

Z l j ¼ Il ; ð17Þð Þ uj

and the components of the NR x NG dimensional matrix Ml are 
given by 

wj l=2ðMlÞij ¼ 4p 
ð-1Þ ð2l þ 1ÞPl uj I ri ; ð18Þ

where wj are the integration weights associated with each of the 
gradient directions. Note that the matrices Ml can be computed 
once for each gradient sampling scheme. Therefore, the only 
computational burden comes from the pixel-by-pixel estimation of 
Il(uj) (which is a straight forward operation) and the matrix 
multiplication in Eq. (16). 

Parametric vs. nonparametric reconstruction 

We have provided two methods for the reconstruction of 
probability profiles. The first approach yielded the components of 
a spherical tensor, where each component, plm, is a characteristic of 
the distribution P(R0r) since it is equal to the spherical correlation of 
the distribution with the complex conjugate of the corresponding 
spherical harmonic Ylm(r). Therefore, this approach was named the 
‘‘parametric’’ reconstruction. The parametric reconstruction enables 
one to express the probabilities in terms of a Laplace series, whereas 
the nonparametric reconstruction provided the probability values 
directly. It is simpler to implement the latter scheme as no SHT 
transform is necessary. However, when the Laplace series is 
terminated at l = lmax, the parametric reconstruction expresses the 
probability values in terms of (lmax + 1)(lmax + 2) / 2 numbers, which 
are typically much smaller than the number of directions along 
which the probabilities are estimated (NR) when one visualizes the 
probability surfaces. This enables more feasible storage of the 
probability profiles in computer memory. 
Using either one of the schemes, once the probability values are 
evaluated along many points, the following parametrized surface 
can be visualized (see Fig. 1): 

sin h cos / 
Xðh;/Þ ¼ P R0rÞr ¼ Pðh;/Þ sin h sin / ;

where h is the polar and / is the azimuthal angle associated with 
the unit vector r.

Scalar indices 

Many clinical studies employ scalar rotationally invariant 
measures derived from diffusion MRI data to quantify the changes 
occurring with development and pathologies. Recently, Ö zarslan et 
al. (2005) demonstrated that generalized models more accurately 
quantify anisotropy measures compared to DTI. In this section, we 
discuss the estimation of the generalized scalar indices from the 
probability values evaluated using DOT and demonstrate the 
images constructed by computing these measures on a pixel-by
pixel basis. For completeness, formulation of anisotropy in terms 
of both variance and entropy is provided. 

Anisotropy from variance 
In Ö zarslan et al. (2005), generalized anisotropy indices based 

on the variance of the values of an arbitrary integrable positive-
definite function defined on the unit sphere were presented. When 
applied to functions represented in terms of spherical harmonics, 
like the parametrically reconstructed P(R0r) in this work, the 
variance takes a particularly simple form given by 

V lX X1 2
V ¼ j plmj : ð20Þ

9p200 l ¼ 2 m ¼ -l

Then, using the scaling relationship provided in Ö zarslan et al. 
(2005), it is possible to map the values of the variance to the interval 
(0, 1) where the resulting index is called generalized anisotropy 
(GA). Note that the GA index is based on variance and hence can be 
seen as a generalization of the relative anisotropy (RA) and 
fractional anisotropy (FA) indices commonly used in DTI analysis 
(Basser, 1995). 

Anisotropy from entropy 
The function defined on the sphere can be taken as a PDF 

simply by normalizing the integral of the probability profile over 
the sphere via a multiplication of the plm coefficients by 1

pffiffiffiffiffi
= 4pp00. 

Then, it is meaningful to define the entropy associated with this 
distribution. By using the expression in Ö zarslan et al. (2005) for 
the entropy of a general function on the unit sphere, it is possible to 
show that the entropy in our case is given by1 

1
r ¼ ln 4pbP Rð 0rÞ>Þ - drP R0rÞlnP R0rð ð ð Þ

4pbP R0rÞ>ð
V lpffiffiffiffiffi X1¼ ln 4p 00 - p plm4 klm; ð21Þ

4pp00 l ¼ 0 m ¼ -l
N 0
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Fig. 2. Probability maps estimated on a sphere of radius 8 to 16 Am in equal 
steps of 2 Am (from left to right). Top row shows these surfaces when there is 
only one orientation, where the bottom row shows them from a voxel with two 
distinct orientations. As the radius of the sphere on which the probability 
values are estimated is increased, the two fiber orientations are better resolved. 
where klm are given by the SHT of ln P(R0r). Similar to the 
transformation of variance values into the GA index, the entropy 
values can be transformed into an anisotropy index that was called 
scaled entropy (SE) (Ö zarslan et al., 2005). 
Simulations 

We have applied the scheme described above to the simulations 
of single fiber and crossing fiber systems. The diffusion-weighted 
MR signal attenuation from molecules, with free diffusion coeffi
cient given by D0, restricted inside a cylinder of radius q and length 
L, when the applied diffusion gradient makes an angle # with the 
orientation of the cylinder, is given by Söderman and Jönsson 
(1995): 

