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ABSTRACT

Indices of diffusion anisotropy calculated from diffusion coef-
ficients acquired in two or three perpendicular directions are 
rotationally variant. In living monkey brain, these indices se-
verely underestimate the degree of diffusion anisotropy. New 
indices calculated from the entire diffusion tensor are rota-
tionally invariant (RI). They show that anisotropy is highly 
variable in different white matter regions depending on the 
degree of coherence of fiber tract directions. In structures 
with a regular, parallel fiber arrangement, water diffusivity in 
the direction parallel to the fibers (D = 1400-1800 x 10-6 11 
mm2/s) is almost 10 times higher than the average diffusivity 
in directions perpendicular to them ((D + D-1 ')/2 = 150-300 x 
10-6 mm2 /s}, and is almost three times higher than previously 
reported. In structures where the fiber pattern is less coherent 
(e.g., where fiber bundles merge}, diffusion anisotropy is sig-
nificantly reduced. However, RI anisotropy indices are still 
susceptible to noise contamination. Monte Carlo simulations 
show that these indices are statistically biased, particularly 
those requiring sorting of the eigenvalues of the diffusion 
tensor based on their magnitude. A new intervoxel anisotropy 
index is proposed that locally averages inner products be-
tween diffusion tensors in neighboring voxels. This "lattice" RI 
index has an acceptably low error variance and is less sus-
ceptible to bias than any other RI anisotropy index proposed 
to date. 
Key words: magnetic resonance imaging; anisotropy; diffu-
sion; tensor. 

INTRODUCTION 

MR measurements of water diffusion in organs and tis-
sues having an orderly, oriented structure, such as skel-
etal (1), cardiac (2), and uterine (3) muscle, portions of 
the kidney (4), the lens (5), and white matter (6-8), 
exhibit anisotropy (i.e., a dependence of the diffusivity 
on direction). The development of quantitative MRI mea-
sures of diffusion anisotropy could have important bio-
logical and clinical applications, helping physicians in-
fer microstructural characteristics of normal tissues that 
are undetected by using other techniques, as well as 
pathological changes in tissue microstructure. This mi-
crostructural information may be useful in arriving at a 
correct diagnosis, as well as choosing and implementing 
appropriate therapies. 

However, while a qualitative indication of diffusion 
anisotropy can be obtained by inspecting diffusion-
weighted images (DWIs), a quantitative assessment is 
more problematic as there are no universally agreed upon 
standards for measuring and reporting diffusion anisot-
ropy, and there is no phantom that mimics the anisotro-
pic diffusion properties of living tissues to which these 
MR measurements can be compared. On theoretical 
grounds, it has been predicted that currently used indi-
ces of diffusion anisotropy derived from DWIs or from 
two or three apparent diffusion coefficients (ADCs) mea-
sured in perpendicular directions are not quantitative. In 
particular, they are rotationally variant because their val-
ues depend on the direction of the applied diffusion 
gradients and the orientation of structures within each 
voxel (9). Rotationally invariant anisotropy measures, 
which have values that are independent of the laboratory 
frame of reference, of the direction of the applied diffu-
sion gradients, and of the orientation of the tissue struc-
tures within each voxel, can be constructed from the 
diffusion tensor (D)(9-11). 

The first goal of this paper was to assess the impor-
tance of rotational invariance on characterizing diffusion 
anisotropy in vivo. We used high-resolution DWIs of 
monkey brain to compute D on a voxel-by-voxel basis, 
and produce maps of both previously proposed rotation-
ally variant anisotropy indices (12, 13) and recently de-
veloped rotationally invariant anisotropy indices (9, 14, 
15). We then compared them in different anatomical 
regions of the brain. The second goal of this work was to 
examine the sensitivity of anisotropy measures to back-
ground noise inherent in all DWIs. This effect has not 
previously been accounted for or studied systematically, 
but it influences the mean and variance of all diffusion 
anisotropy measures estimated from DWIs. The level of 
confidence one has in a particular anisotropy measure 
clearly depends on its accuracy and precision. To ana-
lyze systematically the statistical properties of anisot-
ropy indices for different levels of background noise and 
of diffusion anisotropy, we used synthetic diffusion data 
generated by using Monte Carlo methods. We used these 
simulations to help interpret our in vivo animal data. 
Finally, having examined the susceptibility to noise of 
previously proposed anisotropy measures, the third goal 
of this work was to identify a family of new invariant 
anisotropy indices with improved noise immunity. 

METHODS 
Animal Preparation 

Six monkeys were studied under a protocol approved by 
the NINDS Animal Care and Use Committee. The prep-
aration for the MR scan included sedation with ketamine 
(15 mg/kg administered intramuscularly), endotracheal 
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intubation, general anesthesia with Isoflurane, and sur-
gical placement of catheters in both a femoral artery and 
a femoral vein. During the scan, the animals were anes-
thetized with 1.5% Isoflurane in 40% O2 and 60% N20,
mechanically ventilated, and immobilized with a con-
stant intravenous infusion of succinylcholine chloride (6 
to 10 mg/kg/h). The tidal volume was adjusted to pro-
duce PaO2 of 130 mmHg or greater and PaCO2 of 35 to 40 
mmHg. Arterial blood pressure, heart rate, and expiratory 
CO2 were monitored throughout the study. Arterial blood 
samples were withdrawn periodically for measurement 
of pH and blood gases. In a few studies in which the 
arterial catheter was not positioned, the heart rate was 
monitored by ECG. Body temperature was maintained at 
37 ::!:: 0.5°C by a circulating-water heating pad placed 
around the body. 

MR Imaging 

MR data were obtained with a General Electric 2T Omega 
MR system (GE NMR Instruments, Fremont, CA) with a 
horizontal bore with an inner diameter of 35 cm. The 
system included a self-shielded (Acustar 290) gradient 
set capable of producing gradient pulses up to 40 
mTesla/m. A home-built quadrature coil (13-cm inner 
diameter) was used as a radio-frequency transmitter and 
receiver. The animal was centered in the magnet/gradi-
ent system with the aid of T1-weighted MR images, and 
was not moved for the remainder of the study. The MR 
data were collected using a SE imaging sequence pro-
vided by the manufacturer (GE NMR Instruments, Fre-
mont, CA) that was modified to acquire diffusion-
weighted images. Imaging acquisition parameters were as 
follows: 4 coronal slices, 2 mm slice thickness, 256 x 128 
in-plane resolution, 70 mm field of view, minimum TR of 
2 s, cardiac gating on the first slice, TE of 70 ms, 2 
repetitions per image. Diffusion sensitization was ob-
tained by applying two symmetric diffusion gradient 
pulses before and after the 180° pulse (16-18). The trap-
ezoidal diffusion gradients had a duration of 19.5 ms, a 
ramp time of 0.3 ms, and were separated by a time inter-
val of 40 ms. Diffusion sensitizing gradients were applied 
sequentially along six different directions: {(0,0,1), 
(0,1,0), (1, 0, 0), (0,1/ j2,11)2), (1/ j2,0,1/)2), and (1/ j2,
1/ j2,0)} using the following convention: x (phase en-
code, horizontal), y (readout, vertical), and z (slice select, 
bore). In each direction we acquired four images with 
peak diffusion gradient strengths of 7.5, 15, 22.5, and 30 
mTesla/m. In total, 25 images were acquired, including 
one image with no diffusion sensitization. 

