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ABSTRACT

This work helps elucidate how background noise introduces 
statistical artifacts in the distribution of the sorted eigenvalues 
and eigenvectors in diffusion tensor MRI (DT-MRI) data. Al-
though it was known that sorting eigenvalues (principal diffu
sivities) by magnitude introduces a bias in their sample mean 
within a homogeneous region of interest (ROI), here it is shown 
that magnitude sorting also introduces a significant bias in the 
variance of the sample mean eigenvalues. New methods are 
presented to calculate the mean and variance of the eigenvec-
tors of the diffusion tensor, based on a dyadic tensor represen-
tation of eigenvalue–eigenvector pairs. Based on their use it is 
shown that sorting eigenvalues by magnitude also introduces a 
bias in the mean and the variance of the sample eigenvectors 
(principal directions). This required the development of new 
methods to calculate the mean and variance of the eigenvec
tors of the diffusion tensor, based on a dyadic tensor represen
tation of eigenvalue–eigenvector pairs. Moreover, a new ap
proach is proposed to order these pairs within an ROI. To do 
this, a correspondence between each principal axis of the dif-
fusion ellipsoid, an eigenvalue–eigenvector pair, and a dyadic 
tensor constructed from it is exploited. A measure of overlap 
between principal axes of diffusion ellipsoids in different voxels 
is defined that employs projections between these dyadic ten-
sors. The optimal eigenvalue assignment within an ROI maxi-
mizes this overlap. Bias in the estimate of the mean and of the 
variance of the eigenvalues and of their corresponding eigen
vectors is reduced in DT-MRI experiments and in Monte Carlo 
simulations of such experiments. Improvement is most signifi
cant in isotropic regions, but some is also observed in aniso-
tropic regions. This statistical framework should enhance our 
ability to characterize microstructure and architecture of 
healthy tissue, and help to assess its changes in development, 
disease, and degeneration. Mitigating these artifacts should 
also improve the characterization of diffusion anisotropy and 
the elucidation of fiber-tract trajectories in the brain and in 
other fibrous tissues. Magn Reson Med 44:41–50, 2000. 
Published 2000 Wiley-Liss, Inc.†
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INTRODUCTION
Diffusion tensor MRI (DT-MRI) (1) combines a measure-
ment of the effective diffusion tensor (2) and conventional 
MRI. From this tensor, three eigenvalues (principal diffu-
sivities) and three eigenvectors (principal directions) are 
calculated in each voxel (1). These eigenvalues represent 
the effective (scalar) diffusivities along the three corre-

†

sponding principal directions that define the local “fiber” 
coordinate system (1). The eigenvalues of the diffusion 
tensor, along with other scalar quantities calculated from 
them (such as the orientationally averaged diffusivity, 
1 Trace(D)
3 

; as well as measures of diffusion anisotropy, 
similarity, and organization (1,3,4) characterize distinct 
microstructural and architectural features of tissue. In gen-
eral, these MRI “stains” provide useful physiological in-
formation noninvasively, not only about the state of nor
mal tissue, but about its changes in development, aging, 
disease, and degeneration. 

When there is background noise present in diffusion
weighted images (DWI), it is not clear how to sort the 
eigenvalues consistently within a homogeneous region of 
interest (ROI). Ordering eigenvalues by increasing magni
tude in each voxel results in a “sorting bias,” whose sever
ity increases as the signal-to-noise ratio (SNR) decreases 
(5). Using Monte Carlo simulations of DT-MRI experi
ments in ROIs containing isotropic or anisotropic media, 
Pierpaoli and Basser (6) showed that the sample mean of 
the largest sorted eigenvalue in an ROI, A1, is always larger 
than its true mean, whereas the sample mean of the small
est sorted eigenvalue within an ROI, A3, is always smaller 
than its true mean. This artifact results in an overestimate 
of the degree of diffusion anisotropy within each voxel at 
all SNRs (e.g., as measured by A1/A3) (6), and may lead one 
to the erroneous conclusion that differences among sorted 
eigenvalues within an ROI are statistically significant, 
even in isotropic media whose “true” eigenvalues are all 
equal. This artifact also has made it difficult to interpret 
whether differences among sorted eigenvalues measured 
in skeletal (7) and cardiac muscle (8) were biologically 
meaningful or were the result of noise. 

In considering the problems of sorting bias, it was clear 
that there were no methods available to quantify, repre
sent, and display bias in the distributions of both eigen-
values and eigenvectors of the diffusion tensor in a self
consistent manner. Here we propose new analytical and 
graphical methods for doing so. Correlations between 
sorted eigenvalues and eigenvectors (9) suggest that, if the 
diffusion tensor field within an ROI is homogeneous, then 
sorting eigenvalues and their corresponding eigenvectors 
in tandem could reduce these statistical artifacts. How
ever, implementing this schema entails solving several 
challenging problems: to represent geometric and alge-
braic features of eigenvalue–eigenvector pairs (the former 
being scalars and the latter, vectors), and to develop a new 
measure of overlap between such eigenvalue–eigenvector 
pairs in different voxels. Using this framework, we can 
then evaluate the improvement in this proposed method 
over magnitude sorting. Some material here was previ-
ously presented in abstract form (10). 
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THEORY

Estimates of the Mean and Variance of the Distribution of 
Eigenvalues Within an ROI 

To assess the severity of the sorting artifact, it is helpful to 
define various measures to characterize the bias in the 
mean and variance of the eigenvalues within an ROI. In 
Monte Carlo simulations, bias of the mean can be assessed 
easily, since the “true” eigenvalues are always prescribed 
or known in advance. For the three eigenvalues, the frac
tional bias in the mean is given by: 