V V VXX 2 4 2q ð2pqqÞ sin2ð Þc2#2Knm kmE q ¼ h i2ð Þ
2 2

n ¼ 0 k ¼ 1 m ¼ 0 ðnpq=LÞ - ð2pqq cos#Þ

n 2½1- -ð 1Þ ð ]½Jmðcos 2pqLcos#Þ V 2pqq sin#Þ]x h i2
2 2 22

L2 c - ð2pqq sin#Þ c - mkm km#)2  )2
npckmx exp

In this expression, Jm is the m-th order Bessel function, ckm is 
the k-th solution of the equation JmV(c) = 0 with the convention 
Fig. 3. (a) Simulated system of two crossing fiber bundles. (b) Probability surfaces
(c– f) Surfaces in the framed area of panel b recomputed under increasing levels of
to-noise ratios (SNRs) between 50:1 and 12.5:1 in the non-diffusion-weighted im
c10 = 0, and Knm = dn0dm0 + 2[(1 - dn0 ) + (1 - dm0)]. In the 
presence of more than one cylinder, the signal attenuations 
from these cylinders become additive. This way, multiple 
fiber orientations can be modeled assuming that diffusing 
molecules are constrained within these cylinders with no 
possibility for exchange between different cylinders. This 
system provides a simplified view of the neural tissue in 
the slow exchange assumption which is likely to be the case 
in short diffusion times. Although diffusional processes within 
real neural tissue will be much more complicated than what 
can be achieved through simulations, currently, they still 
provide a suitable test bed for the schemes developed to 
address the problem. 

We have evaluated Eq. (22), with the parameters: L = 5 mm, 
q = 5  Am, -D0 = 2.02 x 10 3 mm2/s, D = 20.8 ms, d =2.4 ms, b = 
1500 s/mm2. These parameters resemble our typical imaging 
protocol on excised rat brains. Similar to that in von dem 
Hagen and Henkelman (2002), we terminated the infinite series 
in Eq. (22) at n = 1000 and k, m = 10. Similar to a HARDI 
experiment protocol, the gradient directions were chosen to 
point toward the 81 vertices of the third-order tessellations of an 
icosahedron on a unit hemisphere. 

As already shown in Fig. 1, we have computed the probability 
profiles from fiber configurations whose orientations are specified 
by the azimuthal angles /1 = 30-, /2 = {20-, 100-} and /3 = {20-, 
75-, 135-} for the 1-, 2- and 3-fiber systems respectively. Polar 
angles for all fibers were taken to be 90- so that a view from the z 
axis will clearly depict the individual fiber orientations. Computa

tions with other polar angles yielded similar quality results. In all 
computations, the Laplace series were terminated after l = 8.

Fig. 2 shows the effect of varying R0 on the constructed 
probability surfaces. Increasing R0 gives rise to the sharpening of 
the displacement PDFs. This could be predicted from Fig. 17a 
that indicates that for small R0 the largest contribution comes 
from I0, which upon the spherical harmonic transform forms the 
isotropic part of the constructed probabilities. When R0 is greater 
than the radius of the cylinder confining the water molecules and 
the characteristic length 

pffiffiffiffiffiffiffi
6Dt associated with the diffusion 

process (which is 15 Am for the system in Fig. 17a), the 
distribution of probability on the surface becomes sharper and 
individual fiber populations are better resolved. 
 computed using the expansion of the probability on the surface of a sphere. 
 noise added to the signal values. These panels represent images with signal
age.
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Table 1 
The angle between the computed and true fiber orientations (deviation angles) in degrees a

_____ w (r = 0) w (r = 0.02) w (r = 0.04) w (r = 0.06) w (r = 0.08) 

1 fiber {0.364} 0.77 T 0.42 1.44 T 0.79 2.20 T 1.09 3.08 T 1.66 
2 fibers {1.43, 0.80} 2.33 T 1.10 3.66 T 2.01 6.00 T 5.57 8.07 T 7.92 
3 fibers {2.87, 0.60, 4.57} 5.81 T 5.84 11.5 T 10.1 14.7 T 10.3 17.6 T 11.9 

 a Second column presents the deviation angle of each fiber when the DOT of noiseless signal profile is taken. Columns 3 –6 show the mean and standard 
deviation values for the deviation angle when Gaussian noise of standard deviation 0.02 to 0.08 (from left to right) was added to the signal profiles. The 
computations for the DOT of noisy signals were repeated 100 times.
We also computed the probability surfaces for a simulated 
image of fiber crossings shown in Fig. 3. The surfaces are 
consistent with the underlying known fibrous structure. The 
circular and linear fiber bundles were chosen so that a distribution 
of crossing angles is achieved across the region with orientational 
heterogeneity. The distinct fiber orientations are better resolved 
when the different fiber bundles make larger angles with each 
other. Fig. 3b shows the probability profiles when there is no noise 
added to the signal values. Similar to Jansons and Alexander 
(2003), we have added Gaussian noise of increasing standard 
deviation to the real and complex parts of the signal. When the 
signal intensity in the image with no diffusion weighting is taken 
to be centered around 1 and Gaussian noise of standard deviations 
0.02 through 0.08 is added (in equal steps), the probability profiles 
shown in Figs. 3c–f are obtained. These panels represent images 
with signal-to-noise ratios (SNRs) between 50:1 and 12:5:1 in the 
non-diffusion-weighted (S0) image. Note that, in our standard 
HARDI protocol, we obtain SNR values in excess of 30 in 
diffusion-weighted scans and about 100 in non-diffusion-weighted 
images. Therefore, in real experiments, one can expect to achieve 
results that will be of similar or better quality with the image 
presented in Fig. 3c. 

