
Research Article 

7
1
6

Received: 5 September 2008, Revised: 21 January 2009, Accepted: 30 January 2009, Published online in Wiley InterScience: 10 July 2009 
(www.interscience.wiley.com) DOI:10.1002/nbm.1383 
A multivariate hypothesis testing framework 
for tissue clustering and classification 
of DTI data 
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Abstract
The primary aim of this work is to propose and invest
NMR Biom
igate the effectiveness of a novel unsupervised tissue clustering 
and classification algorithm for diffusion tensor MRI (DTI) data. The proposed algorithm utilizes information about the 
degree of homogeneity of the distribution of diffusion tensors within voxels. We adapt frameworks proposed by Hext 
and Snedecor, where the null hypothesis of diffusion tensors belonging to the same distribution is assessed by an 
F-test. Tissue type is classified according to one of the four possible diffusion models, the assignment of which is 
determined by a parsimonious model selection framework based on Schwarz Criterion. Both numerical phantoms and 
diffusion-weighted imaging (DWI) data obtained from excised rat and pig spinal cords are used to test and validate 
these tissue clustering and classification approaches. The unsupervised clustering method effectively identifies distinct 
regions of interest (ROIs) in phantoms and real experimental DTI data. Copyright © 2009 John Wiley & Sons, Ltd. 
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INTRODUCTION 

Diffusion tensor magnetic resonance imaging (1) (DT-MRI or DTI) 
provides noninvasive quantitative measurements of the apparent 
diffusion tensor of water molecules in tissue. In an anisotropic 
medium, the signal attenuation in diffusion-weighted images 
depends on the underlying tissue structure and is affected by 
many complex factors. For instance, in brain white matter, the 
diffusion-weighted imaging (DWI) signal is affected by the fiber 
orientation, the organization and architecture of myelinated 
axons within fascicles (2), and the distribution of fiber diameters 
and densities, etc. The diffusion tensor’s eigenvalues are the 
principal diffusivities that indicate the degree of symmetry of the 
underlying diffusion process; their corresponding eigenvectors 
determine the orientation of the principal axes. 
In recent years, DTI has been widely used in medicine. 

Therefore, it has become increasingly important to be able to 
differentiate between tissue structures, both to address basic 
biological development of tissues and organs and to improve 
therapies and diagnostics. Diffusion image segmentation and 
classification are one of the methods to achieve these goals. Most 
of the work in DTI segmentation is based on applying 
thresholding criteria to tensor-derived scalar quantities, such 
as the trace of the diffusion tensor (Tr), the fractional anisotropy 
(FA), and the relative anisotropy (RA). Some algorithms combine 
the FA scalar index with the fiber orientation of tissue (3–6) or 
T2-weighted image data (7). However, these scalars are generally 
subject to bias usually due to background noise (8,9). Zhukov 
et al. (10) introduced a new anisotropy measure invariant for 
segmenting regions and refining with a level set method. 
However, this approach is still based on a scalar measure, which 
neglects the orientation of the diffusion tensor. Li et al. (11) 
suggested a multiscale statistical classification and partial volume 
ed. 2009; 22: 716–729	 Copyright © 2009
voxel reclassification method, in which segmentation is per­
formed in multiple stages on a stack of images at different levels 
of inner spatial scale. 
In recent years, a number of segmentation approaches using 

the full diffusion tensor (12) have been introduced by Feddern 
et al. (13), Wiegell et al. (14), Wang et al. (15,16), Rousson et al. (17), 
Lenglet et al. (18,19), and Jonasson et al. (20). Alexander et al. (21) 
concluded that the Euclidean difference measure performs the 
best for matching diffusion tensors. In Reference (13), this 
measure was used along with level set methods, such as mean 
curvature motion and self-snakes and extended to a classical 
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1Given two vectors P and V, the element-wise exponentiation is defined as 
P=e V, where Pi ¼ eVi . 7
geodesic active contour model for segmentation and regular­
ization of tensor-valued images. Wiegell et al. (14) applied the 
modified k-means algorithm for unsupervised clustering of 
thalamic nuclei with the distance metric specified by a linear 
combination of the Mahalanobis and the Euclidean distance 
between tensors defined by the Frobenius tensor norm. The 
Euclidean distance between two tensors incorporated into an 
active contour model to segment diffusion tensor data was also 
used by Wang et al. (15). In Reference (17), the surface evolution 
method was extended by incorporating region statistics of the 
full tensor for segmenting DTI data. A new measure of 
dissimilarity between tensors was later introduced by Wang 
et al. (16,22) and is based on symmetrized Kullback–Leibler 
divergence. This concept was further extended by Lenglet et al. 
(18) for 3D probability density field segmentation with higher 
internal variance. Subsequently, Lenglet et al. (19) and Awate et al. 
(23) employed Riemannian tensor metrics for image segmenta­
tions by estimating tensor statistics in fiber bundles using 
parametric and nonparametric techniques, respectively. Spectral 
clustering, based on a graph partitioning, was successfully used 
by Ziyan et al. (24) to segment thalamic nuclei. Multivariate 
statistical tests for group-wise DTI statistical analysis were used by 
Khurd et al. (25) and Whitcher et al. (26). 

In this work we propose a novel approach, based on 
multivariate statistical hypothesis F-testing (27,28), for assessing 
similarities between entire tensors in different voxels in order to 
perform unsupervised tissue clustering on diffusion tensor data. 
The advantages of using statistical hypothesis testing are 
numerous. One lies in performing tests on the entire diffusion 
tensor, which contains information about Tr, FA, and diffusion 
orientation. Another advantage is that one can assess errors in 
region of interest (ROI) selection and choose confidence levels for 
each test. A third advantage is its computational efficiency. These 
tests are rapid, easy to implement, and can be performed on a 
voxel-by-voxel basis. 
There are several differences between our approach (29,30) 

and the previously described methods. First, the algorithm we 
propose does not require continuity of the segmented regions, 
nor does it employ specific distance metrics in tensor space and 
thus does not rely on any parameter setting/tuning prior to and/ 
or during clustering. However, the assumptions of normally 
distributed residuals and homoscedasticity (i.e. uniformity of the 
variance within ROIs) have to be satisfied in order to perform 
hypothesis testing (31). Second, in comparison with the k-means 
clustering approach, the proposed method has no prerequisites 
for assigning the number of clusters or their initial centroids. 
Classification is based on the diffusion properties of the seed 
voxels, which have been determined by a hierarchical parsimo­
nious model selection framework (31), using the Schwarz 
Criterion (32), also known as the Bayesian Information Criterion. 
This paper is organized as follows: The Theory section provides 

a background on diffusion tensor imaging and introduces the 
framework for multivariate hypothesis testing. In the Clustering 
Based on the Parametric Distribution of Diffusion Tensors section, 
we describe the clustering approach, which is based on a 
parameter distribution of diffusion tensors and a step-by-step 
selection of a seed region. The Methods section contains 
information about simulated and experimental data used for 
validation and in the Results section, we present results obtained 
with our clustering method. Finally, in the Discussion and 
Conclusion sections we discuss the pros and cons of the 
proposed method. 
NMR Biomed. 2009; 22: 716–729 Copyright © 2009 John Wiley 
THEORY 