Data Analysis 

After Fourier magnitude reconstruction, the images were 
transferred to a SUN Sparc-10 and analyzed by using our 
software written in IDL (Iterative Data Language). For 
each image, the b-matrix was calculated from analytical 
expressions derived from the imaging and gradient wave-
forms (19). We estimated the six elements of the effective 
or apparent diffusion tensor, D (with independent com-
ponents Dxx, Dyy, Dzz, Dxy, Dxz, and Dyz) and the signal 
intensity with no diffusion sensitization A(b = 0); from 

the measured echo signal, A (b) and each element of the 
calculated b-matrix, bij, by using (11): 

A(Q) ) a a 
Ln( A(Q = O) = - L L b;fJ;i [1] 

1=11=1 

The apparent diffusion coefficients (ADCs) one obtains 
by applying diffusion gradients along the x, y, and z 
coordinate directions (ADCx, ADCy, and ADCz, respec-
tively) equal the diagonal elements of the diffusion ten-
sor above (Dxx, Dyy, and Dzz), when there are no contri-
butions of imaging gradients to the b-values used to 
calculate these ADCs. Since, in our experiment, these 
"cross-terms" were not negligible, we use the diagonal 
elements of the diffusion tensor as proxies for the ADCs 
when computing all anisotropy indices that employ 
them. 

Background noise levels used to estimate the experi-
mental error variances in the linear regression routine 
were obtained by measuring the root-mean-squared 
(r.m.s.) signal intensity in regions of the images contain-
ing no tissue. We set the weighting factor of the linear 
regression algorithm to be the square of the r.m.s. back-
ground noise in each image divided by the square of the 
signal intensity in each voxel. This was done to correct 
the bias in the experimental variance introduced by tak-
ing the logarithm of the measured amplitude signal (20). 
This method, however, does not correct for the distortion 
produced by taking the logarithm of the rectified noise 
when the signal is very low. 

Monte Carlo Simulations 

Monte Carlo simulations were performed to assess the 
effect of noise on the various anisotropy indices esti-
mated from the diffusion tensor. We started with diffu-
sion tensors whose trace is representative of brain paren-
chyma (2,100 x 10-6 mm2 /s), but with different degrees 
of diffusion anisotropy. For simplicity, we assumed the 
anisotropic tissue's principal axes coincided with the 
laboratory frame of reference. We also limited our inves-
tigation to the case of cylindrically symmetric diffusion 
anisotropy. By using the same set of 25 b-matrices that 
we used in the animal experiments, we generated 25 
synthetic, noise-free DW signal intensities by using Eq. 
[1] above. We then simulated thermal noise in the MR 
measurement. First, we generated complex random num-
bers whose real and imaginary parts were Gaussian dis-
tributed with mean of 0 and standard deviation scaled to 
the desired r.m.s. noise level. Then we added the noise-
free signal to the real part of the complex noise, and took 
the. magnitude of this complex number to generate the 
noisy amplitude signal. To check the validity of this 
approach, we showed that the standard deviation of the 
noisy amplitude signal equaled the selected r.m.s. noise 
level (21). For each assumed diffusion tensor, 16,384 
replicates were performed. 

Definition of the Anisotropy Indices 

Here we present definitions of diffusion anisotropy mea-
sures used in our imaging and simulation studies, and a 
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brief description of their properties. A thorough review 
of diffusion anisotropy measures used to date has been 
presented elsewhere (22). 

Rotationally Variant Anisotropy Indices. Most published 
clinical and animal studies that treat diffusion anisot-
ropy have employed rotationally variant indices. The 
most widely used is the one proposed by Douek et al. 
(12), which is defined as the ratio of two apparent diffu.-
sion-coefficients, with diffusion sensitizing gradients-ap-
plied in two perpendicular directions. In this paper, we 
do not explicitly calculate rotationally variant two-di-
mensional anisotropy indices but, for each region of in-
terest, we do present the values of the ADCs in the x, y, 
and z directions from which such indices can be calcu-
lated. Moreover, we compare the three ADCs and the 
three eigenvalues of D (Table 2). 

More recently, rotationally variant anisotropy indices 
that employ three ADCs measured in three mutually 
perpendicular directions have been proposed (13, 23). A 
three-dimensional anisotropy index potentially provides 
a succinct description of anisotropy by a single scalar 
quantity. One index that has already been used to map 
anisotropy of the human brain (24) is the standard devi-
ation index (SD) proposed by van Gelderen et al. (13). SD 
is a scalar anisotropy index that is proportional to the 
standard deviation of three ADCs measured in mutually 
perpendicular directions: ADCx, ADCy, and ADCz, di-
vided by their mean value, <ADC>. Another three-di-
mensional, rotationally variant scalar anisotropy index, 
which we define here and use only for comparison with 
its invariant analog, is the rotationally variant Volume 
Ratio index (RV Volume Ratio). The RV Volume Ratio 
index is computed from the Volume Ratio index shown 
below by substituting the ADCs in three mutually per-
pendicular directions for the eigenvalues of the diffusion 
tensor. 

Rotationally Invariant Anisotropy Indices. When a diffu-
sion tensor is diagonalized, we obtain its eigenvectors 
and eigenvalues. The eigenvectors of D represent the 
three mutually perpendicular directions along which 
molecular displacements of the spin-labeled molecules 
appear uncorrelated, while the eigenvalues of D are the 
diffusivities along these preferred directions. We can sort 
the eigenvalues ofD in order of decreasing magnitude (,\1 

= highest diffusivity, A2 = intermediate diffusivity, and 
,\3 = lowest diffusivity). In anisotropic tissues organized 
in parallel bundles, the largest eigenvalue, A1 represents 
the diffusion coefficient in the direction parallel to the 
fibers (D )11  in each voxel, while A2 and A3 are the t1.'ans-
verse diffusion coefficients (D1 and D1 '). The most in-
tuitive.and simplest rotationally invariant indices are 
ratios of the principal diffu.sivities (9), such as the dimen-
sionless anisotropy ratio ,\ /,\1 3 that measures the relative 
magnitudes of the diffusivities along the fiber-tract direc-
tion and one transverse direction. In this paper, we ana-
lyze the behavior of ,\ /,\1 3 and ,\ /(,\1 2 + ,\3 )/2. 

While calculating the ratios of the principal diffusivi-
ties requires us to sort the eigenvalues according to their 
magnitude, other invariant anisotropy indices can be 
constructed so that they are independent of the way we 

order the eigenvalues. One such index is the Volume 
Ratio (14): 

A1A2A3 Determinant(D)
Volume Ratio= 3 = 27 ------

( A1 + A2 + ,\3 ) Trace(D)3 

[2] 

The Volume Ratio has a simple geometrical interpreta-
tion; it represents the volume of an ellipsoid whose semi-
major axes are the three eigenvalues of (D) divided by the 
volume of a sphere whose radius is the mean diffusivity, 
Trace(D)/3. Since the volume of the ellipsoid approaches 
0 as anisotropy increases, the values of Volume Ratio 
range between 0 and 1, where 0 indicates the highest 
anisotropy and 1 represents complete isotropy. The right 
hand side of the equation shows that this index is the 
ratio of two scalar invariant quantities computed from 
the diffusion tensor, its Determinant and its Trace, thus 
assuring rotational invariance. 

Recently, other invariant measures of diffusion anisot-
ropy have been proposed that do not require sorting of 
the eigenvalues (15). They employ the tensor dot product 
of the anisotropic part of the diffusion tensor D with 
itself, D : D, as a scalar measure of the magnitude of 
diffusion anisotropy in a voxel. (Note that D (bold, no 
italics) represents the diffusion tensor itself, while D 
(bold, italicized) represents only its anisotropic part or 
the diffusion deviatoric.) We analyze the statistical be-
havior of two of them: the relative anisotropy (RA) (15) 
and the fractional anisotropy (FA) (15). 