ROI A1
True ROI A2 

ROI A3 
True TrueA1 A2 A3 

True True True; ; [1]
A1 A2 A3 

where AROI
i represents the sample ROI-averaged eigen

value, the sample mean eigenvalue is 

1 N 

ROI jAi Ai [2]
N  

j=1 

and ATrue
i represents the true eigenvalue. The unbiased 

sample variance of each eigenvalue is 

1 N

ROI 2( i 
2)  ( )  Aj

i  Ai [3]
N  1

j=1 

where it is assumed that the ROI contains N voxels. 
A measure of the dispersion of the distribution of eigen

values, which is sensitive to their order or assignment, is 
the range. Dividing this quantity by the mean of this dis
tribution yields 

A1 A3
Range/Mean  [4]

(A) 

in which it is assumed that A1 > A3. The mean diffusivity 
(A), which is not sensitive to sorting order (1), provides a 
reliable reference standard for comparing the range of eig
envalues in different tissue compartments, since (A) is 
relatively unbiased for SNR above about 5 (11), and has 
been shown to be virtually indistinguishable in normal 
gray and white matter in cat (12) and in human (13) brain. 
Moreover, in cerebrospinal fluid (CSF) the larger expected 
difference between A1 and A3 is normalized by a propor
tionately larger denominator. Ideally, in isotropic regions, 
such as gray matter and CSF, Range/Mean (R/M) should 
vanish. Finally, R/M grows linearly with the sorting bias in 
A1 and A3. Measures of diffusion anisotropy that we pro
posed previously, such as the relative and fractional an
isotropy (3,4), by design are insensitive to the order in 
which eigenvalues are sorted, and unlike R/M cannot be 
used to assess the efficacy of an eigenvalue–eigenvector 
sorting algorithm. 

Estimates of the Mean and Variance of the Distribution of 
Eigenvectors Within an ROI 

To date, it has not been possible to reliably report statistics 
about the eigenvectors within an ROI because of the inher

ent sign ambiguity of each eigenvector. For a given prin
cipal diffusivity (or eigenvalue Ai), the sign of its corre
sponding eigenvector ε i is indeterminate (i.e., one is free to 
choose either +ε i or -ε i). Data with such antipodal sym
metry are called axial data, the statistics of which are 
described elsewhere (14). This sign ambiguity complicates 
the calculation of ROI-averaged eigenvectors, because one 
can use either the positive or the negative eigenvector 
when calculating the sample mean (ROI-averaged eigen
vector). So, arithmetically averaging eigenvectors within 
an ROI produces a poor estimate of their mean. 

However, representing each eigenvector as a second-
order dyadic tensor3 

3 The first use of the dyadic tensor in DT-MRI was in Ref. 15 to classify 
different types of diffusion anisotropy. Here the dyadic tensor is used in an 
altogether different context. 

allows us to calculate a sample mean 
eigenvector unambiguously, as well as to quantify the 
dispersion about the mean within an ROI. Rather than 
averaging the eigenvectors themselves, we first average 
their dyadics within an ROI: 

ε i2 
x ε ix ε iy ε ix ε iz N 

T 2 jT(ε i ε i )  ε ix ε iy ε iy ε iy ε iz  
1 

ε ij ε i .(( ))  

2 Nε ix ε iz ε iy ε iz ε iz j=1 

[5] 

Here we have represented the positive, semidefinite sec
ond-order dyadic tensor as a 3 X 3 symmetric matrix 
whose elements contain products of the x, y, and z com
ponents of the eigenvector ε i. To find the ROI-averaged 
eigenvector (ε i), we calculate the eigenvector of (ε iε Ti )
above that corresponds to its largest eigenvalue [i 

1 (14). We 
quantify the bias in (ε i) by using the angle between the true 
eigenvector and the sample mean eigenvector,  8i, (ob
tained from (ε iε Ti )):

True  . 8i arccos  (ε i)  ε i [6] 

Moreover, the two remaining eigenvalues of (ε ε Ti i ), [i 
2 

and [i 
3 (14), can be used to characterize the dispersion 

about the sample mean eigenvector (ε i). A dispersion mea
sure we propose is the square root of the ratio of the 
average of the two smaller eigenvalues and the largest one:

[7]  
ii  [3 [2 

i .
2[1 

This quantity attains a minimum value of 0 when there is 
no scatter about the mean eigenvector (i.e., [i 

2 = [i 
3 = 0) 

and attains a maximum of 1 when the eigenvectors are 
uniformly distributed about the sphere (i.e., [i 

1 = [i 
2 = 

[3 
i ). Geometrically, Eq. [7] is akin to the radius of the “cone 

of uncertainty” around an eigenvector having a unit length 
(16). This dispersion measure also grows approximately 
linearly with the standard deviation of normally distrib
uted angular data (a � 7/2). 
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Measuring Overlap Between Eigenvalue–Eigenvector Pairs 

Our proposed method to reduce artifacts in magnitude 
sorting of eigenvalues is to sort them and their correspond
ing eigenvectors in pairs, because in a homogeneous ROI, 
eigenvalues and eigenvectors contain complementary in
formation that together specify the size, shape, and orien
tation of the diffusion ellipsoid that characterizes diffu
sion in each voxel. If we consistently assign or order the 
principal axes of the ellipsoids within an ROI, so as to 
maximize the overlap among these ellipsoids, we could 
ameliorate the sorting bias that results from considering 
only the lengths of the principal axes of these diffusion 
ellipsoids. 