Diffusion tensor imaging 

Diffusion tensor imaging describes water diffusion in tissues by 
analyzing the relationship between the signal loss (12,33), caused 
by the random motion of water molecules along diffusio­
n-encoding gradients applied in various directions, and the 
apparent diffusion tensor, D: 

-trðbDÞSðGÞ ¼ Sð0Þe (1) 

where S(G) is the observed signal attenuated by the diffusion-
weighting gradient G ¼ (Gx, Gy, Gz), S(0) is the signal in the 
absence of the diffusion-weighting gradient, and b is the 
b-matrix computed by 

[ ]
d 

bij ¼ g 2GiGj d
2 D - (2)

3 

where Gi is the component of the diffusion gradient along one of 
the coordinate axes (i ¼ x, y, or  z) with duration d, and D is the 
diffusion time. In eqn (1) D is a symmetric (3 x 3) second-order 
diffusion tensor (12). We reformat D as a column vector that 
contains the elements of the estimated diffusion tensor as 
follows: 

D ¼ Dxx ; Dyy ; Dzz ; Dxy ; Dxz ; Dyz (3) 
T 

where diagonal elements, Dxx, Dyy, and Dzz are the apparent 
diffusivities along xx, yy, and zz directions, while the remaining 
(off-diagonal) elements represent correlations in displacements 
along orthogonal directions. These six independent elements are 
sufficient to describe Gaussian molecular diffusion in three 
dimensions. 

Parameter estimation framework for multivariate 
hypothesis testing 

To estimate the diffusion tensor from the function in eqn (1), we 
applied a nonlinear least-square minimization method, proposed 
by Koay et al. (34), for which the initial guesses were obtained 
using linear least-squares minimization:1

-BCSðGÞ ¼ e (4) 

where n is a number of DWI acquisitions, S is the (n x 1) vector of 
the observed signal values, B is the (n x 7) design matrix, which 
consists of a list of (1 x 6) b-matrix elements and (-1) for a series 
of n DWI acquisitions: 

2 3
b2 b2 b2 -1 x1 y1 z1

2bx1y1 2bx1 z1 2by1z1
b2 b2 -1 76 b2 6 x2 y2 z2

2bx2y2 2bx2 z2 2by2z2 776 ...
...

...
...

...
...

...B ¼ (5)6 76 76 ...
...

...
...

...
...

...
754

b2 b2 b2 2bxnyn 2bxnzn 2bynzn -1xn yn zn 

and C is a (7 x 1) column vector that contains the estimated 
diffusion tensor and log[S(0)]: 

T
C ¼ Dxx ; Dyy ; Dzz ; Dxy ; Dxz; Dyz ; log½Sð0Þ (6) 
www.interscience.wiley.com/journal/nbm & Sons, Ltd. 
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The residual sum of squares (RSS) is estimated according to 

n X( )2-Bi CRSS ¼ SiðGÞ - e (7) 
i¼1 

where Bi is the ith row of B, S -Bi C
i(G), e are the observed and 

estimated signals respectively, and n is the number of 
diffusion-weighted acquisitions. 
CLUSTERING BASED ON THE PARAMETRIC 
DISTRIBUTION OF DIFFUSION TENSORS 

In this work we propose a novel tissue clustering algorithm based 
on the multivariate F-test for grouping voxels with the same 
distribution of diffusion tensor parameters. In order to justify the 
use of this hypothesis testing framework, the assumptions of 
normally distributed residuals and homoscedasticity (i.e. uniform­
ity of the variance within an ROI) have to be satisfied. It has 
previously been shown that the residuals are asymptotically 
normally distributed (35) at SNR greater than 7 in an experiment 
otherwise free of systematic artifacts. However, in the same work, 
Carew et al. (35) also reported that the variance in the voxels with 
different fractional anisotropies, FAs2, may not be homogeneous 
(in particular, voxels with low FA have higher estimated variance 
in FA than voxels with high FA), thus violating the assumption of 
variance uniformity. To overcome this problem in the proposed 
clustering approach, the seed region is selected from one of the 
three anisotropic models, i.e. general anisotropic (l1 > l2 > l3), 
oblate (l1 ¼ l2 > l3), or prolate (l1 > l2 ¼ l3), thus the voxels 
included in the seed region are presumed to have an FA greater 
than 0.5. These models are identified by a previously proposed 
parsimonious model selection framework (31), using the Schwarz 
Criterion (32). This framework selects the diffusion model 
(general anisotropic, prolate, oblate, or isotropic) that best fits 
the DWI data using the fewest number of parameters, by 
imposing penalties for models with a larger number of free 
parameters. It is defined as 

( )
RSSk logðnÞ 

SCk ¼ log þ dk	 (8) 
n n 

where k represents the model type (general anisotropic, prolate, 
or oblate), n is the number of experimental data points, and d is 
the number of free parameters for the kth model (d is set to 7 and 
5 for the general anisotropic and prolate/oblate models, 
respectively). Once the optimal model is chosen in each voxel, 
m neighboring seed voxels are picked within the same model 
type (as described below), i.e. having similar FA values, to satisfy 
the assumption that the variance of each measurement in the 
seed region is uniform (homoscedasticity), and that the 
distributions of diffusion tensor parameters are similar. Testing 
voxels of interest against such homogeneous seed regions makes 
the unsupervised clustering algorithm more reliable. 