To provide a more quantitative assessment of the DOT 
method and its sensitivity to increasing noise levels, we took 
the HARDI simulations of 1-, 2- and 3-fiber profiles presented 
in Fig. 1 and numerically computed the fiber orientations by 
finding the maxima of the probability profiles (see Table 1). In 
this table, w denotes the angle between the computed and the 
true fiber orientations in degrees whereas r is the noise level. 
Note that, when no noise was introduced (r = 0), there was a 
small deviation of the computed fiber direction from the true 
fiber orientation because of the finite sampling of the 
hemisphere (at 81 gradient orientations), the termination of the 
LS at order 8 and the precision of the numerical procedure used 
to compute the maxima of the probability profiles. The 
simulations of the signal profiles with noise were repeated 
100 times for each noise level to provide a distribution of 
deviation angles. We report the mean and standard deviations of 
these distributions in columns 3–6 of Table 1. As expected, the 
w values increase with increasing noise, and it is more 
challenging to accurately resolve the distinct fiber orientations 
when there are more fiber orientations. 
Imaging parameters 

To test the performance of the DOT, we calculated the 
orientation probabilities on HARDI data from three anatomical 
regions of excised, perfusion-fixed rat nervous tissue (optic 
chiasm, brain and spinal cord). These experiments were performed 
with the approval of the University of Florida Institutional Animal 
Care and Use Committee. The images were acquired at 17.6 T 
(brain) or 14.1 T (spinal cord and optic chiasm) using Bruker 
Avance imaging systems. A diffusion-weighted spin echo pulse 
sequence was used. Diffusion-weighted images were acquired 
along 81 (brain) or 46 (spinal cord and optic chiasm) directions 
with a b-value of 1500 s/mm2 (brain and spinal cord) or 1250 s/ 
mm2 (optic chiasm) along with a single image acquired at b  0 
s/mm2. Echo times were 23, 28, 25 ms; repetition times were 0.5, 
2, 1.17 s; D values were 12.4, 17.8 and 17.5 ms; d values were 
1.2, 2.2 and 1.5 ms; bandwidth was set to 35, 32 and 39 kHz; 
signal averages were 10, 6, 7; matrix sizes were 128 x 128 x 5, 
100 x 100 x 60, 72 x 72 x 40 and resolutions were 33.6 x 33.6 x 
200 Am3, 150 x 150 x 300 A  m3, 60  x 60 x 300 Am3 for optic 
chiasm, brain and spinal cord data respectively. The optic chiasm 
images were signal averaged to 67.2 x 67.2 x 200 Am3

resolution prior to probability calculations. In Fig. 4, we show a 
particular axial slice from a HARDI data set collected from 
excised rat spinal cord. 
Results 

The probability maps were calculated by following the 
procedure described in the Theory section. Terms up to l = 
8 were included in all calculations. Representative images of the 
Il(u) values, when u is chosen to point through the image plane, 
are presented in Fig. 5. Note that the intensity values in the I10(u) 
image are very small. The plm coefficients that generate the 
probability surfaces are shown in Fig. 6 for the same slice. It was 
not necessary to show the coefficients with negative m values 
because of Eq. (11). Note that this relationship also ensures that 
pl0 are real. 

The computed plm components were used in the calculation 
of the scalar measures described in the previous section. In Fig. 
7, we show the variance and GA maps computed from the optic 
chiasm and brain data sets. The GA index was calculated both 
from the plm coefficients and a second-order tensor fit to the
data. It is apparent that, although the GA values are similar in 
the unidirectional section of the optic chiasm, in the region of 
decussating optic nerve fibers, GA values implied by DTI were 
lower than those calculated from the probability surfaces. Also 
included are the entropy (r) and the SE maps calculated from 
both samples. It should be noted that V, GA, r and SE values 
depend on the choice of R0. 

Visualization of the probability profiles was done by computing 
the probabilities along many directions and displaying the 
parametrized surface defined in Eq. (19). To increase the sharpness 
of the probability profiles, we have subtracted the minimum 
probability existing in the profile from all probability values. This 
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Fig. 4. Representative HARDI data set from an excised, perfusion-fixed rat spinal cord. At the upper left corner is the image with no diffusion weighting followed by 46 diffusion-weighted images. 
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Fig. 5. Il(u) images up to l = 10 from coronal sections of rat brain when u is 
chosen to point through the image plane. 
process was followed by a normalization of the surface to fill the 
cube (voxel) it will be located in so that all visualized surfaces have 
similar sizes. As a result, the visualized surfaces emphasize the 
directionality but are not intended to provide information on the true 
values for the probabilities. 

We have overlaid these orientation surfaces on generalized 
anisotropy (GA) maps (Ö zarslan et al., 2005) computed from 
Fig. 6. The LS coefficients of the probability profile up to
the displacement probabilities as shown above. The coloring 
schemes proposed for DTI orientation visualization (Pajevic and 
Pierpaoli, 1999) are not readily applicable to probability 
surfaces. The ‘‘peakedness’’ on the image plane is obvious. 
However, one may miss the orientations through the image 
plane. To prevent this, we color-coded the surfaces such that, as 
the values of the z-component of the parametrized surface vary 
from the maximum probability value present in the probability 
profile to minus this maximum probability value, the color of 
the surface changes from green to blue. In all calculations, R0 

was set to 16 Am, and the last term kept in the Laplace series 
was l = 8.  