This method entails (1) establishing a correspondence 
between a principal axis of a diffusion ellipsoid, an eigen
value–eigenvector pair, and a dyadic tensor; (2) defining a 
new quantity that measures the degree of overlap between 
dyadic tensors; and (3) consistently sorting dyadics of the 
diffusion tensor within an ROI by maximizing this overlap 
measure. 

The dyadic tensor framework described previously also 
assists us in developing a means to measure the degree of 
overlap of the principal axes of the diffusion tensor in 
different voxels. A natural way to represent eigenvalue– 
eigenvector pairs is by using a second-order dyadic tensor 
space. We can construct a dyadic tensor from each eigen
value–eigenvector pair Ai and ε i, by taking the outer prod
uct of the weighted eigenvector, as follows: 

)( ε 2 
ix ε ix ε iy ε ix ε iz 

2T TAi ε i Ai ε i Ai ε i ε i Ai ε ix ε iy ε iy ε iy ε iz [8]
ε ix ε iz ε iy ε iz ε i2 

z 

The vectors vAiε i coincide with the principal axes of a 
diffusion ellipsoid (1,17). 

Just as one uses the vector dot product to determine the 
overlap between two vectors vAiε i and vA;iε ;i, one uses 
the tensor dot product “:” to determine the overlap be
tween two dyadic tensors (18) Aiε iε T 

i and A;iε ;iε ;T
i , 

T TAi ε i ε iT : A;i ε ;i ε ;i Trace Ai ε i ε iT A;i ε ;i ε ;i 

Ai A;i ε i ε ;i 2 [9] 

which represent eigenvalue–eigenvector pairs in different 
voxels. Geometrically, we can view “overlap” as the de
gree to which two diffusion ellipsoids (whose three major 
axes have lengths of vA v

1, vA2, A3 and vA;1, vA;2, vA;3, 
respectively) resemble each other, i.e., have similar size, 
shape, and orientation (3,19). Other properties of these 
dyadic tensors that allow us to establish the correspon
dence between them and the principal axes of the diffu
sion ellipsoid are described in the Appendix. 

To account for the three-dimensional character of aniso
tropic diffusion, we sum the “overlaps” between corre
sponding eigenvalue–eigenvector pairs or dyadics in two 
different voxels: 

 [10]  
3 

Ai A;i ε ;i ε i 2.
i=1 

This quantity contains all eigenvalue–eigenvector pairs, 
weighting the dot product between eigenvectors by the 
product of the square root of their corresponding eigenval
ues. Normalizing this quantity using its global maximal 

value
3 

 ¥ AiAi;
i=1 

, we obtain a new nondimensional scalar mea

sure of intervoxel overlap between two diffusion tensors, 
Ct: 

3 

Ai A;i ε i ε ;i 2 

i=1 
Ct . [11]

3 

Ai A;i 
i=1 

By construction, 0 < Ct " 1, where 0 indicates no overlap 
and 1 indicates complete overlap. 

Note that the dot product of corresponding eigenvectors 
is squared. This removes the sign ambiguity discussed 
earlier, since whatever the signs of ε i and ε ;i, the square of 
their dot product is always the same value. The tensor 
space distance measure has the additional desirable fea
ture of always yielding the smallest distance between any 
three pairs of dyadics. 

It is also possible to consider an overlap function that 
uses only the eigenvectors to sort the eigenvalues. This 
quantity measures the degree of overlap between unit dy
adics representing the principal axes of diffusion tensors 
in different voxels: 

1 3 

C* 2 
t ε i ε ;i . [12]

3 
i=1 

The scheme in Eq. [11] appears reasonable in some 
ordered anisotropic fibrous tissues, where it is usually 
more important to assign the (largest) eigenvalue (i.e., the 
one associated with the fiber-tract direction) correctly. (A 
notable exception is anisotropic diffusion, in which the 
diffusion ellipsoid assumes a pancake geometry, where the 
eigenvector associated with the smallest eigenvalue de
fines the axis of symmetry of diffusion.) But, in isotropic 
media, where all eigenvalues are equal, these methods 
properly assign each eigenvalue–eigenvector pair an equal 
weight. Second, particularly when SNR is low, some eig
envalues estimated using multivariate linear regression (2) 
could be negative (6). Although this is not plausible phys
ically, it is nonetheless possible mathematically, since 
each diffusion tensor is not explicitly constrained to be 
positive definite (i.e., having all positive eigenvalues). If an 
eigenvalue is negative, then negative cross-terms of the 
form AiA;j could appear in Eq. [11], contrary to our earlier 
assumption; so when calculating Ct, we must first check 
whether any eigenvalue is negative. If so, we set it to a 
negligibly small positive number (e.g., 10-6 µm2/sec). This 
problem does not arise when using Eq. [12]. 

As an aside, since we plan to use this overlap measure to 
sort eigenvalues and eigenvectors of the diffusion tensor, it 
must be sensitive to their order. Therefore, we could not 
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use previously proposed measures of diffusion similarity 
(4), such as 

  

3 3 

Ai A;j ε i ε ;j 2 

S 
j=1 i=1 

3 3 
[13] 

A;j Ai 

j=1 i=1 

which are insensitive to the order or assignment of the 
eigenvalue–eigenvector pairs (1,3,4). 