Choosing a seed region 

The first step in selecting a seed region is to perform a 
voxel-by-voxel search until m neighboring voxels (e.g. 6–9 voxels 
in a [3 x 3] sector) of the same model type (general anisotropic, 
2

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiqffiffi
Þ23 ðl1-hliÞ2þðl2-hliÞ2þðl3-hliFA ¼ 2 l2þl2þl2
; where hli ¼ ðl1 þ l2 þ l3 Þ=3 

1 2 3 

www.interscience.wiley.com/journal/nbm Copyright © 200
oblate, or prolate) are located. The null hypothesis, which 
assumes that the distributions of diffusion tensor parameters in 
these m voxels are the same, is tested by taking the following 
steps, adapted from Hext (28) (see Fig. 1): 
(1) C
Fig
able

9 Jo
ombine m sets of [n x 1] acquired signals, Si(G), into 
[n · m x 1] array, SCAS, where n is the number of experimental 
data points in each voxel and i ¼ 1, 2,. . ., m. 
(2)  C
ombine m sets of individually estimated signals, e- BCi , into 
[n · m x 1] array, SCES, where n is the number of experimental 
data points in each voxel and 1, 2,. . .,m. 
(3) E
stimate the RSS for the combined individually estimated 
signals, RSSCES, by

n·mX
Þ2

i¼1 

RSSCES ¼ ðSCASi - SCESi 
(4) E
stimate ĈAvg for all m voxels using the combined acquired 
signals, SCAS, and the augmented [n · m x 7] design matrix, BC, 
ure 1. Schematic diagram of the algorithm flow. This figure is avail­
 in color online at www.interscience.wiley.com/journal/nbm 
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3A t
(27)

nes

NM
as described in the Parameter Estimation Framework for 
Multivariate Hypothesis Testing subsection. 
(5) E
stimate the average [n ·m x 1] signal vector, SAvg, using 
 

^
S -BC CAvg
AvgðGÞ ¼ e .
(6) E
stimate the RSS for the average signal, RSSAvg, by

n·m X ( )2
RSSAvg ¼ SCASi - SAvgi 

i¼1 
(7)	 A
Table 1. FA and Tr (   x10-6mm2 /s) values for the oblate and 
prolate regions in synthetic phantoms with different degrees 
of oblateness and prolateness 

    Region # Diffusion model FA Tr 

’Lower’ FAs 
1 Oblate 0.53 3100 
2	 0.48 3300 
3	 0.58 3800 
4 0.62 3300 
5 Prolate 0.7 2100 
6	 0.62 2300 
pply the F-test, adapted from Snedecor3, on the null hy­
pothesis to assess the similarity among variances within the 
voxels: 

ðRSSAvg - RSSCESÞ=ðfp · ðm - 1ÞÞ 
F0 ¼	 (9)ðRSSCESÞ=ðm · ðn - fpÞÞ 

where fp ¼ 7 is the number of free parameters in the general 
anisotropic model, m is a number of voxels with n experimental 
data points each. 
The null hypothesis that the diffusion tensors in all m voxels 

belong to the same parametric distribution is accepted if 

F0 < Fð1 - a; n1; n2Þ	 (10) 

where Fð1 - a; n1; n2Þ is the critical value from the F distribution 
with n1 ¼ fp · ðm - 1Þ and n2 ¼ m · ðn - fpÞ degrees of freedom 
and a significance level of a. If eqn (10) is satisfied, these voxels 
will be used as a seed region for subsequent clustering. 
Otherwise, the algorithm moves to the next voxel and repeats 
Steps 1 through 7 above. 

Clustering 

Clustering is performed by testing each voxel in the image 
against the seed region. The new null hypothesis assumes that 
the distributions of diffusion tensor parameters in the tested 
voxel and in the m seed voxels are the same. To test null 
hypothesis, Steps 1 through 7, as in the previous section, are 
repeated. However, the combined set now consists of m þ 1 
voxels, where m are voxels in the seed regions. If the F0 value in 
eqn (9) for m þ 1 voxels is small, the null hypothesis, that 
the diffusion tensor parameters in the tested voxel are the same 
as in the seed region, is accepted and the voxel is added to the 
cluster. 
Once all voxels are tested against given seed regions, the next 

seed region is selected according to the steps in the previous 
section (previously clustered voxels are excluded from all future 
tests). The clustering process stops when no new seed regions 
can be identified. 
7	 0.78 2300 
8	 0.83 1900 
— General anisotropic 0.55 2500 
— Isotropic 0.05 2200 

’Higher’ FAs 
1 Oblate 0.59 3300 
2	 0.54 3500 
3	 0.64 3900 
4 0.68 3500 
5 Prolate 0.8 2100 
6 0.72 2300 
METHODS 

Simulations 

To evaluate the unsupervised clustering approach, synthetic 
phantoms were generated in MATLAB (The MathWorks, Inc.) by 
setting the signal-to-noise ratio, SNR, in S(0) images to 20, 25, and 
33 (the latter matches the SNR in the excised pig spinal cord DTI 
data), for a fixed signal intensity, I0 ¼ 1000. White matter was 
simulated with the general anisotropy and prolate models, while 
ypographical error appears in Statistical Methods by Snedecor and Cochran 
 in the formula given on page 344 describing the F-test comparing two 
ted models. The corrected formula is given in eqn (9). 

R Biomed. 2009; 22: 716–729 Copyright © 2009 John Wiley 
gray matter was simulated with the isotropic model with values 
typical for living brain tissue (36). The oblate model was set to 
parameters between white and gray matter. The confidence 
interval for an F-test was set to 95%. 

Synthetic phantoms with different degrees of oblateness and 
prolateness 

For each SNR, two phantoms with ‘Lower’ FAs and ‘Higher’ FAs for 
the oblate and prolate regions were simulated (Table 1). 
Normally distributed random noise was added to the signal 

intensity in each voxel to make the diffusion-weighted images 
Rician distributed according to the following equation: 

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DWI ¼ DWI2 þ DWI2	 (11)Re Im 

where 

-trðbDÞ þ NRe;DWIRe ¼ I0e DWIIm ¼ NIm

and NRe and NIm are normally distributed random numbers with 
mean zero and standard deviation s ¼ I0/SNR. This model 
assumes that noise is added to the real and imaginary channels 
independently, and that the MR signal is rectified (9,37). 

Synthetic phantoms with different spatial orientations 

To evaluate the ability of the proposed clustering method to 
discriminate between tensors with different spatial orientations, 
we simulated a number of phantoms with fixed FA and Tr values 
and SNRs set to 20, 25, and 33, where noise was added as before. 
However, in these simulations, the diffusion tensors in the oblate 
7 0.88 2300
8	 0.92 1900 
— General anisotropic 0.62 2600
— Isotropic 0.06 2200
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Table 2. FA and Tr (x10 -6mm 2/s) values for the synthetic
phantoms with different spatial orientations 

    
Region #

Diffusion
 model FA Tr u (8)

’Lower’ FAs 
1 Oblate 0.53 3100 0 
2 9 
3  18
4  27
5 Prolate 0.7 2100 0 
6 9 
7  18
8  27
— General 

anisotropic 
0.5 2500 0 

— Isotropic 0.05 2200 0 
’Higher’ FAs 

1 Oblate 0.59 3300 0 
2 9 
3  18
4  27
5 Prolate 0.8 2100 0 
6 9 
7  18
8  27
— General 

anisotropic 
0.62 2600 0 

— Isotropic 0.06 2200 0 

7
2
0 
and prolate regions were rotated from the z-axis as described in 
Table 2. 