"Lattice" Anisotropy Index 

The eigenvalues of D represent only three of the seven 
parameters estimated from the data set of diffusion-
weighted images. The other parameters are the T2 -
weighted signal intensity in the absence of diffusion sen-
sitization (A(O)), and three parameters containing 
orientational information (e.g., Euler angles) that can be 
used to specify the eigenvectors of D. Diffusion anisot-
ropy is intrinsically related to the eigenvalues, which 
determine the shape of the diffusion ellipsoids, not to 
their eigenvectors, which specify their orientation. 
Therefore, it is sensible that the rotationally invariant 
"intravoxel" anisotropy indices proposed to date do not 
contain the eigenvectors of D. Nevertheless, since noise 
affects diffusion measurements, it is both reasonable and 
desirable to use the remaining estimated parameters to 
improve our estimate of the diffusion anisotropy in each 
voxel. 

How can we use the directional information contained 
in the diffusion tensor to reduce the noise of our anisot-
ropy measure? Consider a voxel where the diffusion pro-
cess is isotropic and where differences in the estimated 
eigenvalues of D result solely from random noise. If we 
were to perform many replicate experiments, we would 
expect the eigenvectors of D in that particular voxel to be 
uncorrelated, and the principal axes of the corresponding 
diffusion ellipsoids to be random. Moreover, the orien-
tation of the diffusion ellipsoid in one voxel should be 
uncorrelated with that of its neighbors. By contrast, if the



tissue were anisotropic, the diffusion ellipsoid in a par-
ticular voxel would have a preferred direction, and, 
would therefore be correlated with the orientation of the 
ellipsoids in adjacent voxels. 

To improve our estimate of diffusion anisotropy in a 
particular voxel, we propose using an anisotropy index 
that is affected by the degree of orientational coherence 
of the diffusion ellipsoid in the reference voxel with 
those in neighboring voxels. This requires a means to 
measure the degree of collinearity of the eigenvectors of 
D in different voxels. A natural measure is the square of 
the cosine of the angle between eigenvectors, which is 
obtained by taking the square of the dot products be-
tween the two eigenvectors e and e'. However, a more 
general and geometrically satisfying approach is to use a 
measure of collinearity that weights each eigenvector by 
the corresponding principal diffusivity or eigenvalue. By 
summing the squares of the vector dot product between 
each pair of semi-major axes, j A5 e5 , and j A.' ke' k, respec-
tively, we obtain: 

3 3 

D : D' = L L( j:.e,. ·{Ai.ek)2 [3] 
k=1 s=1 

where k and s are indices that run from 1 to 3. Previously, 
we proposed the quantity D : D' as a measure of struc-
tural (diffusive) similarity between media in two differ-
ent voxels with diffusion tensors D and D'. D: D' also 
possesses the required properties of a quantitative mea-
sure (i.e., objectivity as well as rotational invariance) 
(15). For given values of Trace(D) and Trace(D'), D : D' is 
maximized when the corresponding eigenvectors of D 
and D' are collinear. 

We can now form the tensor dot product between the 
anisotropic parts of diffusion tensors in different voxels, 
D : D', which can be written as 

1 
D : D' = D : D' - - Trace(D) Trace(D') [4]

3 

Just as the tensor dot product of the anisotropic part of 
the diffusion tensor D with itself, D : D, provides an 
intravoxel scalar measure of the magnitude of diffusion 
anisotropy, the tensor dot product between the anisotro-
pic parts of diffusion tensors in different voxels, D : D', 
could be used as a basis for the definition of a family of 
intervoxel or "lattice" scalar measures of diffusion an-
isotropy. In this paper, we present one of those measures 
with a particularly good dynamic range for different lev-
els of diffusion anisotropy and a small bias. 

Ifwe take Dref and Dref to be, respectively, the diffusion 
tensor and its deviatoric in a reference voxel, and DN and 
DN to be the diffusion tensor and its deviatoric in an 
arbitrary (neighboring) voxel, the basic element of the 
lattice index (LIN) is defined as: 

We can obtain a local intervoxel anisotropy index by 
averaging this quantity over a region of interest (ROI). 
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Although there are many ways to compute this average 
within each slice, one simple approach is to choose an 
ROI that includes only the eight voxels that are contigu-
ous to the reference voxel, weighting their contributions 
according to their distance from the reference voxels: 

B 

Liref = L aNLIN I L aN [6] 

where LIref is the "lattice" index in the reference voxel, 
and "a" is a weighting factor whose value is 1 for voxels 
that share a side with the reference voxel and 1/L2 for 
voxels that share only a vertex with the reference voxel. 

The computer program we used to calculate the lattice 
index from the elements of the diffusion tensor is avail-
able upon request. The code is written in IDL (Iterative 
Data Language). 

RESULTS 

Figure 1 shows a diffusion ellipsoid image (coronal sec-
tion) of a region of monkey brain. The diffusion ellip-
soids are surfaces of constant mean-squared displace-
ment of diffusing water molecules at some time T after 
they are released at the center of each voxel. This image 
is presented to underscore how the diffusion ellipsoids 
summarize the information contained in the diffusion 
tensor. The degree of diffusion anisotropy is embodied in 
the shape or eccentricity of the diffusion ellipsoid; the 
bulk mobility of the diffusing species is related to the size 
of the diffusion ellipsoid; and the preferred directions of 
diffusion are indicated by the orientation of the diffusion 
ellipsoid. If the tissue were isotropic, then the water 
mobility would be the same in all directions, and these 
surfaces would be spherical. However, if the medium 

FIG. 1. Diffusion ellipsoid image of monkey brain. Diffusion ellip-
soids represent surfaces of constant mean-squared translational 
displacement some time T after the spin-labeled molecule is re-
leased at a point at the center of a voxel. They are calculated in 
each voxel of the ROI enclosed by the rectangle shown on the 
T2 -weighted image. The shape of the diffusion ellipsoid is intrin-
sically related to the diffusion anisotropy and can be characterized 
by using the three scalar principal diffusivities: The largest diffu-
sivity, L1,is the mobility of water in the direction parallel to the 
fibers (DI)., while L2(D1) and L.3 (D1') are the two transverse 
diffusivities perpendicular to the fiber direction. 
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were anisotropic, like brain white matter, then the mo-
bility would depend on the direction in which it is mea-
sured, and these surfaces would be ellipsoidal. Examples 
of both anisotropic white matter and isotropic gray mat-
ter can be found in Fig. 1. In isotropic media like gray 
matter and the CSF-filled ventricles, ellipsoids are spher-
ical. However, since water diffusivity is lower in gray 
matter than in free water, the size of the ellipsoid in gray 
matter is smaller than in CSF. In white matter, the ellip-
soids are more elongated than in gray matter. Although 
the diffusion ellipsoids embody the information con-
tained in the diffusion tensor, they provide a useful pic-
torial representation of diffusion anisotropy, but not a 
quantitative description of it. 

Table 1 shows the x, y, and z components of the ap-
plied diffusion gradients, Gx, Gy, and Gz, for one non-
diffusion-weighted image and for the six most heavily 
weighted-diffusion images. The associated b-matrix ele-
ments computed from each DWI gradient sequence are 
also shown. The effects of cross-terms (i.e., interactions 
between diffusion and imaging gradients) are most pro-
nounced in the read-out (y) direction. When Gx = 30 
mTesla/m and all other diffusion gradients are zero, 
bxx = 830.5 s/mm2

; when Gy = 30 mTesla/m and all 
other diffusion gradients are zero, byy = 974.6 s/mm2 • 

This disparity is due to the read-out pre-dephase gradient 
applied at the beginning of the sequence, just after the 
90° pulse. When diffusion gradients are applied along 
two directions simultaneously, such as along x and y (in 
line 5) or x and z (in line 6), we see a lack of symmetry in 
the off-diagonal elements, bxy and bxz, which is also 
caused by imaging gradients. 