Overlap Measurements Within an ROI 

So far, we have described a method to compare the degree 
of overlap between pairs of dyadic tensors in different 
voxels. To apply this to sorting eigenvalue–eigenvector 
pairs within an ROI, we first take the arithmetic average of 
all the diffusion tensors within an ROI to determine the 
ROI-averaged diffusion tensor. We then find and sort its 
eigenvalues by magnitude. This average tensor becomes 
the reference tensor we use subsequently to sort each 
eigenvalue–eigenvector pair within each voxel of the ROI. 
We choose the order of the eigenvalue–eigenvector pairs 
within each voxel that maximizes the intervoxel overlap 
function with respect to the reference tensor. Using these 
new assignments, we now obtain ROI-sorted values of A1, 
A2, and A3, as well as ε 1, ε 2, and ε 3. 

Caveats and Clarifications 

Some precautions must be taken in using this approach. 
First, the overlap measure should be applied to voxels 
within an ROI in which the diffusion tensor field is ap
proximately homogeneous. This condition can be tested 
by using maps of Trace(D), of the organizational (1,20) and 
lattice anisotropy indices (6), and of the fiber direction 
field within the ROI (1,20–22). By homogeneity of diffu
sion properties within an ROI, we do not assume that 
fibers within the voxels are necessarily continuous or con
nected to each other, just that their diffusion properties or 
characteristics (3,4) are similar. In fact, we can consider 
ROIs containing tissue in different regions. 

NUMERICAL RESULTS 

Monte Carlo simulations of DT-MRI experiments de
scribed previously in Ref. 6 were performed using MR 
parameters given in Ref. 13. Simulations were carried out 
for ROIs assumed to contain homogeneous tissue with 
diffusion properties representative of brain white matter, 
gray matter, and CSF obtained in DT-MRI studies of nor
mal human brain (13). Human brain parenchyma was as
sumed to have Trace(D) = A1 + A2 + A3 = 2100 µm2/sec 
(13). 

In Fig. 1, the ROI-averaged A1, A2, and A3, and their 
standard errors are given vs. the signal-to-noise ratio 
(SNR). Here, 5000 Monte Carlo repetitions were performed 
to obtain precise estimates of the means and standard 
deviations. Orange, Yellow, and Purple lines indicate ROI-
averaged eigenvalues sorted by magnitude; Red, Green, 

and Blue lines indicate ROI-averaged eigenvalues sorted 
using this new method. In Fig. 1a, results are shown for 
isotropic gray matter using true values, A1 = A2 = A3 = 
700 µm2/sec; in Fig. 1b, results are shown for fully aniso
tropic tissue satisfying A1 > A2 > A3 (i.e., all three eigen
values distinct) with A1/A2 = 1.5 and A2/A3 = 1.5; in Fig. 
1c, results are shown for tissue with prolate or cigarlike 
diffusion properties (i.e., true diffusivities satisfying A1 > 
A2 = A3), with A1/A2 = 1.5; and in Fig. 1d, results are shown 
for tissue with oblate or pancakelike diffusion properties 
(i.e., true diffusivities satisfying A1 = A2 > A3), with A2/ 
A3 = 1.5. In all cases, the ROI-averaged A1 sorted by mag
nitude is significantly more biased above the true value 
than the ROI-averaged A1 sorted by the dyadic method, 
whereas the ROI-averaged A3 sorted by magnitude is sig
nificantly more biased below the true value than the ROI-
averaged A3 sorted by the dyadic method for all SNR. 
Moreover, the sample standard deviations for all ROI-
averaged eigenvalues sorted by magnitude are significantly 
smaller than those for the ROI-averaged eigenvalues sorted 
by the dyadic method for all SNR (see Tables 1 and 2). 
These tables also show a significant reduction in the bias 
and an increase in the variance of all the ROI-averaged 

FIG. 1. Monte Carlo simulations of DT-MRI experiments for a 5 X 5 
ROI. The ROI-averaged A1, A2, and A3, and their standard errors are 
given vs. the signal-to-noise ratio (SNR). Orange, Yellow, and Purple 
lines indicate ROI-averaged eigenvalues sorted by magnitude; Red, 
Green, and Blue lines indicate ROI-averaged eigenvalues sorted 
using the new dyadic tensor formalism. a: Isotropic gray matter with 
true values A1 = A2 = A3 = 700 µm2/sec. b: Fully anisotropic tissue 
(i.e., three distinct eigenvalues with A1 > A2 > A3). c: Tissue with 
prolate or cigarlike diffusion properties (i.e., A1 > A2 = A3). d: Tissue 
with oblate or pancakelike diffusion properties (i.e., A1 = A2 > A3). 
The ROI-averaged A1 with magnitude sorting is significantly more 
biased above its true value than with dyadic sorting, whereas the 
ROI-averaged A3 with magnitude sorting is significantly more biased 
below its true value than with dyadic sorting for all SNR. Moreover, 
the sample standard deviations for all ROI-averaged eigenvalues 
are significantly smaller when sorted by magnitude than when 
sorted by the dyadic method for all SNR. 
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eigenvalues at SNRs of 10 and 25 for the four paradigmatic 
cases of diffusion anisotropy. 