Synthetic phantoms with partial volumes 

The synthetic phantoms with partial volume regions between the 
prolate quadrants (corresponding parameters are shown in 
Table 3) were generated in order to evaluate the capability of the 
clustering algorithm to identify voxels affected by partial 
voluming. Partial volume regions were simulated according to 

- -trðbDj ÞtrðbDi Þ þ ð1 - f Þ · Sð0ÞSðGÞ ¼ f · Sð0Þe e ; for i 6¼ j (12) 

where Di and Dj are the diffusion tensors (prolate model) with 
different degrees of prolateness and f is the volume fraction 
coefficient ( f < 1), which continuously changes from one cluster 
to its neighbor. 
Table 3. FA and Tr (   x10-6mm 2/s) values for the synthetic 
phantoms of prolate models with partial volumes 

    5 6 7 8 

FA 0.8 0.85 0.87 0.9 
Tr 2100 2000 2400 2000 
u (8) 0 60 20 40 

www.interscience.wiley.com/journal/nbm Copyright © 200
For all simulated phantoms, the b-matrix was calculated with 
the imaging parameters described in the Excised Pig Spinal Cord 
DTI Experiments subsection. 
The unsupervised clustering algorithm was applied to the set 

of 46 reconstructed diffusion-weighted images with four 
nondiffusion-weighted images (b " 0 s/mm2). The confidence 
interval for an F-test was set to 99%. 
 Excised spinal cord DTI experiments 

In addition to the numerical simulations, we tested our method 
on experimental MRI data obtained from excised rat and pig 
spinal cords fixed with a 4% paraformaldehyde solution. Prior to 
MR data collection, the spinal cord was washed in phosphate-
buffered saline (PBS) to avoid signal loss due to fixative-related 
T2-shortening (38). The p-value of 0.05 was used for all tests. 
Excised rat spinal cord DTI experiments 

DWIs were obtained using a diffusion-weighted stimulated echo 
pulse sequence with d (pulse duration) ¼ 2.5 ms, D (diffusion 
time) ¼ 70 ms, TR ¼  3500 ms, and TE¼ 14.7 ms on a horizontal-
bore 7T scanner equipped with a Micro2.5 microscopy probe with 
a maximal gradient strength of 1460 mT/m (Bruker, Germany). 
Other imaging parameters were: in-plane resolution 
200 x 200 mm2, slice thickness ¼ 2 mm, number of averages 
(NEX) ¼ 3, bandwidth ¼ 50 kHz. For seven slices, 40 DWIs per slice 
were acquired during 28 h of scanning. Thirty-one of these were 
attenuated by diffusion gradients G ¼ (Gx, Gy, Gz) and nine were 
not attenuated ( j jG ¼ 0). In each direction the approximate 
b-value was 2000 s/mm2. The SNR for this experiment was 31. 
Excised pig spinal cord DTI experiments 

The sample was imaged in a 15 mm NMR tube containing 
MR-compatible perfluoropolyether oil (‘Fomblin’), using a 
Micro2.5 microscopy probe (15 mm solenoid coil) with 
1450 mT/m 3-axis gradients (7T vertical-bore MRI scanners, 
Bruker, Germany). A diffusion-weighted spin echo pulse 
sequence was used with TR ¼ 3500 ms, TE ¼ 33 ms, band­
width ¼ 50 kHz, in-plane resolution 94 x 94 mm2 with seven 
continuous 1 mm thick slices. Four DWIs per slice were acquired 
without applying the diffusion sensitizing gradients (b " 0 s/  
mm2), followed by the acquisition of 46 diffusion-weighted 
images with diffusion gradient strength (G) ¼ 120 mT/m yielding 
approximate b-values of 1000 s/mm2. The number of averages 
(NEX) was 2. Each of these diffusion-weighted scans was collected 
with diffusion gradients applied along a different direction 
determined from the second-order tessellations of an icosahe­
dron on the surface of a unit hemisphere. The diffusion gradient 
duration (d) was 5 ms, and the gradient separation (D) was 20 ms. 
The total imaging time was less than 13 h (SNR ¼ 33). 
At each voxel location in the raw rat and pig spinal cord images, 

the apparent diffusion tensor, D, was calculated (12). Tensor-
derived parameters, such as the Tr, FA, the eigenvectors, e1, e2, 
and e3, and the eigenvalues, l1, l2, and l3, were all calculated and 
passed to the parsimonious model selection algorithm and, 
subsequently, to the clustering method, based on the multi­
variate hypothesis testing. 
9 John Wiley & Sons, Ltd. NMR Biomed. 2009; 22: 716–729 
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Figure 2. Q–Q plot of residuals in (a) phantom and (b) pig spinal cord versus standard normal. 

Figure 3. Synthetic phantom generated with different degrees of oblateness in regions #1–4 and prolateness in regions #5–8 (‘Lower’ FAs in Table 1) at 
SNR ¼ 33: (a) the fractional anisotropy and (b) trace (mm2/s) maps; (c) color-coded parsimonious model map (blue–isotropic, orange–oblate, red–prolate, 
and turquoise–general anisotropic models); (d) identified oblate and prolate clusters (colors depict different clusters and are not related to colors in the 
parsimonious model map). This figure is available in color online at www.interscience.wiley.com/journal/nbm 

NMR Biomed. 2009; 22: 716–729 Copyright © 2009 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/nbm 

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1492


R. Z. FREIDLIN ET AL. 

7
2
2 
RESULTS 

The residuals from the phantom and the excised rat and pig spinal 
cord experiments (SNR ¼ 33) are asymptotically normally distrib­
uted (Fig. 2) and the variance of each measurement is presumed to 
be unchanging (homoscedasticity), thus testing one model against 
another, in the manner presented below, is well grounded. 