The rat optic chiasm is a distinct white matter structure with 
both parallel and decussating optic nerve fibers, thus providing 
an excellent experimental validation for our approach. The top 
panel of Fig. 8 shows the diffusivity profile obtained from the 
diffusion-attenuated signal values. The bottom panel demon

strates the displacement probabilities computed from the 
diffusivity profiles using the DOT method. Every other pixel 
of the optic chiasm image was included for the sake of clarity. 
The diffusivity profiles fail to give meaningful results in the 
central region of the optic chiasm where fiber orientations are 
heterogeneous. The probability profiles, however, demonstrate 
the distinct fiber orientations in the central region of the optic 
chiasm where myelinated axons from the two optic nerves cross 
 l = 4 computed from the excised rat brain data set. 
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Fig. 7. From left to right: variance, GA, GA from the rank-2 tensor, entropy and SE images calculated for excised rat optic chiasm (top) and brain (bottom) 
samples. 
one another to reach their respective contralateral optic tracts. 
These orientation maps are consistent with the work by Lessell 
(1977). 

Fig. 9 shows the displacement probabilities calculated from 
excised coronal rat brain MRI data. At the top left is a diffusion-
weighted image that shows the selected ROI. This region is 
expanded in the large image and depicts the orientations of the 
highly anisotropic and coherent fibers of the external capsule and 
corpus callosum bordered inferiorly by the hippocampus and 
superiorly by radial cortical trajectories. Note, voxels with 
crossing orientations located superiorly to the external capsule 
represent the interdigitation of fibers entering the cortex from the 
external capsule and the corpus callosum into the radial 
orientations of the cortex. Future investigations employing this 
method should improve our understanding of normal and 
pathologically altered neuroanatomy in regions of complex fiber 
architecture such as the rat brainstem (Fig. 10). 

Finally, we show the probability maps computed from 
excised spinal cord data in Fig. 11. Again, the ROI is specified 
on a diffusion-weighted image shown on the top left section. 
The corresponding orientation maps are depicted in the top right 
panel. Selected pixels of this image were enlarged on the bottom 
panels of the figure. To demonstrate the shapes more clearly, 
seven selected surfaces were rotated by -90- about the x axis so 
that the up-and-down direction in the individual surfaces shown 
in blue corresponds to the in-and-out direction in red images. 
The magnified surfaces may represent locations where ventral 
root fibers from a-motor neurons cross white matter to enter the 
gray matter of the spinal cord. 
Discussion 

Exponential attenuation assumption 

We have assumed so far that the signal attenuation along 
each radial line in q-space is characterized by a monoexpo

nential decay. Therefore, it was possible to extract orientational 
information from data acquired on a single spherical shell and 
at the origin of the q-space. We would like to note that this is 
the very assumption intrinsic to DTI, establishing the corre
spondence between the diffusion tensor and the assumed 
Gaussian PDF whose orientational mode is estimated from 
the principal eigenvector of the diffusion tensor. The satisfac
tory performance of DTI in systems with single fiber 
orientations has prompted us to keep the monoexponentiality 
assumption for the radial behavior while complicating the 
angular structure; this results in non-Gaussian probability 
profiles. This assumption worked both with our simulations 
and with real data sets. 

In Fig. 12, we show simulated signal values from a one 
fiber system with a fiber radius of 10 Am when the angle 
between the fiber orientation and the signal values was assumed 
by the exponentiality assumption when the experiment is 
performed at b = 1500 s/mm2. Note that this is a logarithmic 
plot, therefore the true deviations between the real and assumed 
signal values are much smaller than what they appear on the 
right side of the plot when the signal values are small. Because 
the q-space is the frequency space for the probabilities, from a 
signal processing point-of-view, the exponentiality assumption 
can be thought of as a low-pass filtering of the true probability 
values. Therefore, the result is a broadened PDF. The computed 
PDF P(VR) can be related to the true PDF P(R) through a 
convolution with the kernel (̄(R), which is the Fourier transform 
of the function 

2

E( q1, u)
q /q

2
1E(q, u) -1. Here, E( q1, u) is the 

HARDI signal attenuation at a b-value corresponding to a q-
value of q1, and E(q, u) is the full q-space signal attenuation 
function. 

In order to demonstrate the effect of the monoexponential 
signal decay assumption, we performed rigorous simulations of 
high resolution q-space experiments. In these simulations, signal 
attenuation values were computed on a 1283 Cartesian q-space 
grid, yielding a resolution of (0.5 Am)3 in the displacement 
space. Signal decay values were transformed to the displacement 
probabilities via a fast Fourier transform (FFT). Later, isoprob
ability surfaces of the probability maps were computed and the 
resulting surfaces were sharpened by subtracting the minimum 
probability value. Next, the surfaces were expanded to cover a 
large region of the designated space to exaggerate the 
orientational structure of these surfaces. The same procedure 
was applied to the signal values as assumed by the HARDI 
experiment with monoexponential signal attenuation assumption 
and the effective kernel that causes the broadening of the 
probability maps. Note that in this scheme both the transform 
(between the signal and probability domains) and the surfaces to 
be visualized are different from the DOT analysis. The results 
for simulated one- and two-fiber voxels are provided in Fig. 13a 
where the signal decays were computed using Eq. (22) as 
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Fig. 8. Diffusivity profiles (top) and probability maps (bottom) computed from a rat optic chiasm data set overlaid on axially oriented GA maps. The 
decussations of myelinated axons from the two optic nerves at the center of the optic chiasm are readily apparent using the DOT method. These crossing fibers 
carry information from the temporal visual fields to the contralateral cerebral hemispheres. In Figs. 8 –11, the orientation surfaces are color-coded such that 
portions of the surfaces pointing towards or away from the reader are green and blue respectively (see inset). 
before. In these simulations, the water molecules are trapped 
inside the bounding cylinders, therefore the signal attenuation is 
clearly not monoexponential even when there is only one fiber. 
In both cases, one gets slightly anisotropic convolution kernels2 