Table 1 
Components of the Applied Diffusion Gradients for One Image with no Diffusion Weighting and the Six Most Heavily 
Diffusion-Weighted Images, along with Their Corresponding b-Matrix Values  a

Diffusion gradients (m Tesla/m) 8-Matrix (s/mm2) 

Gx Gy Gz bxx byy bzz 2*bxz 2*bxy 2*byz 
0.0 0.0 0.0 0.1 8.3 0.3 0.3 -0.9 -1.2 

30.0 0.0 0.0 830.5 8.3 0.3 12.9 -146.9 -1.2 
0.0 30.0 0.0 0.1 974.6 0.3 0.3 -11.0 -13.8 
0.0 0.0 30.0 0.1 8.3 833.2 10.4 -0.9 -147.1 

21.2 21.2 0.0 448.7 556.5 0.3 9.5 -997.7 -10.5 
21.2 0.0 21.2 448.7 8.3 450.7 899.3 -107.9 -108.2 

0.0 21.2 21.2 0.1 556.5 450.7 7.7 -8.3 -999.8 
a While the imaging gradients contribute negligibly to the b-matrix with no diffusion sensitization, their contribution is significant with maximal diffusion 

sensitization. 

Figure 2 shows images ofDxx, Dyy, and Dzz (which are 
proxies for the respective ADCs measured along the x, y, 
and z coordinate directions: ADCx, ADCy, and ADCz). 
Variations in the relative contrast in most of the white 
matter fiber tracts suggest diffusion anisotropy. These 
images also indicate the direction along which the diffu-
sion sensitizing gradients are applied. In contrast, the 
three images of the eigenvalues of D (principal diffusivi-
ties), A1, ,\ , 2 and A3, sorted in order of decreasing size, 
display features that are intrinsic to the tissue, but are 
independent of the direction of the diffusion sensitizing 
gradients used to acquire the diffusion-weighted images. 
Accompanying Fig. 2 is Table 2, containing values of the 
diagonal elements of D (Dxx, Dyy, and Dzz) juxtaposed 
with the eigenvalues of D (,\ , 1 A2, and ,\ ) 3 computed in 

different anatomical regions of interest in the monkey 
brain. The sorted eigenvalues of D suggest that water 
diffusion is highly anisotropic in white matter, where the 
values of A1 (range: 1,400-1,800 X 10-6 mm2 /s) are much 
larger than the values of ,\2 (360-460 x 10-6 mm2 /s) and 
, 6 \3 (140-240 X 10- mm2 /s). The optic tract shows the 
highest values of L1' followed by the corpus callosum 
and internal capsule. Regions having the highest ,\1 also 
tend to have the lowest values of ,\2 and A.3 • Statistically 
significant differences exist between ,\1 and A ,2  as well as 
between ,\2 and ,\3 , in all regions. In general, the diagonal 
elements of D are significantly different from the eigen-
values. However, this discrepancy is more pronounced 
in some anatomical regions than in others. For example, 
in the corpus callosum, the diagonal elements and the 
eigenvalues of D are similar, whereas in the internal 
capsule they are different. While the distribution of the 
eigenvalues is similar in the corpus callosum and the 
anterior internal capsule, suggesting high anisotropy in 
both regions, the distribution of the diagonal elements of 
the diffusion tensor is not, suggesting high anisotropy in 
the corpus callosum but complete isotropy in the anterior 
internal capsule. Similar results are observed in Table 3 
and Fig. 3 comparing rotationally invariant anisotropy 
indices calculated from the eigenvalues of D, and their 
rotationally variant counterparts, constructed from the 
diagonal elements of D. As previously reported (13), 
Trace(D) appears to be relatively homogeneous through-
out the brain. 

Figure 4 shows the estimated means and standard de-
viations of principal diffusivities, L1, ,\2 , and ,\3 , as func-
tions of the signal-to-noise-ratio (SNR) of the non-diffu-
sion-weighted data. Data in Fig. 4a are generated by a 
Monte Carlo simulation, assuming a diffusion tensor rep-
resentative of isotropic tissue (comparable with gray mat-
ter). Asymptotic values (i.e., those with infinite SNRs) 
are A1 = A2 = ,\3 = 700 X 10-6 mm2 /s. For any non-zero 
noise level, there is a significant difference between the 
true and the simulated values of ,\1 and A.3 • Inherently, A1 

is larger than its asymptotic value and ,\3 is smaller than 
its asymptotic value. The bias in the value of ,\2 is much 
smaller for all SNRs. An additional bias (introduced by 
the logarithmic transformation used to estimate diffusion 
tensor elements) becomes significant only when SNR 
drops below 10. Figure 4b shows results of a simulation 
in cylindrically symmetric anisotropic tissue with prin-
cipal diffusivities comparable with those of a highly 
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Table 2 
Diagonal Elements of the Diffusion Tensor, Dxx, Dyy, and Dzz Are Compared with the Sorted Principal Diffusivities (Eigenvalues of D), 
A1 , A2, and A3, in Different Anatomical Regions of the Monkey Brain  a

—— Corpus 
callosum 

Optic 
tract 

Posterior 
internal 
capsule 

Anterior 
internal 
capsule 

Subcortical 
white matter Putamen Caudate 

Parietal 
cortex 

D xx 1481 :±: 93 1064 :±: 122 511 ± 72 678 ± 69 780 ± 119 690 ± 52 683 ± 49 669 ± 48 
D yy 431 ± 54 267 ± 91 1170 ± 125 660 ± 77 727 ± 89 677 ± 56 695 ± 57 727 ± 83 
D ll. 330 ± 87 1004 ± 106 423 ± 174 856 ± 99 501±119 699 ± 87 751 ± 85 664 ± 82 

A1 1690 ± 92 1863 ± 105 1487 ± 85 1483 ± 107 1019 ± 64 861 ± 94 890 ± 70 921 ± 68 
A2 389 ± 71 360 ± 77 453 ± 68 467 ± 44 658 ± 51 684 ± 53 704 ± 53 655 ± 50 
A3 181 ± 44 140 ± 31 183 ± 49 246 ± 30 334 ± 76 521 ± 61 535 ± 75 484 ± 62 

Trace 2242 ± 175 2335 ± 143 2105 ± 204 2194 ± 156 2009 ± 145 2066 ± 180 2129 ± 169 2059 ± 156 
a Dxx, Dyy, and Dzz are proxies of the ADCx, ADCy, and ADCz, obtained by applying diffusion gradients in the x, y, and z directions, respectively. All values 

have been calculated on a voxel-by-voxel basis and then averaged within the ROI. For bilateral structures, measurements from left and right regions have 
been pooled. Average values (µ.2/s) ± SD of measurements made in six animals are presented. 

Dzz Dyy Dxx 


A1 A2 
FIG. 2. Maps of quantities calculated from D in each voxel in a coronal section of monkey brain. Top insert on the right shows the 
T2-weighted amplitude image (A(b = 0)). Top row contains three images showing the diagonal elements of D: Dxx, Dyy, and Dzz. Bottom 
row contains three images showing the eigenvalues of D (principal diffusivities): A1, A2, and A3 , sorted in order of decreasing size. 

anisotropic white matter tract (A. = 1500 x 10-6 mm2
1 /s, 

A. 2 = A.3 = 200 X 10-6 mm2 /s). In this case, A. 2 is system-
atically larger than its asymptotic value and A.3 is smaller 
than its asymptotic value. For very low SNR levels, neg-
ative values of A.3 can be observed. While this is physi-
cally impossible, we do not explicitly constrain the eig-

envalues of D to be positive when we estimate them. The 
value of A.1 is relatively unbiased for all SNRs in white 
matter-like tissue. 