Simulations 

Synthetic phantoms with different degrees of oblateness and 
prolateness 

Figure 3a and b shows the FA and Tr maps for the simulated 
phantoms at SNR ¼ 33, which corresponds to the SNR in the 
acquired images of an excised pig spinal cord. Although, from 
these figures it might seem obvious visually that there are four 
distinct domains in both oblate and prolate regions, such visual 
delineation is possible only by placing all voxels with equal FAs 
and Trs in homogeneous ROIs. Otherwise, variations in FA from 
0.5 to 0.6 in the oblate regions and 0.7 to 0.8 in the prolate 
regions, with Tr differences only around 300 x 10 -6 mm2/s, 
would not be visible. The parsimonious model selection results 
Figure 4. Performance comparison for the oblate and prolate regions at (a) S
by the darker bar and ‘Higher’ FAs by the lighter bar. The true positive counts
positive counts are obtained from the outside regions. 

www.interscience.wiley.com/journal/nbm Copyright © 200
(Fig. 3c) had 97% success of identifying correct models. However, 
from these results it is not obvious that both oblate and prolate 
regions consist of distinct quadrants. In contrast, the proposed 
clustering algorithm correctly identified regions with different 
degrees of oblateness and prolateness (Table 1), which are shown 
in Fig. 3d. The general anisotropic area was clustered with 100% 
success (results are not shown in this paper). The isotropic voxels 
with FA¼ 0.2 (depicted in blue in Fig. 3c) remained unclustered 
with 100% success. 

Performance evaluation of the clustering algorithm at different 
SNRs and FAs for the oblate and prolate regions is shown in Fig. 4. 
Overall, the proposed method performed better for the FA values 
greater than 0.55 at all SNRs. The same behavior was observed in 
the prolate regions. However, the performance of clustering 
significantly decreased at FA < 0.5 and SNR < 25 in the oblate 
area, i.e. regions #1 and #2 were merged together. All voxels in the 
general anisotropic region at all SNRs were clustered correctly. 

Synthetic phantoms with different spatial orientations 

As can be seen from Fig. 5a, b, and c, oblate and prolate regions 
appear homogeneous in the FA, Tr, and parsimonious model 
NR ¼ 33; (b) SNR ¼ 25; and (c) SNR ¼ 20, where ‘Lower’ FAs are represented 
 are calculated within the areas of corresponding clusters, while the false 

9 John Wiley & Sons, Ltd. NMR Biomed. 2009; 22: 716–729 
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Figure 5. Synthetic phantom generated with different principal diffusion orientations, i.e. tensors in the oblate regions #1, #2, #3, and #4 are rotated by 
0, 9, 18, and 278, respectively, and in the prolate regions #5, #6, #7, and #8 the diffusion tensors are rotated by 0, 9, 18, and 278, respectively, from the z-axis, 
general anisotropic tensor was not rotated: (a) the fractional anisotropy and (b) trace (mm2/s) maps; (c) color-coded parsimonious model map 
(blue–isotropic, orange–oblate, red–prolate, and turquoise–general anisotropic models); (d) identified oblate and prolate clusters at SNR ¼ 33 (colors 
depict different clusters and are not related to colors in the parsimonious model map). This figure is available in color online at www.interscience. 
wiley.com/journal/nbm 
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selection maps, respectively, despite these regions being 
generated with diffusion tensors having different spatial 
orientations (at least 98 of angle separation). Figure 5d shows 
clustering results at SNR ¼ 33, in which all regions were correctly 
segmented (except region #8, where 20% of voxels remained 
unclustered). Performance results of the clustering oblate and 
prolate regions for all tested SNR are presented in Fig. 6. The 
algorithm performance at the ‘Higher’ FAs was consistently good 
at all SNRs. On the other hand, at the ‘Lower’ FAs, oblate regions 
#1 and #2 were clustered together at SNR ¼ 25 (Fig. 6b), while at 
SNR ¼ 20, regions #3 and #4 were clustered together (Fig. 6c), as 
well. Figure 6a and b shows 100% success of separating all prolate 
clusters at ‘Higher’ FAs and where the SNRs are equal to 33 and 
25. However, at the ‘Lower’ FAs and SNR ¼ 20, prolate regions #5 
and #6 were merged together and only 20% of true positive were 
achieved in region #8. Overall, the performance of the proposed 
clustering method in the prolate regions was better than in the 
oblate at SNR < 33. 

Synthetic phantoms with partial volumes 

Figure 7a, b, and c shows the FA, Tr, and the parsimonious model 
selection maps of the synthetic phantom with partial volumes 
NMR Biomed. 2009; 22: 716–729 Copyright © 2009 John Wiley 
between prolate regions. All these maps appear to be 
homogeneous. However, the proposed clustering algorithm 
correctly segmented prolate quadrants, as well as most of the 
partial volume regions generated according to eqn (12). 
Furthermore, by analyzing prolate clusters, it was determined 
that a number of prolate voxels, which were misclassified as 
general anisotropic or oblate by the parsimonious model 
selection algorithm (Figs 7c and 8a), were correctly reclassified 
as prolate with 98% success at SNR ¼ 30 (Fig. 8b and 8c). 
Although, some voxels with partial volumes remained unclus­
tered, it became apparent from Fig. 8c that such voxels can be 
identified by subtracting all prolate clusters from the parsimo­
nious model map (prolate voxels only). 

Excised spinal cord DTI experiments 

Excised rat spinal cord DTI experiment 

Figure 9a and b shows the orientationally invariant FA and 
Tr maps for three consecutive slices. By examining these maps, 
we can only distinguish white from gray matter groups, although 
the white matter itself consists of several different fiber 
compartments. 
& Sons, Ltd. www.interscience.wiley.com/journal/nbm 
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Figure 6. Performance comparison for the oblate and prolate regions at (a) SNR ¼ 33; (b) SNR ¼ 25; and (c) SNR ¼ 20, where ‘Lower’ FAs are represented 
by the darker bar and ‘Higher’ FAs by the lighter bar. The true positive counts are calculated within the areas of corresponding clusters, while the false 
positive counts are obtained from the outside regions. 
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Parsimonious model selection consistently segmented the 
prolate regions in white matter (Fig. 10a). However, the 
parsimonious model map does not reveal different fiber patterns 
within white matter. The multivariate hypothesis testing base-
d-clustering algorithm identified a number of distinct prolate 
regions (Fig. 10b). 
Furthermore, by analogy with the results in the Synthetic 

Phantoms with Partial Volumes subsection, we generated a 
difference map between the parsimonious model map of prolate 
voxels only and the sum of all prolate clusters. These results are 
shown in Fig. 11c, where voxels depicted in green correspond to 
reclassified as prolate, and voxels depicted in orange correspond 
to the edges of white matter, thus, most likely, containing partial 
volumes. 