that give rise to some broadening of the computed probability 
profiles without creating a realizable change in the peaks of the 
isosurfaces. This may aid in understanding why it was possible 
to map the fiber orientations accurately in the simulations (see 
Table 1) under the assumption that the signal decays mono-

exponentially along each direction. Note that the nature of the 
2 Note that the sharpening and expansion of the isosurfaces overempha

size the anisotropy of the convolution kernels significantly. 
convolution kernel in the one-fiber system also justifies the 
performance of DTI in producing correct fiber orientations in 
the presence of restricted diffusion. 

The same simulations were repeated under the assumption 
that, in each fiber population, the diffusion process is Gaussian 
and can be modeled using a diffusion tensor with axial 
symmetry, where the ratio of the diffusivity along the fiber axis 
to those along directions perpendicular to it is 8. Although this 
is a less realistic model for diffusion taking place within fibrous 
tissues, it provides an independent test for the assumption we 
have employed. The results are provided in Fig. 13b. As 
expected, the convolution kernel is just a delta function when 
there is only one Gaussian which is a consequence of the fact 
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Fig. 9. Probability map of a coronally oriented GA image of the rat brain. Diffusion fiber orientations in the parietal cortex were collinear with the apical 
dendrites and axons of cortical pyramidal neurons found in cortical layers III –V. In the dorsal hippocampus, the molecular layer and stratum radiatum fiber 
orientations paralleled the apical dendrites of granule cells and pyramidal neurons respectively, whereas in the stratum lacunosum, moleculare orientations 
paralleled Schaffer collaterals from CA1 neurons and perforant fibers from the entorhinal cortex. 
that MR signal is truly monoexponential in this case. In the case 
of two orientations, the convolution kernel is slightly anisotropic 
and very local resulting in a minor blurring of the probability 
maps. The sharpened isosurfaces clearly demonstrate that the 
peaks of the isosurfaces are not altered. 
Fig. 10. The diffusion orientation transform (DOT) described in this paper also cha
this probability map from one side of the rat medulla. 
Avoiding some kind of deviation from the true probability 
values seems impossible when the reconstruction is performed 
from limited samples of q-space (e.g. HARDI experiments). 
However, when data points are collected from a greater region in 
q-space (such as on several concentric shells), the DOT method 
racterized the complex cytoarchitecture of the rat brainstem well as shown in 
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Fig. 11. Probability maps calculated from a diffusion-weighted data set acquired from an excised rat spinal cord. The surfaces in the bottom row depict the 
probability profiles selected from the image matrix and rotated -90- about the x axis. These crossing fiber orientations may represent coherent ventral root 
spinal nerve fibers penetrating along the x axis perpendicular to ascending and descending white matter axons in the anterior funiculus to reach the anterior 
horn motor neurons. 
provides a unique opportunity to significantly and efficiently 
reduce the broadening mentioned above. This scheme is described 
in the next section. 

Another case in which the monoexponential signal decay 
assumption may fail is when ‘‘diffraction’’ effects are present, 
giving rise to non-monotonic dependence of the signal values 
on the gradient strength (Callaghan et al., 1991). This effect is 
observed in the presence of a great deal of periodicity and 
therefore is unlikely to be observed when there are hetero
geneities in the fiber orientations. Avram et al. (2004) have 
reported that in coherent cylinders the diffraction-like effects are 
Fig. 12. Logarithmic plot of the signal attenuation values as a 
function of the b-value. The symbols indicate the signal 
attenuations calculated from a simulation of a single fiber system, 
while the lines indicate the monoexponential fits when the HARDI 
experiment is performed at a b-value of 1500 s/mm2. The curves 
correspond to different angles between the diffusion gradient and 
fiber orientations. 
observed experimentally when the diffusion gradients are 
oriented almost perpendicular to the fiber axis. In a HARDI 
experiment, this may cause some problems since the signal 
values perpendicular to the fiber axis will be quite sensitive to 
the selection of the b-value. 

We also have investigated the effect of b-value on the 
constructed probability surfaces. To this end, we simulated 
HARDI experiments performed at increasing b-values on 1
and 2-fiber systems. We also repeated the simulations for fibers 
of radii 5 and 10 Am. The selected results are provided in Fig. 14. 
The most reassuring finding is that there has been no realizable 
alteration in the peaks of the distributions indicating that the 
calculated fiber orientations are robust to the choice of b-value. 
However, it is evident that the probability surfaces are sharper 
and multiple orientations are better resolved at higher b-values. 
As we have demonstrated before, a b-value of 1500 s/mm2 seems 
sufficient to resolve the fiber crossings when the radii of the 
fibers are 5 Am. However, when the radii are doubled, it is 
advantageous to collect the data at higher b-values. It should be 
noted that spurious peaks start to develop at very high b-values 
(see the first two rows of the last column). This may be explained 
by the crossing of the signal decay curves in Fig. 12, which 
suggests that at high b-values the order of signal values from 
different orientations may be altered. 

