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ABSTRACT 

A simple method is presented to reduce within-group 
inter-subject scatter in diffusion tensor magnetic 
resonance imaging (DT-MRI). By “borrowing strength” 
across co-registered subjects to accommodate indirect 
effects of unmeasured machine and physiological noise, 
the method reduces voxel-specific tensor variance across 
subjects. The technique may aid in fiber bundle atlas 
construction, in testing differences between groups of 
subjects, and in automated outlier detection. While the 
technique does not in itself address DT-MRI signal 
artifact issues directly, it may serve to lessen the effects of 
these artifacts when their sources have not been measured. 
An example application to DT-MRI of twelve healthy 
male volunteers at the splenium of the corpus callosum 
slightly right of midline demonstrates the possible utility 
of the method. 
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1.  INTRODUCTION  

At  every  voxel  s  in  DT-MRI  of  a  volume  S of  human  
brain tissue sits a 3× 3 symmetric tensor 

      

¡D D 
¡

Ds = ¡Dxy Dyy 
xx xy 

¡
¡ D Dxz yz  

¯ Dxz ° ° 
yz ° , s � , S = v.D S #( ) 
° 

D ° 
zz ¢ ±s 

Estimation  of  tensor  fields  helps to determine the 
principal  directions  of  anisotropic  diffusion  of  water  
protons  in  brain  tissue  and  thus  to  track  major  fiber  
bundles  (white  matter  tracks,  fasciculi).  DT-MRI  echo  
data are obtained by application of multiple diffusion 
gradients in at least six  mutually  non-redundant  directions  
through  the  tissue.   
Writing  

d = (D  D   s xx x y Dx z Dy  D  D )T 

y yz zz s

as  the  vector  of  non-redundant  elements  of  Ds ,  each  

tensor is most often estimated as the weighted least 
squares  solution  to   

I = I0 exp(� TE /T2 ) exp(� bd s ) ,

where I0 is the intrinsic signal, TE is the echo time, T2 is 

the transverse relaxation time, and 

b = (bx 2b  x xy 2bx  b  2b  z yy yz bz z )

is a minimal form of an operator-specified design matrix 
of diffusion sensitivities, the b-matrix [1]. 

Many rotation invariant functionals of tensor fields 
are used to produce summary images of various aspects of 
anisotropic and isotropic diffusion. These include 
versions of the apparent diffusion coefficient (ADC), the 
principal diffusivities (eigenvalues of the estimated 

tensors), the mean diffusivity defined as trace (D s) / 3 ,

and various anisotropy indices (fractional anisotropy, 
relative anisotropy, lattice index) that quantify differences 
between  eigenvalues  and  their  eigenvectors [2].   Subject 
motion, eddy currents, magnetic susceptibility artifacts, 
RF  noise,  hardware  issues,  cardiac  pulsation  and  other  
physiological noise all affect the estimated tensor field in 
deleterious ways  [2,3]. 

The preceding artifacts affect the numerical stability, 
bias, variance and covariance of the tensor field. For 
instance, baseline noise biases the tensor eigenvalues and 
their rankings and hence can inflate anisotropy indices 
[4]. Although recent advances in the spatial normalization 
of DT-MRI images enable registration of homologous 
brain regions across multiple subjects, these artifacts 
continue to distort within- and between-group analyses 
when using current methods. Better statistical methods 
are needed to improve tensor field estimation and 
interpretation. 

The purpose of this paper is to develop a simple 
closed-form method for multiple-subject, grouped DT
MRI that may improve aggregated tensor field estimation 
and inference, and to provide an example application of 
the technique. 
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2.  A  CLOSED-FORM  VARIANCE  COMPONENTS  
METHOD FOR MULTIPLE SUBJECT DT-MRI   

The central idea of this paper is to take the following 
simple data analytic steps: 1) use weighted least squares to 
produce an initial estimate of the tensor field; 2) “shrink” 
each subject-specific tensor toward the mean field by 
“borrowing strength” across subjects to improve inter-
subject coherence and an estimated mean field with lower 
variance; and 3) apply standard tensor functionals to 
produce summary DT-MRI images with greater statistical 
power. 