Excised pig spinal cord DTI experiment 

Figure 12a and b shows the orientationally invariant FA and Tr 
maps. As in the excised rat spinal cord experiment (above), the 
prolate model (in Fig. 12c) depicted in red) was consistently 
selected as a white matter region. Figure 12d shows the results of 
www.interscience.wiley.com/journal/nbm Copyright © 200
the unsupervised clustering algorithm (colors represent different 
clusters within white matter), which reveals similarities with the 
known histology of the spinal cord (Fig. 13) (39). 
DISCUSSION 

The aim of this work is to investigate the feasibility of using a 
multivariate hypothesis testing framework for automated tissue 
clustering and classification. 
As long as the conditions for normally distributed residuals and 

uniform variances within each voxel of a diffusion-weighted 
image are met, this algorithm can be robustly used for clustering 
and classifying high resolution data obtained from tissue. To 
prevent clustering voxels in areas with inhomogeneous variance, 
which is observed in voxels with different degrees of diffusion 
anisotropy (35), we perform parsimonious model selection 
procedures prior to the clustering algorithm. Such model 
pre-selection ensures that the seed voxels for launching clusters 
are already described by the same diffusion models, thus 
improving the accuracy of the results. 
9 John Wiley & Sons, Ltd. NMR Biomed. 2009; 22: 716–729 
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Figure 7. The phantom with partial volumes at SNR ¼ 30: (a) FA; (b) Tr (mm2/s); and (c) parsimonious model selection maps; (d) the identified clusters 
(colors depict different clusters and are not related to colors in the parsimonious model map). This figure is available in color online at 
www.interscience.wiley.com/journal/nbm 
Monte Carlo simulations (not presented in this work) have 
shown that the clustering algorithm is more sensitive to trace 
differences, DTr, between regions having lower FAs (less than 0.7) 
than higher FAs. It was determined that for SNR ¼ 33 and FA < 0.7, 
Figure 8. The phantom with partial volumes at SNR ¼ 30: (a) voxels identified
all prolate clusters obtained from the clustering algorithm; (c) the difference be
with partial volumes are shown in green and orange colors, respectively. This
nbm 

NMR Biomed. 2009; 22: 716–729 Copyright © 2009 John Wiley 
the clusters were correctly separated for DTr > 300 x 10 -6 mm2/s 
and the difference between FAs, DFA > 0.5. Otherwise, it was 
sufficient to set DTr ¼ 200 x 10 -6 mm2/s and DFA > 0.5. For the 
lower SNRs, clustering results showed an average of 95% success 
 by the parsimonious model selection algorithm as prolate; (b) the union of 
tween (a) and (b) maps, where correctly reclassified and unclustered voxels 
 figure is available in color online at www.interscience.wiley.com/journal/ 
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Figure 9. (a) Fractional anisotropy and (b) trace (mm2/s) maps for three consecutive slices of the excised rat spinal cord. 

Figure 10. (a) Parsimonious model selection and (b) clustering maps for three consecutive slices of excised rat spinal cord. 

www.interscience.wiley.com/journal/nbm Copyright © 2009 John Wiley & Sons, Ltd. NMR Biomed. 2009; 22: 716–729 
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Figure 11. Excised rat spinal cord: (a) voxels identified by the parsimonious model selection algorithm as prolate; (b) the union of all prolate clusters 
obtained with the clustering algorithm; (c) the difference between (a) and (b) maps. 
at DTr > 400 x 10- 6 mm2/s for FAs > 0.65 and DFA ¼ 0.1. We also 
noticed that at FAs greater than 0.9, some voxels were left 
unclustered. This could be attributed to forcing negative 
eigenvalues (l3), observed at the high FAs, to be positive. Voxels 
in the oblate and prolate regions, which were misclassified as 
general anisotropic by the parsimonious model selection 
algorithm, were correctly reclassified as oblate/prolate with at 
least 98% success at SNRs greater than 20. 
Figure 12. Excised pig spinal cord: (a) the fractional anisotropy and (b) trace
orange–oblate, red–prolate, and turquoise–general anisotropic models); (d) 
clusters). 

NMR Biomed. 2009; 22: 716–729 Copyright © 2009 John Wiley 
It was also observed (results are not presented in this work) 
that at the significance levels below 5% there was an increase in 
accepting false null hypotheses due to voxels with partial 
volumes. In such cases, overall performance of the proposed 
clustering algorithm at SNR : 20 and FAs greater than 0.6 was 
decreased on average by 5%. However, results were consistent for 
a range of significance levels in the regions without voxels 
containing partial volumes (SNR : 20 and FA : 0.6). Furthermore, 
 (mm2/s) maps; (c) color-coded parsimonious model map (blue–isotropic, 
identified clusters for the prolate model regions (colors depict different 
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Figure 13. Schematic diagram of important sensory pathways in rat 
spinal cord white matter: (1) vestibulospinal; (2) anterior corticospinal; (3) 
spinothalamic; (4) lateral corticospianal; (5) spinocerebellar; (6) reticulosp­
inal; (7) fasciculus cuneatus; (8) fasciculus gracilis; and (9) gray matter. 
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at the SNRs < 20 and FAs < 0.6 performance of the proposed 
method on average was reduced by 50% for fewer than 21 DWIs 
and 20% for more than 21 directions. 
From Monte Carlo simulations, we have determined that the 

accuracy and the sensitivity of the multivariate hypothesis testing 
to the degrees of prolateness/oblateness, as well as, spatial 
orientation are closely related to the performance of the diffusion 
tensor estimation. Thus, for a nonlinear least-square minimization 
method, proposed by Koay et al., at SNRs < 20 it is advisable to 
acquire a minimum number of 25 DWIs. For example, at 
SNRs < 20, in order to differentiate between the regions with 
DTr ¼ 200 x 10 -6 mm2/s and DFA ¼ 0.05, the number of DWIs 
had to be set to 33. However, the proposed clustering method 
performed with 98% accuracy when the regions had 
DTr ¼ 400 x 10 -6 mm2/s and DFA ¼ 0.1 for FA : 0.6 with only 
12 diffusion encoding directions. 
In general, the multivariate hypothesis testing framework for 