Table 1 
Summary of Monte Carlo DT-MRI Simulation Results for Four Paradigmatic Tissue Types Showing Bias and Variances for Both 
Eigenvalues and Eigenvectors of the Effective Diffusion Tensor at SNR = 10* 

Anisotropic
(1.2:1.2) (AROI 

%
1 ATrue 

1 

ATrue 
1 

) (AROI 

%
2 ATrue 

2 
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2 
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%
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3 
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3 
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%
1 
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1 
) C ROI 

%
2 

ATrue
2 
( ) C ROI 

%
3 

ATrue
3 
( )

Magnitude 10.6 0.5 -15.5 2.76 2.72 3.67
Dyadic 3.1 -0.3 -3.8 3.92 4.73 5.65

_____
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2 [1 

3 

2[1 
1 

[2 
2 [2 

3 

2[2 
1 

[3 
2 [3 

3 

2[3 
1 

Magnitude 9.1 23.4 10.4 0.54 0.73 0.57
Dyadic 7.7 9.6 7.5 0.35 0.39 0.35
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(1.2:1) (AROI 

%
1 ATrue 

1 

ATrue 
1 
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%
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2 
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2 
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%
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3 
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3 
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%
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1 
( ) %( C ROI 

2 

ATrue
2 
) C ROI 

%
3 
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3 
( )

Magnitude 14.0 5.8 -22.4 2.81 2.78 2.98
Dyadic 2.8 2.8 -5.9 4.29 5.24 5.09
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[2 
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2[2 
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[3 
2 [3 

3 

2[3 
1 

Magnitude 13.1 50.1 45.7 0.8 0.7 0.6
Dyadic 9.5 46.3 45.7 0.4 0.4 0.4
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(1:1.2)
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%
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%
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Dyadic 46.2 46.6 9.3 0.4 0.4 0.4

Isotropic 
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%
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Magnitude 22.4 51.9 24.1 0.8 0.8 0.8
Dyadic 8.1 8.6 8.3 0.4 0.4 0.4

*Trace(D) for all simulations is 2100 µm2/sec. For the isotropic case, A1 = A2 = A3 = 700 µm2/sec. For the anisotropic case, A1/A2 = 1.2 
and A2/A3 = 1.2. For the prolate or cigarlike case, A1/A2 = 1.2. For the oblate or pancakelike case, A2/A3 = 1.2.

Using the same tissue properties as before, we also in
vestigated the effect that missorting eigenvalues has on the 
distribution of their corresponding eigenvectors. To do 
this, we introduce a new way to represent the three dy
adics in each voxel and to visualize their distribution 
within an ROI. In Fig. 2, the pairs ±vA1ε 1, ±vA2ε 2, and 
±vA3ε 3 are displayed as principal axes of a diffusion 
ellipsoid, and assigned Red, Green, and Blue, respectively, 
after sorting by either method. For all voxels within the ROI, 
these objects are collated and displayed together. As a visual 
aid, an ellipsoid with principal axes ±0.9vATrue

1 ε True
1 ,

±0.9vATrue
2 ε True

2 , and ±0.9vATrue
3 ε True 

3 is constructed to 
show the size, shape, and orientation of the underlying 
root-mean-square (rms) displacement ellipsoid. 

First, in Fig. 2a and b we assume the same isotropic 
diffusion properties as in Fig. 1a. In Fig. 2a, eigenvalues 
are sorted by magnitude. The distribution of the eigen
vectors appears uniform, but one can see the concentric 
spherical shells containing Red, Green, and Blue points. 
In Fig. 2b, the eigenvalue– eigenvector pairs are sorted 
using the new method. Here, the three eigenvectors are 
localized within different sectors of the spherical ellip
soid, but colored points are no longer concentrically 
distributed. In Fig. 2c and d we use the diffusion prop
erties as in Fig. 1d for an oblate or pancakelike tissue. In 
Fig. 2c, in the case of magnitude sorting, there are clus
ters of the Blue points around the axis of symmetry with 
concentric bands of uniformly distributed Red and 
Green points distributed around the equatorial plane. In 
Fig. 2d, in the case of dyadic sorting, the Blue points 
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Table 2 
Summary of Monte Carlo DT-MRI Simulation Results for Four Paradigmatic Tissue Types Showing Bias and Variances for Both 
Eigenvalues and Eigenvectors of the Effective Diffusion Tensor at SNR = 25*
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still clustered around the axis of symmetry, but fewer 
Green and Red points contaminate this region. More
over, the Red and Green points no longer lie in different 
“orbits” around the equatorial plane; Green and Red 
clusters are now clearly visible. In Fig. 2e and f we use 
the diffusion properties for an anisotropic or “asymmet
ric” tissue as in Fig. 1b. In Fig. 2e, magnitude-sorting 
results in a separation of Red, Green, and Blue points, 
but each colored cluster is clearly contaminated by 
points having other colors. In Fig. 2f, using dyadic sort
ing, the distribution of the colored points is more local
ized near their respective “true” principal axes, and 
there is concomitantly less color contamination within 
each cluster. The fact that there are relatively sharp 
boundaries between the color clusters indicates that 
measures in Eqs. [11] and [12] yield similar results in 
homogeneous ROIs. 

Tables 1 and 2 also illustrate features of the eigenvector 
distribution. They show a significant reduction in both the 
angular bias  � and in the angular dispersion at SNRs of 10 
and 25. Note that the reduction of angular dispersion in the 
degenerate cases, in which two or three eigenvalues are 
equal, is artificial and we do not assign any significance to it. 

Magnitude and dyadic sorting are also compared in Fig. 
3. ROI-averaged A1, A2, and A3, and their standard errors are 
given as a function of the number of voxels within the ROI. 
Depending on the size of the ROI, 1000 to 10,000 Monte 
Carlo repetitions were performed to obtain precise esti
mates of ROI-mean and the standard errors of these eigen
values. Results are shown for isotropic and anisotropic 
cases. The long-dashed brown lines indicate the eigenval
ues of the ROI-averaged tensor. Note, that the dyadically 
sorted eigenvalues never converge to the true values, even 
for infinitely large ROIs. 
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FIG. 2. Spatial distribution of the eigenvectors within an ROI 
weighted by their respective eigenvalues when sorted by magnitude 
and by the dyadic tensor method. The pairs ±vA181, ±vA282, and 
±vA383, are assigned Red, Green, and Blue points, respectively. 
The points are plotted with respect to a rms displacement ellipsoid 
whose principal axes are ±0.9 vATrue8True

1 1 , ±0.9vATrue8True
2 2 , and 

±0.9vATrue8True
3 3 . a,b: Isotropic diffusion properties are those used 

in Fig. 1a. c,d: Diffusion properties are assumed for an oblate or 
pancakelike tissue as in Fig. 1d. e,f: Diffusion properties are as
sumed for an anisotropic or “asymmetric” tissue as in Fig. 1b. 