Denote by Di,s the weighted least squares estimate of 

the diffusion tensor at voxel s � S for i = 1, ..., n co

registered subjects. Let 

     yi,s = (Dxx i ; , s Dxy i ; , s Dxz i ; , s Dyy i ; , s Dyz i ; , s Dzz i ; , s)
T 

and define yi = (yi,s1 " yi,su )
T . Consider a linear mixed 

effects model for each subject’s contribution defined as 

  y = µ + 1 � E + F , (1) i v i i 

i = 1, ..., n . In (1), µ is the mean tensor field over S , a 

fixed and unknown parameter to be estimated, and is 
composed of vectors 

     µs = (µxx  µx y µx z µy y µy  
T 

z µz z )s  , s � S

that are assumed to be shared across subjects. Mean field 
µ is estimated by an aggregation of models (1) across all 

subjects at each voxel. 1 v is  a  vector  of  1’s  of  length  

equal to the number of voxels v , and �  is Kronecker’s 

product. Independent subject-specific effects E i  are

random offsets to µ that attempt to adjust for 

unmeasured subject effects arising from a variety of 
unspecified sources. These random effects are defined as 

     
TE = [E E E E E E ] , i xx i ; xy i , xz i , yy i , yz i , zz i , 

where E(E i ) = 0  and cov(E i ) = 4E  . 4E may  be any  

patterned variance-covariance matrix having an explicit 
inverse.   The  error  term  F i  in  (1)  is  also  assumed  to  be  

multivariate Gaussian with expectation 0  and  variance-
covariance matrix 4F  independent  of  4E . 4F  is  shared  

by all subjects and accommodates spatially auto-
correlated noise.  Only through  registered  replicates  
across multiple subjects can one estimate the subject-
specific  random  effects  and  their  variance-covariance  
matrix,  a  separate  variance  component  from  the  erro
variance,  thus  to  shrink  them  towards  µ  to increase inter-

subject, voxel-specific coherence and hence to reduce 

var(ˆ µ ̂  ) .

2.1 Spatial auto-covariance functions 

Since an unstructured 4F has a potentially large number 

of free parameters, with maximum 6 ( v v + 1) / 2 , a simple 

low dimensional parameterization can improve both 
statistical and computational efficiency. One such choice, 
found to be useful in Fourier analyses of functional MRI 
time series [10], is to specify a set of mutually 
independent and isotropic auto-covariance functions 
(ACFs) defined over S , one independent ACF for each 
of the six components of yi,s . Modeling residual errors in 

this fashion appears sensible, and especially so if indeed 

the mean function parameters µ and { i}  capture  much  E
of the systematic inter-dependence and anisotropy as 
intended. 

Let h = s � sa denote a spatial lag measured in 

voxels. Of course, anisotropic ACFs would utilize more 
complicated functions of the vector difference that 
preserve directional information in addition to the simple 
distance  from  the  origin  used  here.   Two  choices  of  
parametric  auto-covariance  models  are  the  mono-
exponential  and  Gaussian  forms   

T (B ) = T exp( �Bjh)s s, a j s s, 

and 
2Ts s, a(Bj ) = Ts s, exp( �Bjh ), 

respectively, for j = 1, ...6 . Denote by %F,j the six 

symmetric matrices of spatial auto-covariances (either 
mono-exponential or Gaussian or both) whose off-
diagonal elements decrease in h , and define 

4F = � 
6

j=1 
%F,j . The total variance covariance matrix 

for yi is thus 

4i = 1v v × � [ 4E + 4F ] . 

2.2  Grouped  analyses  

Aggregation of models (1) across subjects by 

concatenation  of  the  y = (y T " y T )T1 n  yields the full

mixed  effects  model  

y = Xµ + 1 � E + F , 

where X is a conformable matrix of subject specific 

covariates, E = (E T T

1 " En ) , F = (F1 " Fn ) . 1n v¸  is a 

vector  of  1’s  of  length  n v¸ , and 4 = 41  � " � 4n . 
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Since co-registered DT-MRI data are balanced and 
complete (all subjects measured at the same brain 
locations and no missing data) estimates of all parameters 
in (1) and (3) exist in closed-form [6]. 

3. EXAMPLE APPLICATION 

As described by Jones et al. [7], the DT-MRI data we 
employ were acquired from 12 healthy male volunteers 
(one more than reported therein). Isotropic resolution (2.5 
mm) DT-MRI data were collected on a GE Signa 1.5 T 
LX system using a sequence fully optimized for DT-MRI 
of white matter [8]. Following correction for distortions 
induced by eddy currents, the tensor was estimated in 
each voxel for each subject using linear regression [1]. 
The DT-MRI volume from each subject was elastically 
normalized to a standard anatomical reference space, 
being the MNI EPI template supplied as part of SPM 
(The Wellcome Department of Cognitive Neurology, 
Institute of Neurology, London, UK), by employing a 
procedure similar to that outlined in [7], yet with elastic 
registration [9]  and preservation of principal directions 
[10] algorithms without the affine transformation used 
previously in [7]. 