tissue clustering is fast and simple to implement. Due to its 
unsupervised nature, the results from such tests are fully 
reproducible for high-resolution data, i.e. low number of voxels 
with partial volumes, and provide quantitative information about 
underlying tissue structures. In addition, we have shown that the 
clusters with similar FAs and/or Trs might have different 
underlying structures. This implies that clustering methods 
based upon thresholding criteria may incorrectly classify and 
cluster tissues having different properties. By looking at the entire 
tensor, we are able to discriminate between different tissue types 
more accurately. However, it is important to note that the voxels 
with partial volume (e.g. voxels that contain two fibers with 
different degrees of prolateness and/or diffusion orientations) 
may be assigned to different clusters depending on the starting 
seed region. This inconsistency can be resolved by identifying the 
most probable seed regions prior to clustering or by explicitly 
including partial-volume models in the parsimonious model 
selection hierarchy. Furthermore, when determining the number 
of voxels in the seed region, it is important to consider the 
resolution of DTI data and the size of the underlying structure of 
interest. However, the seed region should contain at least three 
adjacent voxels. In addition, it was observed that at low SNRs or 
for 21 or fewer DWI acquisitions, which contribute to higher 
variability in the estimated diffusion parameters, the proposed 
clustering method performed on average 10% better for the 
www.interscience.wiley.com/journal/nbm Copyright © 200
2 x 2 seed region than the larger regions. This is because as the 
number of voxels in the seed region grows, so does the net 
variability within the sample. This causes the F-test to be more 
forgiving. 
The voxel-by-voxel approach allows us to cluster regions which 

are not connected to each other without invoking a pre-defined 
number of clusters. However, segmented regions tend to be 
noisier than the results of segmentation based on such 
techniques as level sets and dissimilarity measures. 
Since, in its current implementation the proposed multivariate 

hypothesis testing algorithm is very sensitive to changes in 
diffusion directionality, it is suitable for clustering tissues with 
well-defined orientations. Work is underway to extend this 
approach to identifying clusters, rather than individual tensors, 
with similar degrees of oblateness/prolateness, yet different 
spatial orientations. 
CONCLUSIONS 

The ability to identify different tissue types within white or gray 
matter has the potential to improve the diagnosis of a variety of 
neurological disorders, and to assess changes occurring in normal 
and abnormal development. However, before using the multi­
variate hypothesis testing framework, it is important to ensure 
normality and equality of the variances for the diffusion tensor 
estimator and functions derived from it. We satisfy these 
conditions by applying the nonlinear least-squares estimator 
and the parsimonious model selection procedures prior to 
clustering. In addition, the parsimonious model selection 
framework improves automatic ROI delineation and classification 
of different tissue types by providing additional information 
about the underlying diffusion model. 
Given the simplicity and speed of the proposed F-test 

clustering framework, it is feasible to process large high-
resolution microscopic DTI datasets. Encouraging results from 
phantom simulations increase our confidence in clustering 
ex vivo tissue specimens where background noise is the primary 
artifact. However, in clinical applications other systematic artifacts 
should be reduced or carefully considered prior to applying 
multivariate hypothesis testing for clustering. 
Acknowledgements 

RZF thanks Kenneth Kempner for his support and encourage­
ment. The authors would like to thank Dr Carlo Pierpaoli and Dr 
Uri Nevo for helpful discussions and Liz Salak for editing this 
paper. This research was supported by the Intramural Research 
Program of the National Institute of Child Health and Develop­
ment (NICHD) and the Center for Information Technology (CIT), 
National Institutes of Health, Bethesda, Maryland. 
REFERENCES 

1. Basser PJ, Mattiello J, LeBihan D.	 MR diffusion tensor spectroscopy 
and imaging. Biophys. J. 1994; 66(1): 259–267. 

2. Beaulieu C, Allen PS. Determinants of anisotropic water diffusion in 
nerves. , Magn. Reson. Med. 1994; 31(4): 394–400. 

3. Jones	 DK, Simmons A, Williams SC, Horsfield MA. Non-invasive 
assessment of axonal fiber connectivity in the human brain via 
diffusion tensor MRI. Magn. Reson. Med. 1999; 42(1): 37–41. 
9 John Wiley & Sons, Ltd. NMR Biomed. 2009; 22: 716–729 



TISSUE CLUSTERING AND CLASSIFICATION OF DTI DATA 
4. Mori S, Crain BJ, Chacko VP, van Zijl. PC. Three-dimensional tracking of 
axonal projections in the brain by magnetic resonance imaging. Ann. 
Neurol. 1999; 45(2): 265–269. 

5. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber 
tractography using DT-MRI data. 2000; Magn. Reson. Med. 44(4): 
625–632. 

6. Tench CR, Morgan PS, Wilson M, Blumhardt LD. White matter mapping 
using diffusion tensor MRI. Magn. Reson. Med. 2002; 47(5): 967–972. 

7. Hagmann P, Thiran J-P, Jonasson L, Vandergheynst P, Clarke S, Maeder 
P, Meuli R. DTI mapping of human brain connectivity: statistical fibre 
tracking and virtual dissection. Neuroimage 2003; 19(3): 545–554. 

8. Van Der Vaart H. Some results on the probability distribution of the 
latent roots of a symmetric matrix of continuously distributed 
elements, and some applications to the theory of response surface 
estimation. Report issued by the Institute of Statistics, University of 
North Carolina. 1958. 

9. Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion 
anisotropy. Magn. Reson. Med. 1996; 36(6): 893–906. 

10. Zhukov L, Museth K, Breen D, Whitaker R, Barr A. Level set modelling 
and segmentation of DT-MRI brain data. J. Electron. Imaging 2003; 
12(1): 125–133. 

11. Li W, Tian J, Li E, Dai J. Robust unsupervised segmentation of infarct 
lesion from diffusion tensor MR images using multiscale statistical 
classification and partial volume voxel reclassification. Neuroimage 
2004; 23(4): 1507–1518. 

12. Basser PJ, Mattiello J, LeBihan D.	 Estimation of the effective self-
diffusion tensor from the NMR spin echo. J. Magn. Reson. B 1994; 
103(3): 247–254. 

13. Feddern C, Weickert J, Burgeth B. Level-set methods for tensor-valued 
images. In Proceedings of the 2nd IEEE Workshop Variational, Geometric 
and Level Set Methods in Computer Vision, 2003; 65–72. 

14. Wiegell MR, Tuch DS, Larsson HBW, Wedeen VJ. Automatic segmenta­
tion of thalamic nuclei from diffusion tensor magnetic resonance 
imaging. Neuroimage 2003; 19(2 Pt 1): 391–401. 

15. Wang Z, Vemuri BC. Tensor field segmentation using region based 
active contour model. In Computer Vision – ECCV 2004, Pt 4, 2004; 
304–315. 

16. Wang Z, Vemuri BC. DTI segmentation using an information theoretic 
tensor dissimilarity measure. IEEE Trans. Med. Imaging 2005; 24(10): 
1267–1277. 