In Fig. 5, the Monte Carlo simulated data are used to 
construct different invariant anisotropy indices, as a 
function of SNR, for levels of anisotropy in the range of 
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a) Rotationally invariant b) Rotationally variant c) Difference 
indices indices 

Volume Ratio RV Volume Ratio 

Relative Anisotropy SD 

FIG. 3. A comparison between maps of rotationally invariant and rotationally variant anisotropy indices in a coronal section of monkey 
brain: (a) the rotationally invariant Volume Ratio (top) and Relative Anisotropy (bottom) indices; (b) the corresponding rotationally variant 
analogs, RV Volume Ratio and SD; and (c) the absolute value of their difference. The possible values of Volume Ratio lie between 0 and 
1, where 0 indicates the highest anisotropy (dark) and 1 represents complete isotropy (bright). Arrows point to the internal capsule, a 
structure that appears to be as isotropic as gray matter in the images of the rotationally variant indices. The rotationally invariant indices, 
however, are prone to a noise-induced bias that makes regions where the signal is low appear more anisotropic than they are. This effect 
is particularly evident in the muscles surrounding the skull. 

Table 3 
A Comparison between Rotationally Invariant Anisotropy Indices (e.g., Volume Ratio, Relative Anisotropy) and Their Respective 
Rotationally Variant (RV) Analogues (RV Volume Ratio and SD) a

—— Corpus 
callosum 

Optic 
tract 

Posterior 
internal 
capsule 

Anterior 
internal 
capsule 

Subcortical 
white matter Putamen Caudate Parietal 

cortex 

1-Volume Ratio 0.74 ± 0.06 0.81 ± 0.05 0.68 ± 0.06 0.58 ± 0.04 0.30 ± 0.11 0.08 ± 0.04 0.08 ± 0.05 0.12 ± 0.04 
1-Volume Ratio 

(rotationally 
variant) 

0.55 ± 0.09 0.48 ± 0.13 0.40 ± 0.15 0.07 ± 0.03 0.13 ± 0.09 0.01 ± 0.00 0.02 ± 0.01 0.03 ± 0.02 

Relative anisotropy 0.65 ± 0.05 0.71 ± 0.06 0.59 ± 0.07 0.52 ± 0.03 0.31 ± 0.06 0.15 ± 0.04 0.15 ± 0.04 0.19 ± 0.03 
SD (rotationally 

variant) 
0.51 ± 0.06 0.37 ± 0.05 0.39 ± 0.09 0.13 ± 0.03 0.19 ± 0.07 0.06 ± O.D1 0.06 ± 0.02 0.09 ± 0.03 

a The rotationally invariant anisotropy indices are constructed from the principal diffusivities, while the rotationally variant indices are constructed using ADCs 
with diffusion gradients applied in three perpendicular directions. The rotationally invariant indices show a degree of anisotropy that is systematically larger 
than their rotationally variant counterparts, however, the disparity between them is markedly smaller in structures that are approximately parallel or 
perpendicular to the laboratory axes (like the corpus callosum), and larger for structures that are oblique with respect to the three laboratory axes (like the 
anterior internal capsule). 

those observed in brain tissue. The systematic bias, while 
individually making A1 larger and l3smaller than their 
true values, causes their ratio, A1/A3, to be significantly 
larger than its true value at all noise levels (Fig. 5a). In 
addition, the variance of this ratio is significantly larger 
in anisotropic media than in isotropic media. In Fig. 5b, 
we see that the bias is much less pronounced than in Fig. 
5a, in particular for high values of anisotropy, and the 
predictions are more reliable over a larger range of SNRs. 
The Volume Ratio (Fig. 5c), and the Fractional Anisot-

ropy (Fig. 5d), are two intravoxel anisotropy indices that 
are insensitive to sorting of the eigenvalues. They exhibit 
a lower variance at all SNRs than the anisotropy ratio. 
Moreover, this variance is less sensitive to differences in 
anisotropy among tissues. Still, they exhibit a significant 
bias, resulting in a progressive increase in anisotropy as 
SNR decreases. The "lattice" anisotropy index (Fig. 5e) 
shows the lowest bias and variance. 

Finally, Fig. 6 contains images showing the T2 -
weighted amplitude, A(0), the Lattice Anisotropy index, 
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FIG. 4. The distribution of the sorted principal diffusivities, a l2, 1,
and L3 (generated by Monte Carlo simulations), as a function of the 
signal-to-noise ratio (SNR). Mean values ± standard deviation of 
16,328 replicates are shown for a voxel containing (a) isotropic 
tissue and (b) anisotropic tissue. In the isotropic case, the stan-
dard deviation of l2 is not displayed to make the figure more 
legible. 

and the Trace of the diffusion tensor, Trace(D), in differ-
ent coronal sections of the monkey brain. 

DISCUSSION 

In this paper, we evaluate various factors that should be 
taken into consideration to measure diffusion anisotropy 
of living tissues quantitatively. First, we ensure that the 
b-matrix is correctly calculated. The contribution of 
cross-terms arising from imaging and diffusion gradients 
has been extensively described previously (19, 25, 26) 
and will not be discussed here. For our sequence, the 
contributions of the imaging gradients to the b-matrix 
were significant, and we had to take them into account by 
computing the b-matrix from the entire gradient pulse 
sequence (19). However, failing to account for imaging 
gradients in estimating the diffusion tensor is not the 
primary source of error in quantitating diffusion anisot-
ropy. Although in this study we would have made a 17% 
error in the estimated diffusion tensor elements by ignor-
ing imaging gradients, this is dwarfed by the error one 
makes in using a rotationally variant anisotropy index to 
characterize diffusion anisotropy in white matter, as de-
scribed in the next section. Moreover, as suggested by Le 
Bihan (26), the contribution of the imaging gradients can 
be mitigated by refocusing the imaging gradients as soon 

as possible after they are applied. This principle has been 
implemented successfully in designing new sequences 
for use in clinical studies (27, 28). 

Rotational Invariance 

As stated earlier, invariant anisotropy indices cannot be 
calculated by using ADCs acquired in only two or three 
perpendicular directions. In general, it is necessary to 
determine the three eigenvalues of D, which can be cal-
culated from the six estimated diffusion tensor elements. 
This requirement highlights an important difference be-
tween characterizing diffusion anisotropy and measuring 
the average diffusivity (or Trace(D)): The latter can be 
calculated from ADCs acquired in three perpendicular 
directions (when imaging gradients are negligible), 
whereas the former cannot. 

The first goal of this paper was to assess the impor-
tance of rotational invariance on characterizing diffusion 
anisotropy in vivo. This is significant because, to date, 
diffusion anisotropy in vivo has only been reported using 
rotationally variant anisotropy indices. Therefore, one's 
level of confidence in these previous studies must be 
related to the severity of the errors caused by using these 
indices of diffusion anisotropy. Moreover, if it were 
found that one could measure diffusion anisotropy ade-
quately by using a rotationally variant index (e.g., calcu-
lated from three perpendicular ADCs), then it would not 
be necessary to estimate the full diffusion tensor to char-
acterize diffusion anisotropy, thus reducing the number 
of acquisitions and simplifying the analysis of DWIs sig-
nificantly. 