FIG. 3. ROI-averaged A1, A2, and A3, and their standard errors given 
as a function of the number of voxels within the ROI, at SNR = 15 
for two cases (a) isotropic diffusion tensor with A1 = A2 = A3 = 700 
µm2/sec, and (b) anisotropic diffusion tensor with A1 = 768, A2 = 
698, and A3 = 634 µm2/sec, respectively. Orange, Yellow, and 
Purple lines indicate ROI-averaged eigenvalues sorted by magni
tude. Bias is high and persists as ROI size increases in magnitude 
sorting. Red, Green, and Blue lines indicate ROI-averaged eigen
values sorted using the new dyadic tensor formalism. Bias is initially 
lower and drops monotonically as a function of ROI size in dyadic 
sorting, but there is a persistent although small residual bias in 
dyadic sorting. Brown long-dashed lines indicate the eigenvalues of 
the averaged tensor within the ROI. Black dashed lines indicate the 
true eigenvalues. 

DISCUSSION 

When the eigenvalues are sorted by magnitude, the means 
and variances of their ROI-averaged eigenvalues are biased 
(e.g., see Fig. 1). There is an artifactual bias in the sample 
mean eigenvalues and an artifactual reduction in their 
variance. This combination could lead one to the errone
ous conclusion that differences between these eigenvalues 
are statistically significant, particularly in isotropic media 
(see Fig. 1a) where, in the absence of background noise, all 
“true” eigenvalues are equal. Figure 1 also shows that this 
new sorting method significantly reduces the bias in the 
estimate of the mean and increases the estimated variance 
of each ROI-averaged eigenvalue at all SNR, in all Monte 
Carlo simulations. These two effects ensure greater overlap 
of the distributions of the ROI-averaged eigenvalues. More
over, the same improvement is seen in the simulation of 

anisotropic media, including fully anisotropic (Fig. 1b), 
prolate or cigarlike (Fig. 1c), and oblate or pancakelike 
(Fig. 1d), and in the distributions of eigenvalues over the 
entire range of SNRs. It should also be noted in Fig. 1 that 
at SNR of 15 and greater there is no sorting bias for aniso
tropic tissue. This, of course, is dependent on the degree of 
anisotropy. For less-anisotropic structures sorting bias can 
be significant even at much larger SNRs. 

Figure 2 presents a new way to illustrate graphically the 
misclassification of magnitude-sorting eigenvalue–eigen
vector pairs. In Fig. 2e, there are many more Green points 
in the Red region, and many more Blue points in the Green 
region than we see in Fig. 2f, where the colored clusters are 
more homogeneous. This indicates that after dyadic sort
ing, there are fewer misclassifications. We also see from 
Fig. 2 that properly classifying eigenvalues within an ROI 
decreases the variance of their corresponding eigenvectors 
(i.e., scatter about the mean eigenvector). This is reflected 
in the clouds of colored points being more dispersed in 
magnitude sorting than in dyadic sorting. The reduction in 
the dispersion of eigenvectors is also demonstrated in 
Tables 1 and 2. 

This reduction in the variance of the eigenvectors, ac
companied by an increase in the variance of the distribu
tion of the eigenvalues, appears counterintuitive. This par
adox can be understood by recognizing that 1) eigenvalues 
and their corresponding eigenvectors are always calcu
lated and sorted in pairs, and that 2) the three eigenvectors 
in each voxel are mutually orthogonal. From 1) we see that 
when eigenvalues are misclassified, so are their corre
sponding eigenvectors. Thus, from 2) we conclude that 
swapping eigenvalues always leads to swapping orthogo
nal eigenvectors, leading to a broadening of the eigenvec-
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tor distribution. We also see how magnitude sorting intro
duces a bias in the ROI-averaged eigenvectors. In simula
tions performed on anisotropic white matter shown in Fig. 
2e and f, missorting the eigenvalues takes place more 
frequently between A1 and A2 (i.e., between Red and Green) 
and between A3 and A2 (i.e., between Green and Blue) than 
between A1 and A3 (i.e., between Red and Blue). Thus, ε 1 is 
swapped with ε 2 and ε 3 is swapped with ε 2 more fre
quently than ε 1 is swapped with ε 3. This asymmetric ex
change process causes both the ROI-averaged eigenvectors 
(ε 1) and (ε 3) to be tipped toward (ε 2). This mixing results in 
a directional bias in and a loss of mutual orthogonality 
among the three ROI-averaged eigenvectors. 

A related problem arises in comparing results from over
lap measures Eqs. [11] and [12]. In principle, Eq. [12] 
possesses some advantages over the overlap measure we 
proposed earlier. First, when eigenvalues are negative, Eq.
[12] does not behave pathologically. Second, when the 
difference between the true eigenvalues is comparable to 
or smaller than the sum of their standard deviations, 
weighting eigenvectors by their eigenvalues may result in 
erroneous transpositions, like those that already occur in 
magnitude sorting. However, at higher SNRs, and in more 
anisotropic regions, Eq. [11] should provide additional 
information with which to assign the eigenvalues correctly 
within each voxel. In general, the smaller the variability or 
uncertainty in the eigenvectors is compared with the vari
ability in the eigenvalues, the better Eq. [12] will perform 
compared with Eq. [11]. Still, this discussion only high
lights the large gap in our understanding of the relation
ship between uncertainties of the eigenvalues and of the 
eigenvectors of the diffusion tensor as measured in DT
MRI. Further study is required to be able to quantitatively 
assess the relative merits of these approaches. 