17. Rousson M, Lenglet C, Deriche R. Level set and region based surface 
propagation for diffusion tensor mri segmentation. In ECCV Work­
shops CVAMIA and MMBIA, 2004; 123–134. 

18. Lenglet C, Rousson M, Deriche R. Segmentation of 3D probability 
density fields by surface evolution: application to diffusion MRI. In 
Proc. Medical Image Computing and Computer-Assisted Intervention – 
MICCAI 2004, Pt 1, 2004; 18–25. 

19. Lenglet C, Rousson M, Deriche R, Faugeras O, Lehericy S, Ugurbil K. 
A Riemannian approach to diffusion tensor images segmentation. Inf. 
Process. Med. Imaging 2005; 19: 591–602. 

20. Jonasson L, Hagmann P, Pollo C, Bresson X, Richero Wilson C, Meuli R, 
Thiran J. A level set method for segmentation of the thalamus and its 
nuclei in DT-MRI. Signal Processing 2007; 87(2): 309–321. 

21. Alexander DC, Gee JC, Bajcsy R. Similarity measures for matching 
diffusion tensor images. In Proc. British Machine Vision Conference 
(BMVC), 1993; 93–102. 
NMR Biomed. 2009; 22: 716–729 Copyright © 2009 John Wiley 
22. Wang Z, Vemuri B. An affine invariant tensor dissimilarity measure and 
its applications to tensor-valued image segmentation. In IEEE Com­
puter Society Conference on Computer Vision and Pattern Recognition, 
CVPR, 2004; I-228–I-233. 

23. Awate SP, Zhang H, Gee JC. A fuzzy, nonparametric segmentation 
framework for DTI and MRI analysis: with applications to DTI-tract 
extraction. IEEE Trans. Med. Imaging 2007; 26(11): 1525–1536. 

24. Ziyan U, Tuch D, Westin C-F. Segmentation of thalamic nuclei from DTI 
using spectral clustering. Ninth Int. Conf. Med. Image Comput. Com-
put. Assist. Interv. 2006; 9(Pt 2): 807–814. 

25. Khurd P, Verma R, Davatzikos C. Kernel-based manifold learning for 
statistical analysis of diffusion tensor images. Inf. Process. Med. 
Imaging 2007; 20: 581–593. 

26. Whitcher B, Wisco JJ, Hadjikhani N, Tuch DS. Statistical group com­
parison of diffusion tensors via multivariate hypothesis testing. Magn. 
Reson. Med. 2007; 57(6): 1065–1074. 

27. Snedecor GW, Cochran WG. Statistical Methods, 8th edn., Iowa State 
University Press, 1989. 

28. Hext GR. The estimation of second-order tensors, with related tests 
and designs. Biometrika 1963; 50: 353–357. 

29. Freidlin RZ, Assaf Y, Basser PJ. Multivariate hypothesis testing of DTI 
data for tissue clustering. In IEEE Int. Symp. Biomed. Imag.: Macro to 
Nano (ISBI), 2007, 12–15 April 2007; 776–779. 

30. Freidlin RZ, Assaf Y, Basser PJ. Multivariate hypothesis testing for tissue 
clustering and classification: a DTI study of excised rat spinal cord. In 
Joint Annual Meeting ISMRM-ESMRMB, 2007; 625. 

31. Freidlin RZ, Ozarslan E, Komlosh ME, Chang L-C, Koay CG, Jones DK, 
Basser PJ. Parsimonious model selection for tissue segmentation and 
classification applications: a study using simulated and experimental 
DTI data. IEEE Trans. Med. Imaging 2007; 26(11): 1576–1584. 

32. Schwarz G. Estimating the dimension of the model. Ann. Stat. 1978; 6: 
461–468. 

33. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in 
the presence of a time-dependent field gradient. J. Chem. Phys. 1966; 
42(1): 288–292. 

34. Koay CG, Chang L-C, Carew JD, Pierpaoli C, Basser PJ. A unifying 
theoretical and algorithmic framework for least squares methods of 
estimation in diffusion tensor imaging. J. Magn. Reson. 2006; 182(1): 
115–125. 

35. Carew JD, Koay CG, Wahba G, Alexander AL, Meyerand ME, Basser PJ. 
The asymptotic behavior of the nonlinear estimators of the Diffusion 
Tensor and tensor-derived quantities with implications for group 
analysis. Technical Report, Department of Statistics, University of 
Wisconsin, 2006. 

36. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Chiro GD. Diffusion tensor 
MR imaging of the human brain. Radiology 1996; 201(3): 637– 
648. 

37. Henkelman RM. Measurement of signal intensities in the presence of 
noise in MR images. Med. Phys. 1985; 12(2): 232–233. 

38. Shepherd TM, Thelwall PE, Stanisz PE, Blackband SJ. Chemical fixation 
alters the water microenvironment in rat cortical brain slices— 
implications for MRI contrast mechanisms. Proc. Int. Soc. Magn. Reson. 
Med. 2005; 13: 619. 

39. Tracey DJ, Ascending, descending pathways in the spinal cord. In The 
Rat Nervous System, Paxinos G (ed.). 2nd edn. Academic Press: San 
Diego, CA, 1995; 67–75. 
7
2
9 

& Sons, Ltd. www.interscience.wiley.com/journal/nbm 


	A multivariate hypothesis testing framework for tissue clustering and classiﬁcation of DTI data 
	Abstract
	Keywords: 
	Abbreviations used: 

	INTRODUCTION 
	THEORY 
	Diffusion tensor imaging 
	Parameter estimation framework for multivariate hypothesis testing 

	CLUSTERING BASED ON THE PARAMETRIC DISTRIBUTION OF DIFFUSION TENSORS 
	Choosing a seed region 
	Clustering 

	METHODS 
	Simulations 
	Synthetic phantoms with different degrees of oblateness and prolateness 
	Synthetic phantoms with different spatial orientations 
	Synthetic phantoms with partial volumes 

	Excised spinal cord DTI experiments 
	Excised rat spinal cord DTI experiments 
	Excised pig spinal cord DTI experiments 


	RESULTS 
	Simulations 
	Synthetic phantoms with different degrees of oblateness and prolateness 
	Synthetic phantoms with different spatial orientations 
	Synthetic phantoms with partial volumes 

	Excised spinal cord DTI experiments 
	Excised rat spinal cord DTI experiment 
	Excised pig spinal cord DTI experiment 


	DISCUSSION 
	CONCLUSIONS 
	Acknowledgements 
	REFERENCES 