Extension to multiexponential attenuation 

We have thus far employed the monoexponentiality assumption 
of the signal attenuation. However, the same formalism provides a 
surprisingly simple extension to multiexponential attenuation, 
which has been shown in numerous articles to provide a very 
accurate characterization of the radial behavior (in q-space) of the 
MR data collected from tissue (e.g. Niendorf et al., 1996).
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Fig. 13. Simulations of single (top two rows) and two-fiber (bottom two rows) systems. (a) The signal values were computed using Eq. (22). The first 
column shows the water displacement probability maps that would be obtained from a rigorous three-dimensional q-space measurement and the 
employment of an FFT. The second column depicts the convolution kernels that are induced by the monoexponentiality assumption. The resulting 
probability maps, which can be obtained either by employing the monoexponential attenuation assumption and taking an FFT or convolving the 
function in the first column with the kernel in the second, are shown in the third column. The isosurfaces of the three-dimensional maps were 
sharpened and expanded to clarify the orientational appearance of the corresponding maps. (b) The same images were provided for signal profiles 
generated from oriented Gaussians. Evidently, the employment of the monoexponential attenuation assumption broadens the probability maps without 
significantly altering its orientational features. Note that the sharpening of the isosurfaces exaggerates the directional dependence of the associated 
smoothing kernels. 
To derive the correct generalization, we start by replacing the 
Stejskal–Tanner Eq. (2) with the expression: 

NE

-bDið ÞuE bð ; uÞ ¼ fið Þe 23Þu ; ð
i

where NE is the number of terms (exponentials, transients) in the 
series, Di(u) is the i-th diffusion coefficient for the gradient 
direction u and fi(u) is the ‘‘volume fraction’’ of the i-th 
exponential satisfying the relationship 

NE

fi u ð24Þð Þ ¼ 1
i

Carrying out the same algebra as before, Eqs. (5) and (14) hold 
with the definition 

NE

Il u fi u Ili u ð25Þð Þ ¼ ð Þ ð Þ
i

where 

V

Ili u dq q2 jlð Þ exp-4p 2q2tDið Þ ; ð26Þð Þ ¼ 4p 2pqR0 u
0

which is the same expression when D(u) in Eq. (6) is replaced by 
Di(u). Therefore, either of the forms given in Eqs. (27) or (28) can 
still be used to calculate Ili(u) from Di(u). 

The extension to multiexponential attenuation requires the 
following modifications for the implementation of the DOT: 

(1) Fit multiexponential function Eq. (23) along each radial line 
in q-space to estimate fi(u) and Di(u).

(2) For each diffusion coefficient Di(u) corresponding to each 
term in the series, calculate Ili(u) from Eq. (26). 

(3) Calculate Il(u) from Eq. (25). 
(4) Apply either the parametric or nonparametric reconstruction 

as before. 

Fig. 15 shows the biexponential fits to the data points already 
presented in Fig. 12. The improvement in the functional fits is 
evident. We would like to stress that we utilize the multiexponential 
fit solely to provide an approximation and extrapolation to the 
signal attenuation and by no means do we intend to make inferences 
about the compartmentation in tissue from this fit. In other words, 
we exploit the performance of multiexponential fits realized in 
studies involving compartmentation to improve on the orientation 
mapping results that are achieved using the DOT technique. 
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Fig. 14. Simulations of 1- and 2-fiber systems as a function of b-value where the radii of the fibers were taken to be 5 and 10 Am. 
We have tested the proposed extension scheme on our 
simulated data from 1-, 2- and 3-fiber systems. The results are 
shown in Fig. 16. It is clear that the monoexponential and 
multiexponential fits provide the same orientational information, 
yet the constructed probability surfaces in the latter case resolve 
the distinct fiber orientations better, most notably in the 3-fiber 
system. However, the results indicate that transition from bi- to 
triexponential fits does not result in a significant improvement. 
This demonstrates the sufficient accuracy of the biexponential 
fits to the signal attenuation values. 

Unfortunately, using a biexponential attenuation fit in our for
malism would necessitate collecting about three times the number of 
data points when compared with the case in which the mono

exponentiality assumption is made. This is because there are 2 x NE

unknowns in the fit, and if one chooses to collect data at b = 0, then 
Fig. 15. The symbols indicate the signal attenuations calculated for the 
same system as in Fig. 12, whereas the lines indicate the curves obtained 
from a biexponential fit to these data points. The curves correspond to 
different angles between the diffusion gradient and fiber orientations.
at least 2 x NE - 1 spherical shells have to be sampled for the NE 

exponential fits. 
Conclusion 

The DOT technique provides a direct estimation of displace
ment probability surfaces within each voxel from multi-orienta

tional diffusion-weighted MRI data. The method is robust and fast. 
DOT can be implemented nonparametrically for direct estimation 
of probability values along desired directions or by using an SHT 
that gives the Laplace series coefficients of the probability profile. 
In either case, high resolution probability surfaces can be 
reconstructed easily from the signal values. Furthermore, the 
behavior of the MR signal intensities with increasing b-values can 
be characterized by mono- or multiexponential fits. Our findings 
indicate that multiexponential fits result in improved reconstruc
tions. However, when the acquisition time or the available gradient 
strength is limited, the monoexponentiality assumption can be 
employed. This results in some broadening of the PDF whose 
angular structure is smoother. As demonstrated in excised rat 
nervous tissue, the potential applications of our approach include 
more accurate estimates of fiber orientations that will improve the 
existing fiber tractography schemes. This then could enable the 
reliable mapping of more connections between different parts of 
fibrous tissues.
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Table 2