Artifacts associated with sorting eigenvalues by magni
tude have impeded the implementation of a number of 
promising color-based schemes to represent information 
contained in diffusion tensor data. For example, Latour 
(23) suggested a clever color imaging method to represent 
several features of anisotropic diffusion simultaneously 
within a single image by encoding the sorted eigenvalues 
in each voxel A1, A2, and A3 using Red, Green, and Blue 
intensities, respectively. According to the preceding argu
ments, however, bias in the magnitude-sorted eigenvalues 
would produce an image whose Red intensity is always 
artifactually high and whose Blue intensity is artifactually 
low, which is what we find experimentally. A scheme to 
sort eigenvalues reliably and robustly would ameliorate 
this chromatic aberration, particularly in the isotropic re
gions. Similarly, Pierpaoli and Pajevic (24,25) recently 
proposed a novel method to display the direction of fiber 
tracts within each voxel. In its simplest form, it entails 
encoding the three components of the eigenvector associ
ated with the largest eigenvalue in each voxel A1, (   ε 1x  , 
ε 2y , ε 3z ), by using Red, Green, and Blue intensities, 
respectively. According to the previous arguments, mis-
sorting the largest eigenvalue in a voxel will cause the 
colors to be incorrectly assigned. In particular, it would 
cause an observer to infer that the fiber tract is perpendic
ular to its actual orientation. This artifact would also re
duce the reliability of fiber tractography (21), a new 
method to follow nerve and other fiber tracts using DT

MRI data. If any of the ε 1 is missorted along a tract trajec
tory, then the tract following routine would inadvertently 
take a right-angle turn there, causing the computed path to 
deviate from the true path of the tract. 

Systematic artifacts in DWIs, such as ghosting due to 
motion, eddy current distortion, and so forth, should all be 
corrected before trying to sort eigenvalues and eigenvec
tors within ROIs. For example, motion artifacts that make 
an isotropic medium (such as CSF or gray matter) appear 
organized and anisotropic will not be corrected by dyadic 
sorting. They introduce an apparent anisotropy in the me
dium that will only be further enhanced by our sorting 
procedure. Thus, we must be mindful of these and other 
systematic artifacts, particularly when attempting more 
challenging tasks using DT-MRI data, such as establishing 
whether a fiber tract is continuous, ascertaining whether 
there are long-range connections between different parts of 
the brain (or between other tissues), or measuring whether 
the degree of coherence of fiber-tract trajectories in vivo 
varies in development or disease. 

In Fig. 3, bias is high in magnitude sorting (Orange and 
Purple lines) and remains high even as the size of the ROI 
increases. Bias is initially lower in dyadic sorting (Red and 
Blue lines) and drops monotonically as a function of ROI 
size. Within the homogeneous ROI, eigenvalues of the 
averaged tensor (Brown long-dashed lines) represent a 
lower bound on the bias of any eigenvalue sorting scheme. 
When comparing this lower bound with the dyadically 
sorted values we see that even for an infinitely large ROI 
there is still some persistent bias whose magnitude de
pends on the nature of the noise in the experimental tensor 
data. If the nature of noise is such that much of the vari
ability in tensor data comes from perturbations of its eig
envalues (shape of the diffusion ellipsoid changes but not 
its orientation) then there will be no persistent bias. In the 
opposite case, where variability comes from perturbations 
in orientation only, then the primary assumption of dyadic 
sorting is violated, and the scheme actually introduces 
bias. As we have shown in our simulations, in DT-MRI the 
nature of noise is such that the dyadic-sorting schemes can 
significantly reduce bias. However, the experimental vari
ability in orientation and eigenvalue magnitudes are not 
decoupled. Thus, there is a persistent bias that is a func
tion of SNR and diminishes for large SNR. 

Finally, this new method is fundamentally different 
from one we proposed recently to eliminate artifacts in the 
estimate of ROI-averaged eigenvalues, even within heter
ogeneous anisotropic regions, such as the corpus callosum 
(11). This method involved 1) calculating the three scalar 
invariants in each voxel I1, I2, and I3 of the diffusion 
tensor (11), which are insensitive to the order of the eig
envalues within a voxel; 2) averaging the scalar invariants 
over an entire ROI; 3) using these averages as coefficients 
of a characteristic equation; 4) solving this equation for 
three ROI-averaged eigenvalues; and finally 5) sorting 
these three eigenvalues by magnitude. In this way, magni
tude sorting, which introduces the unwanted bias, is de
ferred to the final step, where its deleterious effects were 
expected to be mitigated. However, Monte Carlo simula
tions performed to test this method showed only a mar
ginal improvement in the bias of the ROI-averaged eigen
values when compared with sorting them by magnitude 
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within each voxel (11) in ROIs with a small number of 
voxels. It appears now that, whereas I1 = Trace(D) (11) is 
Gaussian distributed (26) and unbiased at most SNRs, I2 

and I3 are not Gaussian distributed. Moreover, the three 
eigenvalues A1, A2, and A3 are coupled to I1, I2, and I3 

through the nonlinear characteristic equation, which com
plicates the determination of a parametric distribution of 
the eigenvalues. 