Using Table 2, Table 3, and Fig. 3, we can now address 
these issues. Our data show that in white matter, the 
range of the diagonal elements of the diffusion tensor 
(proxy of the ADCs) is consistently smaller than the range 
of the principal diffusivities. Moreover, rotationally vari-
ant anisotropy indices consistently show a lower degree 
of anisotropy than their invariant analogs. As expected, 
however, the magnitude of this difference depends on 
the relative orientation of the fiber tracts with respect to 
the x-y-z laboratory coordinate directions. In general, it is 
small but significant in structures that lie approximately 
parallel to one of the laboratory coordinate axes (like the 
corpus callosum), and it is large in structures that lie 
oblique to the three laboratory axes (like the anterior 
internal capsule). This phenomenon is clearly seen in 
Fig. 3, in which images of the rotationally invariant in-
dices (Volume Ratio and RA) and their respective rota-
tionally variant analogs (RV Volume Ratio and SD) are 
juxtaposed. In the internal capsule, the degree of diffu-
sion anisotropy as measured by the rotationally variant 
indices is so low that this highly anisotropic structure 
appears indistinguishable from the surrounding isotropic 
gray matter. 

J 

) 

There is an insidious character to this orientational 
artifact. While skewness between the fiber-tract direction 
and the laboratory axes is very evident when it occurs in 
the plane of the image (such as in the internal capsule in 
our images), it is more difficult to observe when it occurs 
in a plane perpendicular to the image plane (such as in 
the optic tract in our images). In the optic tract one might 



----

20 

.. 1 6 .. 1 6 
::I 	 .:ii 
> 	 .. 

> 
,.., 1 2 	 1 2 ,..,
Q. 

2 	
Q. 

20 8 	 0 8
.!!! 	 .!!! ..c 	 ..c 

4 	 4 

0 1 0 20 30 40 50 0 10 
SNR 

d) Fractional 
c) Volume Ratio index. 

0 

. 0.2 	 . 0.8 
ii 	 ii> 	 > 
,.., 0.4 	 ,.., 0.6 
Q. Q.

0 0 

-E.. 0.6 	 . 0.4 

.!!!c 	 c.. .. 0.8 0.2 

0 10 20 30 40 50 0 1 0 
SNR 

e) Lattice index 

.. 0.8 
::I 
ii 
> 

0.6,.., 
Q. 

0 
 --4.-

-E 0. 4.. 	 ..........
·;:.. 
0.2 -+-

1 0 20 30 40 50 
SNR 

20 30 40 50 
SNR 

anisotropy index. 

20 30 
SNR 

40 50 

A.11/..2/)..3 =1700/200/200 µ2/s 
A.l!A.2/A.3 =1500/300/300 µ2/s 
A.l!A.2/A.3 =1200/400/400 µ2/s 

A.l/A.2/A.3 =1000/500/500 µ2/s 

A.l/A.2/A.3 = 700/700/700 µ2/s 

Toward a Quantitative Assessment of Diffusion Anisotropy 

) 

FIG. 5. Simulated values of rota-
tionally invariant anisotropy indices 
as a function of the signal-to-noise 
ratio (SNR) generated by Monte 
Carlo methods. Each simulation 
consists of 16,328 replicates. For 
each index, a simulation is per-
formed with five different levels of 
diffusion anisotropy, spanning the 
range of eigenvalues we observe in 
brain tissue. Cylindrical symmetry 
of diffusion is assumed (A2 = A3). 
Mean value ± standard deviation 
are shown for the (a) anisotropy ra-
tio index L1/L3,(b) anisotropy ratio 
index L1/(L2 + L3)/2, (c) Volume Ra-
tio index, (d) Fractional Anisotropy 
index, and (e) "Lattice" Anisotropy 
index. Since for the Volume Ratio, 1 
represents complete isotropy and 0 
indicates the highest anisotropy, for 
this index the scale of the y-axis is 
inverted. For all plots, values of 
SNR up to 50 are presented. The 
last point on the right of each curve 
indicates the true value of the index 
(i.e., for an infinite SNR). 

think that the fibers run anterior to posterior, perpendic-
ular to the x-y image plane; notwithstanding, the signif-
icant differences between the diagonal elements of the 
tensor and the principal diffusivities indicate that the
trajectoty of these fibers is actually oblique to the z axis. 
By using a rotationally variant anisotropy measure, we 
would significantly underestimate the anisotropy of the 
optic tract, the most anisotropic structure we investi-
gated in this study. 

The orientational artifact introduced by rotationally 
variant measures would not be problematic if we could 
always orient the tissue in the magnet such that we could 
apply diffusion gradients precisely along the principal 
directions of the structures of interest. However, in most 

clinical and experimental in vivo MRI applications, this 
is impossible. Even if we could properly align the diffu-
sion gradients with the principal axes of the tissue in one 
voxel, we are virtually assured that these gradients will 
not coincide with the principal axes of tissues in other 
voxels, because the anisotropic tissues of interest exhibit 
a non-uniform fiber direction field. This is clearly evi-
dent in brain white matter. Even if the fiber directions 
were more uniform and homogeneous, we still recom-
mended performing tests to establish a correspondence 
between the purported fiber tract direction and that 
which is measured from the diffusion tensor data. 

We must conclude that rotational invariance is a nec-
essary property of a quantitative measure of diffusion 
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FIG. 6. Coronal images of monkey
brain showing (a) the T2-weighted
amplitude, A(b = 0), (b) the "Lat-
tice" anisotropy index, and (c) the 
Trace of the diffusion tensor, 
Trace(D). On the amplitude image, 
arrows point to the region selected 
for ROI analysis; on the "Lattice" 
anisotropy index image, arrows 
point to white matter regions where 
anisotropy is low because fibers of 
different tracts merge. The "Lattice" 
anisotropy index image shows 
strong contrast between the aniso-
tropic white matter regions and the 
isotropic gray matter and CSF-filled 
regions. The Trace image, however, 
exhibits strong contrast between 
the CSF-filled regions, where the 
diffusivity is high, and the gray and 
white matter regions, where the 
mean diffusivity is significantly 
lower. 

anisotropy in brain. There, the errors introduced by using 
rotationally variant diffusion anisotropy measures can be 
so severe as to preclude their clinical use. 

Effect of Noise 

Although rotationally invariant diffusion anisotropy 
measures do not depend on the orientation of the fiber 
tracts, they are still susceptible to noise contamination. 
Specifically, noise makes isotropic structures appear 
anisotropic and makes anisotropic structures appear 
more anisotropic. In our experiments, the principal dif-
fusivities in all gray matter structures (i.e., putamen, 
caudate, and parietal cortex) indicate some degree of 
diffusion anisotropy, since there are statistically signifi-
cant differences between ,\1 and ,\ ,2  and between ,\2 and 
,\3 in all regions (see Table 2). There are also statistically 
significant differences between ,\2 and ,\3 in all white 
matter regions. At face value, this result would suggest 
that water diffusion in the plane perpendicular to fiber-
tract axis is not cylindrically symmetric. 

Monte Carlo simulations help explain these findings, 
and more generally how MR image noise affects our 
measurement of diffusion anisotropy. Sorting the eigen-

values introduces a systematic sampling bias for any 
non-zero noise level. Figure 4a shows that for all SNR 
there is a significant difference between the values of L1  
,\2 , and ,\3 in an isotropic medium, even though their true 
values (i.e., their asymptotic noise-free values) are all 
equal. In the presence of background noise, ,\1 is consis-
tently larger than its true value, and ,\3 is consistently 
smaller than its true value; ,\2 (owing to its symmetric 
position between the largest and smallest eigenvalues) 
exhibits the smallest bias. 

In Fig. 4b, we see that the systematic sampling bias 
caused by sorting the eigenvalues has a different effect in 
anisotropic media. For any non-zero noise level, there is 
still a significant difference between ,\2 and ,\ ,3  but in 
white matter, because ,\1 is usually much larger than the 
other two eigenvalues, the distribution of ,\1 is unlikely 
to overlap those of ,\2 and L3•Therefore, the likelihood of 
misclassifying ,\1 (even at small SNRs) is much lower in 
anisotropic media than in isotropic media. 