Al(u) and Bl(u) functions up to l = 8

In this table, b stands for b(u). 

l Al(u) Bl(u) 

0 1 0 
2 -(1 + -6 2) b 3 
4  -1 + 20b  2  + 210b -4 -15/2 (1 – 14b 2) 
6 -(1 + 42b -2 + 1575/2 

b -4 + 10,395b -6) 

-105/8 (1 – 36b 2 + 396b -4) 

8  -2 1 + 72b   + 10,395/4 
b -4 + 45,045b -6+675,675b -8 

 -315/16 (1 – 66b 2 + 
1716b -4 - 17,160b -6) 

Fig. 16. Simulations of 1-, 2- and 3-fiber systems with mono- (b = 2500 s/mm2), bi- and triexponential fits (from data up to b = 9000 s/mm2). Similar to Fig. 1, 
the orientations of the simulated fibers are specified by the azimuthal angles /1 = 30-, /2 = {20-, 100-} and /3 = {20-, 75-, 135-} for the 1-, 2- and 3-fiber 
systems respectively. All fibers lie on the image plane.
the National High Magnetic Field Laboratory (NHMFL), 
Tallahassee. 

Appendix A. The radial integral 

The integral in Eq. (6) can be evaluated and it is given by 

Rl C l þ 3

Il u
0 2ð Þ ¼

2l þ 3 ðlþ3Þ=2p3=2ðD u tÞ Cðl þ )ð Þ 3=2Þ
l þ 3 3 R2

0x1F1 ; l þ ; - ; ð27Þ
2 2 ð Þt4D u

where 1F1 is the confluent hypergeometric function of the first kind 
(see Appendix B). Using the recurrence relations of the confluent 
hypergeometric functions provided in Eq. (31) iteratively, these 
functions can be written as the sum of two terms, one of them 
being proportional to R2

1 3 0
1F1 ; ;

2 2
-

4Dð Þu t
where the other term will 

be proportional to R2

F 3 3 0
1 1 ; ;

2 2
-

4D ð Þu t
. Using Eqs. (32) and (33), it 

can be seen that these functions are proportional to the error 
function and Gaussian respectively.

Therefore, the resulting expression is given by 

( )
exp - ð Þb u 2=4 erfðb u =2Þð Þ

Il u u þ u ; ð28Þð Þ ¼ Alð Þ Blð Þ
4pR3

4pD u tÞ 0ð ð Þ 3=2
where 

R0bð Þ ¼u pffiffiffiffiffiffiffiffiffiffiffiffi : ð29Þ
D u tð Þ

Al(u) and Bl(u) functions up to l = 8 are given in 
Table 2. Note that, throughout the paper, only the even-

order terms are included as a consequence of the antipodal 
symmetry of the diffusivity profiles as well as displacement 
PDFs. The derivation of the particular forms for the Al(u) 
and Bl(u) for arbitrary (even) values of l is provided in 
Appendix C. 
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Fig. 17. Dependence of the radial integral Il on R0 (top) and on diffusivity 
(bottom). The curves are drawn for l values ranging from 0 to 8. 
In Fig. 17a, we plot the Il values as a function of R0 

calculated with double precision using Eq. (28) where D = 1.5 x 
10 -3 mm2/s and t = 25 ms. Very large values taken by the 
higher-order terms near the origin are due to round-off and errors. 
However, this is not a big concern because we will be mostly 
interested in the values of this function in the 10–20 Am range. 
Note that the contribution from higher-order terms is rapidly 
collapsing for R0 values in this range. Shown in Fig. 17b are the 
curves generated by keeping R0 fixed at the value of 15 Am and 
varying the diffusion coefficients between -3 x 10 4 and 3 x
10-3 mm2/s. This plot indicates the nontrivial manner in which 
an angular diffusivity profile influences the Il and hence the 
probability values. 
Appendix B. Confluent hypergeometric functions of the first 
kind 

The confluent hypergeometric function of the first kind (also 
known as Kummer’s function of the first kind or Kummer’s 
function) 1F1(a; b; x) is given by the series (Abramowitz and 
Stegun, 1977) 