Statistical artifacts resulting from noise in DWIs have 
complicated the characterization of diffusion properties in 
normal, diseased, developing, and aging tissues. In partic
ular, difficulties arise in determining the distribution of 
eigenvalues, in measuring diffusion anisotropy, and in 
determining fiber-tract direction fields and trajectories. 
Bias in estimates of the mean of the eigenvalues (principal 
diffusivities) and of eigenvectors (principal directions) of 
the diffusion tensor, as measured by MRI (DT-MRI), which 
result from sorting eigenvalues by magnitude within each 
voxel, are elucidated here. A new framework for ordering 
eigenvalues and eigenvectors in tandem results in an in
crease in the variance of the distribution of sample eigen
values and a concomitant decrease in the dispersion or 
variance of the distribution of eigenvectors in Monte 
Carlo–simulated diffusion tensor MRI data in media as
sumed to have properties similar to gray and white matter 
in human brain. This new methodology to sort eigenvalues 
and eigenvectors together within an ROI should further 
improve the quality and utility of DT-MRI data in charac
terizing tissue microstructure and architecture. 

We see that using dyadic tensors to represent eigenval
ue–eigenvector pairs overcomes many conceptual and 
technical problems encountered when representing them 
as vectors. We have shown how to use dyadic tensors to 
calculate the first and second moments of the eigenvector 
distribution within an ROI, which had not been possible 
previously. Moreover, we have introduced a novel color-
based graphical means to display the distribution of eig
envalue–eigenvector pairs and to visualize their misclas
sification when eigenvalues are sorted by magnitude. Dy
adic tensors allow us to measure “overlap” in a rigorous 
rather than ad hoc way, and provide a natural geometric 
interpretation of an eigenvalue–eigenvector pair as a prin
cipal axis of a diffusion ellipsoid. Still, this work high
lights the need to develop a comprehensive understanding 
of the distribution of eigenvalues and eigenvectors ob
tained from diffusion tensor MRI data. 

APPENDIX 

Properties of the Dyadic Tensor Ai ε i ε T 
i

This dyadic tensor representation of eigenvalue–eigenvec
tors pairs possesses a number of desirable properties. First, 
by construction, corresponding eigenvectors and eigenval
ues are always paired or grouped together. Second, al
though the dyadic tensor ε T

iε i  is a three-dimensional ob
ject, the information is essentially one-dimensional. Spe
cifically, ε ε Ti i has only one nonzero eigenvalue whose 
value is 1. Its corresponding eigenvector is ε i (or -ε i). To 
see this, note that (ε iε Ti )ε i = 1 (ε i) and (-ε i) (- ε Ti )(-ε i) = 
1 (-ε i). The other two eigenvectors of ε iε Ti  lie in a plane 
perpendicular to ε i, both having eigenvalues of 0. Thus, 

the Range of ε iε T 
i is one-dimensional (or linelike) and is 

spanned by ε i, whereas the Null space of ε iε T 
i is two-

dimensional (or planelike) and is spanned by the two 
remaining orthogonal eigenvectors whose corresponding 
eigenvalues are zero. Third, unlike the vector ε i, which 
encodes the direction of ε i, the dyadic tensor ε iε Ti  encodes 
the orientation of ε i. It is easy to see that ε iε Ti  is insensitive 
to the sign of ε i, since (+ε i)(+ε Ti ) = (-ε i)(-ε Ti ). Thus, 
geometrically, ε iε T 

i possesses reflectional symmetry about 
the origin or antipodal symmetry. Fourth, the length of 
Aiε iε T 

i equals Ai. Specifically, it is given by 

T 2 T TAi ε i ε i Ai ε i ε Ti : Ai ε i ε i A2 
i Trace ε i ε iT ε i ε i 

Ai 
2 Trace ε i ε iT Ai 

2. [A1]  

Therefore, since Ai is always positive for a diffusion tensor 

Ai ε i ε iT Ai. [A2] 

Moreover, when Ai = 1, the size or length of this dyadic 
tensor is unity. Thus, one can think of ε iε T 

i as a symmetric 
object, like a baton, having a unit length whose orientation 
is coincident with that of ε i, but which has no direction 
(i.e., no discernible “tip” or “tail”); Aiε iε T 

i is a batonlike 
object with length Ai, whose orientation is coincident with 
that of ε i. 

This geometric picture of the dyadic tensor is also useful 
when considering the decomposition of the diffusion ten
sor as a sum of its three orthogonal dyadic tensors: 

   T T TD A1ε 1ε 1 A2ε 2ε 2 A3ε 3ε 3.  

Each dyadic Aiε iε T 
i represents a component of D lying 

along one of the three principal axes of a diffusion ellip
soid. The surface of constant probability that defines the 
diffusion ellipsoid can then be viewed as resulting from 
the superposition of contributions from each of the three 
independent components of the diffusion tensor. More
over, when we take a projection of the diffusion tensor 
along a particular direction (e.g., given by the unit vector 
r), we obtain a scalar apparent diffusion coefficient (ADC) 
along r, 

             ADCr rTDr A1 r ε 1 2 A2 r ε 2 2 A3 r ε 3 
2. [A4]

Using this decomposition, we see how each of the princi
pal diffusivities is clearly weighted according to the square 
of the cosine of the angle that each principal axis makes 
with r. Thus, the dyadic representation again makes it 
clear why the principal axes of the diffusion ellipsoid have 
no inherent direction, only an orientation, since the pre
ceding expressions are insensitive to the sign of r and to 
the sign of each of the eigenvectors of D. 
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