This sorting bias has a profound effect on the anisot-
ropy ratio, ,\ / 1 L3In Fig. 5a we see that ,\ / ,\1 3 • increases as 
SNR decreases but by a different amount in isotropic and 
anisotropic media. The variance of ,\1 I,\3 is significantly 

Table 4 
Comparison among Different Types of Rotationally Invariant Anisotropy Indices a

—— Corpus 
callosurn 

Optic 
tract 

Posterior 
internal 
capsule 

Anterior
internal 
capsule 

Subcortical 
white matter Putamen Caudate Parietal

cortex

L1/L3 36.6 ± 37.5 51.8 ± 49.4 61.0 ± 62.2 31.4 ± 89.3 4.5 3.0 1.7 ± 0.3 1.8 0.4 2.0 ± 0.3 
L1/(L2+3)/2 7.4 ± 1.5 9.2 ± 1.7 5.6 ± 1.0 4.6 ± 0.4 2.1 ± 0.3 1.4 ± 0.1 1.5 ± 0.2 1.6 ± 0.1 
Fractional 

anisotropy
0.81 0.07 0.87 ± 0.07 0.77 ± 0.12 0.72 ± 0.04 0.46 ± 0.04 0.24 ± 0.06 0.26 0.07 0.31 ± 0.05 

Lattice index 0.57 ± 0.04 0.70 ± 0.03 0.58 ± 0.08 0.53 0.05 0.28 ± 0.02 0.10 ± 0.04 0.11 ± 0.03 0.16 ± 0.04 
a >�,.l>3 and >l(>2 + >3)/2 are intravoxel indices that require sorting of the eigenvalues based on their magnitude. The Fractional Anisotropy index (FA) as well 

as the Volume Ratio and Relative Anisotropy indices shown in Table 3 are intravoxe/ indices that do not require sorting of the eigenvalues. The noise-immune 
"lattice" index is an intervoxel measure of anisotropy that does not require sorting of the eigenvalues. 
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larger in anisotropic media than in isotropic media for all 
SNRs, but the relative bias (estimated value/true value) is 
larger in isotropic media. Thus, the variance and the bias 
of L1/ L3depend on the diffusion properties of the me-
dium. This is clearly undesirable. 

It is interesting that the bias predicted by the Monte 
Carlo simulations is evident in our monkey brain data. 
Table 2 shows that in white matter, A.1/A.3 is inexplicably 
high (36.6 in the corpus callosum, 51.8 in the optic tract, 
and 61.0 in the posterior internal capsule), with a large 
standard deviation. In gray matter (e.g., the putamen, 
caudate, and parietal cortex), the standard deviation is 
much lower than that observed in white matter, but the 
values of A1/ A3 are still significantly different from 1, the 
value one expects in an isotropic medium. 

While in principle, A. / 1 A3 is an informative measure of 
anisotropy, in practice it is highly susceptible to noise 
contamination. There are two reasons for this. First, A1/ A.3 

does not exploit all of the information contained in the 
diffusion tensor about anisotropy, so it measures this 
quantity inefficiently. Second, the bias introduced by 
sorting the eigenvalues according to their magnitude sys-
tematically overestimates A1 and underestimates A3, mak-
ing their ratio significantly larger than their true value at 
all noise levels. Functions of A1/ A3, such as the eccentric-
ity, would also be susceptible to this artifact. In conclu-
sion, A1/A3 should not be used to assess diffusion anisot-
ropy unless an effective means to eliminate its bias and 
reduce its variance is found. 

These problems are partially mitigated by using A1/(A2 

+ A3)/2 instead of A1 /A3 (Fig. 5b). We see that the bias in 
A1)(A2 + A3)/2 is less pronounced, and that it predicts the 
degree of anisotropy more reliably over a much larger 
range of SNRs. For isotropic media, the value of A.1/(A.2 + 
A3)/2 is still significantly different from the true value of 
1, because A1 and A2 are still occasionally misclassified. 
However, as the degree of anisotropy increases (for the 
same SNR), the likelihood of misclassifying A1 and A2 
decreases; although individual values of A2 and A3 are 
biased, their average is not. A1/(A2 + A3)/2 is reasonably 
accurate and precise for SNR levels greater than 20 when 
diffusion anisotropy is high. Given that the experimental 
parameters used in the simulation were identical to those 
used in the acquisition of the monkey brain images, 
A1/(A2 + A3)/2 provides a good estimate of D

11 
/D .L in 

highly anisotropic white matter structures at SNR levels 
typical of our in vivo data. However, in our Monte Carlo 
simulation, we have assumed A3 = A.2 • When using A.1/(A2 

+ A3)/2 for analysis of the in vivo data, one tacitly as-
sumes cylindrical symmetry ()f diffusion in the tissue. 
This is troubling because there is no evidence to support 
this assumption in white matter. 

The bjas introduced by sorting the principal diffusivi-
ties is relevant to a number of recent studies. In some 
studies, it was assumed a priori that diffusion in white 
matter (29), and in skeletal muscle (30, 31) is cylindri-
cally symmetric. Hsu et al. (32) recently reported statis-
tically significant differences between the two smallest 
sorted eigenvalues in skeletal muscle, but still asserted 
that diffusion in this tissue was cylindrically symmetric. 
In another interesting study (2), statistically significant 
differences were observed among the estimated principal 

diffusivities in cardiac tissue. These were used to sup-
port the conclusion that this tissue is not cylindrically 
symmetric (2). Our analysis suggests that such conflict-
ing claims about the structural and anatomical signifi-
cance of the sorted eigenvalues can be resolved by ac-
counting for the sorting bias. In general, deciding 
whether water diffusion in tissue is spherically symmet-
ric (i.e., isotropic), cylindrically symmetric, or asymmet-
ric is a complex statistical problem that cannot be re-
solved by applying standard statistical tests to the 
distribution of the sorted principal diffusivities in an 
ROI. 

One approach to removing the systematic bias intro-
duced by sorting the eigenvalues is to use a rotationally 
invariant anisotropy index that is insensitive to their 
order. This is the case with the Volume Ratio and the 
Fractional Anisotropy index. Nevertheless, as seen in 
Fig. 5, at all SNRs, both indices are still slightly biased, 
making all media appear more anisotropic than they are 
(although this artifact is no longer caused by sorting). The 
utility of these anisotropy measures lies in the fact that 
over the range of SNRs encountered in clinical diffusion 
imaging studies, their variances are still acceptably 
small, and relatively insensitive to the degree of anisot-
ropy. For all values of SNR, both of these anisotropy 
indices are superior to A. / 1 A. • 3

Lattice Index 

With noisy diffusion-weighted images, the computation 
of diffusion coefficients is often performed by averaging 
the diffusion-weighted signals within an anatomical ROI. 
If our goal is to measure diffusion anisotropy, we gener-
ally cannot use this approach, which is only appropriate 
when the anisotropic structures have the same orienta-
tion in all voxels within the anatomical ROI, (i.e., the 
anisotropy is homogeneous). This requirement may per-
haps be satisfied in some skeletal muscles, but it is not 
satisfied in brain white matter, cardiac muscle (2, 33), 
intervertebral disk, kidney (4), or other anisotropic tis-
sues in which the fiber orientation of otherwise histolog-
ically homogeneous structures can vary dramatically 
within the anatomical region of interest. Therefore, when 
imaging these structures, both the diffusion tensor and 
the anisotropy indices derived from it must be calculated 
on a voxel-by-voxel basis. 