V
a xX ð Þk k

1F1ða; b; xÞ ¼ ; ð30Þ
b k!ð Þkk ¼ 0

where (a)k = a(a + 1)(a + 2)  (a + k - 1) with (a)0 = 1.  III 
Among others, the confluent hypergeometric function of the 

first kind satisfies the recurrence relations 

ðb- aÞ1F1ða- 1; b; xÞ þ ð2a- bþ xÞ1F1ða; b; xÞ
- a1F1ðaþ 1; b; xÞ ¼ 0

b bð - 1Þ1F1ða; b- 1; xÞ þ bð1- b- xÞ1F1ða; b; xÞ
þ x bð - aÞ1F1ða; bþ 1; xÞ ¼ 0

ð1þ a- bÞ1F1ða; b; xÞ - a1F1ðaþ 1; b; xÞ
þ ðb- 1Þ1F1ða; b- 1; xÞ ¼ 0: ð31Þ

Many of the commonly used functions are special instances of 
the confluent hypergeometric function of the first kind. For example, 

xF1ða; a; xÞ ¼ e ð32Þ1 )
1=21 3 p

1F1 ; ; - x ¼ erf x : ð33Þ2 ð Þ
2 2 2x

Finally, the asymptotic behavior of the function 1F1(a; b; x)as 
|x| Y V when x is real, is given by 

1F1ða; b; xÞ
 
C b
ð Þ "

ipa -a V-1 ( )Xe x ð Þ ð1þ a-a bÞn n -n -V¼ ð- xÞ þ O jxj
Cðb- aÞ n!

n¼0 "
W -1 

exxa-b X ðb- aÞ ð1- aÞ ( )
n n - -Wþ -x n þ O jxj ;ð ÞC a n!

n¼0

ð34Þ

where V and W are the number of terms kept in the first and second 
series respectively. 
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Appendix C. Al and Bl coefficients 

Although the recursion relations of the confluent hypergeometric functions provided in Eq. (31) are useful in seeing that the Il(u) 
functions can be expressed as the sum of two terms (one involving exponential and the other involving error functions as in Eq. (28)), the 
derivation of the analytical form of the Al and Bl coefficients using these recursion relations is a formidable task. Therefore, in order to find 
analytical expressions for the Al and Bl coefficients for a general l value, we make a term-by-term comparison of the asymptotic form of the 
Il function evaluated from Eq. (34) with the asymptotic form of Eq. (28). After some tedious algebra, we have found that, if Aln and Bln are 
defined such that 

l=2 l=2-1X -2n -2n
Alð Þ ¼ Alnb u ð Þ ¼ Blnb uu ð Þ and Bl u ð Þ ; ð35Þ

n ¼ 0 n ¼ 0

the following expressions hold: 

A0 ; if n < 2
n-1

- 1
t - 1ð2t - 3Þ!! lþ 3 1- l ðl þ 1Þ!! ð36ÞAln ¼ 2 n- t-1 2 n- t-1A0 þ ; if nz 2-2nþ tCðl=2Þðn- t - 1Þ!2l=2

t¼1

where (l +  = (l + 1)(l - 1) III 1 and 

l=2 þ n ) )
A0 ð- 1Þ¼ l

22n
l 1- - ð37Þ

n! 2 n 2 2 n

and 

l þ 3 1- l ðl þ 1Þ!!
2 n 2 nBln ¼ : ð38Þ

l -1-2nC n!2l=2
2

We have verified using Mathematica that these expressions indeed yield the correct coefficients for the Il(u) functions. 
Appendix D. Convergence of the Laplace series for the 
probability profile 

Theorem. The series given by (see Eq. (5)) ZV lX
l

P R0rÞ ¼ ð- iÞ Ylmð Þ u 4Ilð Þ ð39Þð r duYlmð Þ u
l ¼ 0 m¼-l

is convergent. 

Proof. We start by inserting the upper bound for the spherical 
Bessel functions of order l (Abramowitz and Stegun, 1977) 

pffiffi l lpðpqR0Þ ð2pqR0Þjjlð2pqR0Þj V ¼ ð40Þ
32C l þ ð2l þ 1Þ!!
2

into Eq. (6). This yields the upper bound for the functions Il(u) 

ðl þ 1Þ!! R2 l=2
0Il u V : ð41Þð Þ

3=2 ð Þð2l þ 1Þ!!2l=2ð4pD u tÞ D u tð Þ
Note that using the addition theorem for spherical harmonics 

(Arfken and Weber, 2001), 
l

2l þ 1
Ylm r Ylmð Þ4 ¼ Plð Þ ð42Þð Þ u ur ;

4p
m ¼ -l

where Pl(x) is the l-th order Legendre polynomial, it is possible to 
express Eq. (39) in the following form: 

V

P R0rÞ ¼ ; ð43Þð .l
l ¼ 0

where 

lð- iÞ ð2l þ 1Þ
%l ¼ duIlð Þ ur : 44Þu Plð Þ ð

4p 
Using the generating function for the Legendre polynomials, it 
is possible to prove that (Arfken and Weber, 2001) 

Plðcos cÞ V 1: ð45Þ

Using Eqs. (41) and (45), it is easy to see that 

l=2
R2ðl þ 1Þ!! 0j.l j V ¼ nl; ð46Þ

3=2ð2l - 1Þ!!2l=2ð4pDmintÞ Dmint

where Dmin = min D(u). Note that 

R2nlþ2 l þ 3 0lim ¼ lim ¼ 0: ð47Þ
l Y V nl l Y V ð2l þ 1Þð2l þ 3Þ 2Dmint

Therefore, using the d’Alembert (Cauchy) ratio test, the 
series ~l 

V 
 =0  nl converges. Using the comparison test, it is 

straightforward to see that the series ~ V
l  = 0  |.l| converges since 

0< |.l| V sl. Therefore, the series in Eq. (39) is absolutely 
convergent. g
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