Once each subject’s tensor volume had been 
estimated, the principal eigenvector, being the eigenvector 
associated with the largest eigenvalue, was determined in 

each voxel and its 2-D projection onto the  (x y , ) plane is 

represented by a small bar of unit length. The orientation 
plots thus obtained from each of the twelve subjects were 
then overlaid. This visualization method is termed a 
‘bow-tie plot’ due to its appearance at voxels where the 
principal eigenvectors from the twelve subjects are 
modestly well aligned [7]. 

Figure 1 is a bow-tie plot comparison of the method 
in the present paper to that of Jones et al. within the 
splenium of the corpus callosum. Figure 1A is a fraction 
anisotropy map [2]. In Figure 1B, a high degree of 
coherence of principal eigenvectors is seen (tight bow-
ties), while there is less coherence in regions of gray 
matter and CSF (the bow-ties become star-shaped). The 
difference in coherence could be attributable to two 
different phenomena. First, high within-voxel 
orientational coherence may be the result of good spatial 
normalization of truly homologous regions across 
subjects, whereas those voxels showing lower 
orientational coherence may be those for which spatial 
normalization has performed poorly. However, there is 
uncertainty associated with every estimate of an 
eigenvector and it has been shown that the orientational 
uncertainty in a DT-MRI data set is non-uniform 
throughout the brain, even with data collected in the same 
experiment. Regions with high diffusion anisotropy have 
lower orientational uncertainty than regions with lower 
diffusion anisotropy [11]. The anatomical variation in 
inter-subject orientational coherence, seen in Figure 1B, 
could therefore reflect difference in the quality of spatial 
normalization, differences in intra-subject eigenvector 
uncertainty, or a combination of these effects. 

A B C 

Figure  1. Bow-tie plot comparison  of the  inter-subject alignment of principal eigenvectors in 12  healthy male volunteers. A. Fractional 
anisotropy  map  of  a  selected  voxel  patch  in  the  splenium  of  the  corpus  callosum  slightly  right  of  midline  (radiological  convention); B. 
Jones et al., 2002; C. The method proposed in this paper. 

Figure 1C is a bow-tie plot of the application of the 
proposed new method (1) to these same data. No spatial 
autocovariance functions were computed. It appears that 
the shrinkage operation has increased inter-subject 
orientational coherence in all voxels. In regions where 
the intra-subject uncertainty in the principal eigenvectors 
is intrinsically high, namely in regions of apparent low 
anisotropy, it is not clear that improving the inter-subject 
orientational coherence (such as is seen in Figure 1C) is 
desirable since this would imply a consistent orientation 
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across subjects. Yet perhaps this issue may not be of 
much practical importance. If the region is one exhibiting 
truly isotropic diffusion, incoherent subject contributions 
at each voxel are shrunken to either one or the other 

“principal direction” at random, changing a ‘� ’ into an 
approximate ‘X’, which may be acceptable in such a case. 
Further study of the preceding issues is warranted, 
especially as they relate to the proposed procedure used 
here. 

4.  DISCUSSION  

Fiber tracking or tractography is currently one of the 
hottest topics in DT-MRI research. In this technique, 
discrete (voxel-based) estimates of the eigenvector field 
are used to infer continuous white matter trajectories. 
Tractography maps that summarize a population by 
combining information from a number of subjects have 
been created in two ways: 1) tracking on the average 
tensor field computed from a set of spatially normalized 
tensor fields [7], and 2) tracking on individual DT-MRI 
data sets and then overlaying the individual tractography 
results [12]. In the former approach, since it appears that 
the shrinkage operation proposed here does not introduce 
any bias in the mean orientation (concurring with theory), 
there is little advantage conferred in applying the 
technique when one wants only to study the mean tensor 
and not its variance. With DT-MRI data, the estimated 
mean field in unaffected by changes in the assumed 
variance field. Such decoupling of mean and variance is a 
theoretical property shared by balanced and complete 
repeated measures data under Gaussian conditions. Yet of 
course one cannot ignore the variance field when inferring 
properties of the mean field. However, with the latter 
approach, one expects intuitively that tracts launched from 
the same voxel will follow similar courses and hence the 
degree of overlap of the individual trajectories will be 
increased. This should allow more confidence to be 
assigned to the tracking result. 

Another exciting potential application of the 
proposed method is also in the automated detection of 
outlier data sets. Just as the method itself requires no 
iteration, so too do empirical influence functions exist in 
closed form [13]. This means that one need not delete 
each subject in turn and re-compute to obtain leave-one
out results. Instead, it is easy to explicitly ‘down-sample’ 
the original result that included all subjects to obtain the 
same results. 
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