Nonetheless, it is possible to mitigate the effect of noise 
by using the "lattice" index, without introducing the 
artifacts caused by averaging the signal intensity over the 
entire ROI. First, the lattice index is a local average, so 
the likelihood of averaging diffusion tensors whose prin-
cipal axes of diffusion are oriented in many different 
directions is reduced. Second, it uses all the information 
contained in the diffusion tensor to reduce noise (in 
particular, the eigenvectors of D, which are not used 
explicitly in an intravoxel anisotropy index). Third, it is 
more immune to bias than an intravoxel index, because 
the effect of noise, which makes the medium appear 
more anisotropic, is partially compensated for by the loss 
in coherence between eigenvectors as the noise level 
increases. In the simulation results shown in Fig. 5, we 
see that the lattice anisotropy index significantly reduces 



bias, particularly when the degree of anisotropy is low. 
This is also evident in the images of the monkey brain. By 
comparing the intravoxel (Fig. 3) and the lattice (Fig. 6) 
anisotropy measures, we see a dramatic reduction of 
apparent anisotropy, especially in regions where the sig-
nal is low, such as in the muscles surrounding the skull. 

One potential disadvantage of using the "lattice" index 
is that it is not scale invariant, i.e., its value depends on 
the relative sizes of the voxel and the anatomical struc-
tures we want to investigate. If image resolution is low, 
then the assumption of local homogeneity of the fiber 
direction field may not be satisfied, and the loss of co-
herence in the distribution of the eigenvectors will not 
only be a consequence of the noise, but of anatomical 
variations as well. It is also important to note that while 
the lattice index reduces the effect of "random" noise, it 
will not suppress systematic errors, such as motion arti-
facts, ghosting, misregistration, distortion of DWIs by 
eddy currents, miscalibration of the gradients, or errors 
in the computation of the b-matrix. 

In principle, the local averaging process can be further 
improved by adapting the local averaging window so that 
it excludes voxels with very different histological char-
acteristics from those of the reference voxel (e.g., at a 
boundary of CSF and white matter). This local segmen-
tation procedure could employ additional MRI parame-
ters, such as T � T , 2 Trace(D), etc. 

Biological Implications 

A significant new biological finding reported in this pa-
per is that the anisotropy of white matter in regions 
where fibers have a regular and parallel arrangement is 
much higher than was previously reported (34-38). In 
the most anisotropic structure we investigated, the optic 
tract, water diffusivity in the direction parallel to fibers is 
only about a factor of two less than the self-diffusivity of 
water at body temperature, and almost 10 times larger 
than the diffusivity in the direction perpendicular to the 
fibers. This finding is not particular to the monkey brain, 
since we obtained similar results in cats (39) and in 
humans (28). We attribute the differences between our 
findings and those previously reported to differences in 
methodology. Two factors are primarily responsible: 1) 
in all previous studies, ADCs were measured rather than 
the eigenvalues of the diffusion tensor; and 2) the re-
ported spatial resolution in other studies was lower than 
that used in this study. As discussed above, the degree of 
anisotropy one measures depends on voxel dimensions, 
because the larger the voxel, the greater the likelihood of 
including different tissues (i.e., gray matter or CSF), and 
the greater the likelihood of including fibers with differ-
ent orientations. 

Another important finding is that diffusion anisotropy 
is highly variable in different white matter regions; it is 
much lower in the subcortical white matter than in the 
optic tract or in the corpus callosum. These differences 
are not caused by partial volume contamination by gray 
matter, because at the level of our subcortical ROI, the 
white matter encompasses a very large region (40). 
Rather, this disparity arises because the pattern of the 
fibers in the subcortical regions is less coherent than in 
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the optic tract or in the corpus callosum, where the fibers 
are parallel. The white matter regions with the lowest 
diffusion anisotropy are those where different white mat-
ter tracts merge. One such area, shown in Fig. 6, lies at 
the junction of the corpus callosum and the subcortical 
white matter (arrows); another lies at the junction of the 
internal capsule and the subcortical white matter (ar-
rows). 

While on one hand, these regional differences in white 
matter anisotropy underscore the utility of this parameter 
to discriminate between different structural characteris-
tics of tissues, on the other hand, they complicate the 
interpretation of diffusion anisotropy when used diag-
nostically. Whereas the values of T , 1 T , 2 and Trace(D) are 
relatively uniform in normal white matter, the same 
value of diffusion anisotropy in one anatomical region of 
white matter could indicate healthy tissue, while in an-
other white matter region it could indicate pathology. 
Therefore, normal values of the degree of anisotropy 
must be known in each region. To aid us in this task, a 
database of normal values of anisotropy should be com-
piled in different white matter structures for a population 
of normal subjects. 

SUMMARY AND CONCLUSIONS 

Measuring the degree of diffusion anisotropy in hetero-
geneously oriented tissues like brain white matter is 
more challenging than measuring their average diffusiv-
ity or Trace(D). We show that rotationally variant mea-
sures of diffusion anisotropy, which are calculated di-
rectly from apparent diffusion coefficients (ADCs) in two 
or three perpendicular directions, generally underesti-
mate the degree of diffusion anisotropy in the brain. This 
orientational artifact can be so severe as to make some 
highly anisotropic white matter structures appear com-
pletely isotropic, indistinguishable from gray matter. 
Theoretically, we can eliminate this orientational artifact 
by using rotationally invariant anisotropy indices that 
are functions of the eigenvalues of the diffusion tensor. 
Anisotropy measures that require the eigenvalues to be 
sorted by their magnitude (such as the ratio of the largest 
and smallest eigenvalues, L1/L3) are susceptible to a sort-
ing bias that systematically overestimates the degree of 
diffusion anisotropy. Moreover, once the eigenvalues 
(and/or eigenvectors) are sorted, the assumptions of ran-
dom sampling are violated so that standard statistical 
tests used to analyze their distributions no longer apply. 

Other rotationally invariant anisotropy indices can be 
constructed that are independent of the way we order the 
eigenvalues. Unfortunately, these anisotropy measures 
also overestimate the degree of diffusion anisotropy at 
moderate SNRs, and increasingly so as SNR decreases. 
However, they are still less susceptible to noise contam-
ination than L1/L3•

Attempts to increase SNR, either by increasing voxel 
size or by averaging the signal intensity of DWIs (or 
diffusion tensors) over a region of interest, introduce a 
partial volume artifact that causes one to underestimate 
diffusion anisotropy (by averaging a non-uniform distri-
bution of fiber-tract directions). The lattice index that we 
propose here is relatively insensitive to this averaging 
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artifact and significantly decreases both the bias and the 
variance of the estimated diffusion anisotropy. 

The degree of diffusion anisotropy in white matter 
measured from the diffusion tensor and its variability 
among different anatomical regions, are significantly 
higher than was previously reported when ADCs in two 
or three perpendicular directions were used. In certain 
structures such as the optic tract, the corpus callosum, 
and the internal capsule, water diffusivity in the direc-
tion .parallel to fibers is 7 to 10 times larger than the 
diffusivity in the direction perpendicular to them, and 
about a factor of two less than the self-diffusivity of water 
at body temperature. In other structures, where the pat-
tern of fiber directions is less coherent, anisotropy is 
much lower and, in some cases, is virtually absent (e.g. in 
regions where fibers of different bundles merge). 

Finally, we want to emphasize that both careful exper-
imental design and the acquisition of high-quality diffu-
sion-weighted images are extremely important to assess 
the degree of diffusion anisotropy in highly anisotropic 
and heterogeneously oriented media, such as white mat-
ter. The entire diffusion tensor (both diagonal and off-
diagonal elements) should be estimated from a relatively 
large number of low-noise, high-resolution DWIs ac-
quired with a large range of b-matrix values. This sys-
tematic and quantitative examination of diffusion anisot-
ropy measures (and of their sources of errors) should 
help us evaluate the conclusions about diffusion anisot-
ropy drawn in previous MRI studies. 
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