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Abstract. In this paper, we present a novel variational formulation for restor­
ing high angular resolution diffusion imaging (HARDI) data. The restoration 
formulation involves smoothing signal measurements over the spherical do­
main and across the 3D image lattice. The regularization across the lattice is 
achieved using a total variation (TV) norm based scheme, while the finite ele­

ment method (FEM) was employed to smooth the data on the sphere at each 
lattice point using first and second order smoothness constraints. Examples 
are presented to show the performance of the HARDI data restoration scheme 
and its effect on fiber direction computation on synthetic data, as well as on 
real data sets collected from excised rat brain and spinal cord. 
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1. Introduction. Observing the directional dependence of water diffusion in the 
nervous system can allow us to infer structural information about the surround­
ing tissue. Axonal membranes and myelin sheath present a barrier to molecules 
diffusing in directions perpendicular to the white matter fiber bundles whereas in 
directions parallel to the fibers, the diffusion process is less restricted [10]. This re­
sults in anisotropic diffusion that can be observed using magnetic resonance (MR) 
measurements by the utilization of magnetic field gradients [47]. In general, the 
acquired MR signal depends on the strength and the direction of these diffusion sen­
sitizing gradients. Repeated measurements of water diffusion in tissue with varying 
gradient directions provide a means to quantify the level of anisotropy as well as to 
determine the local fiber orientation within the tissue. 

In a series of publications, Basser and colleagues [6, 7, 8] have formulated an 
imaging modality called “diffusion tensor MRI (DT-MRI or DTI)” that employs a 
second order, positive definite, symmetric diffusion tensor to represent the local tis­
sue structure. They have proposed several rotationally invariant scalar indices that 
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quantify different aspects of water diffusion observed in tissue, similar to different 
“stains” used in histological studies [4]. Under the hypothesis that the preferred 
orientations of water diffusion will coincide with the fiber directions, one can deter­
mine the directionality of neuronal fiber bundles. This fact has been exploited to 
generate fiber-tract maps that yield information on structural connections in human 
[8, 34, 38, 22] as well as rat brains [42, 63, 55, 40, 39] and spinal cords [54]. 

Despite its apparent success, DT-MRI has significant shortcomings when the 
tissue of interest has a complicated geometry. This is due to the relatively simple 
tensor model that assumes a unidirectional —if not isotropic— local structure. In 
the case of orientational heterogeneity, DT-MRI technique is likely to yield incorrect 
fiber directions, and artificially low anisotropy values. This is due to the Gaussian 
model implicit in DTI that allows only one preferred direction for water diffusion. 
In order to overcome these difficulties several approaches have been taken. Q-
space imaging, a technique commonly used to examine porous structures [13], has 
been suggested as a possible solution [59]. However this scheme requires strong 
gradient strengths and long acquisition times [5], or significant reduction in the 
resolution of the images. Q-space imaging requires many images to be acquired 
since the space of diffusion encoding gradients is sampled on a 3D lattice. As a 
more viable alternative Tuch et al. have proposed to do the acquisition such that 
the diffusion sensitizing gradients sample the surface of a sphere [53, 52]. In this 
high angular resolution diffusion imaging (HARDI) method, one does not have to 
be restricted to the tensor model and instead, it is possible to calculate diffusion 
coefficients along many directions. This method does not require more powerful 
hardware systems than those required by DT-MRI. Several groups have already 
performed HARDI acquisitions in clinical settings and have reported 43 to 126 
different diffusion weighted images acquired in 20 to 40 minutes of total scanning 
time [30, 52, 33] indicating the feasibility of the high angular resolution scheme as 
a clinical diagnostic tool. 
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Figure 1. The effect of fiber orientation heterogeneity on diffu­
sion MR measurements. (a) Isosurfaces of the Gaussian probability 
maps assumed by DTI overlaid on fractional anisotropy maps com­
puted from the diffusion tensors. (b) Probability profiles computed 
using the diffusion orientation transform (DOT) from HARDI data 
overlaid on generalized anisotropy (GA) maps. Both schemes per­
form well when there is only one orientation (top left portions of 
both panels). HARDI based method is able to resolve fiber cross­
ings whereas DTI yields an averaged profile. 
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In Figure 1, we present a matrix of simulated voxels showing renderings of DTI-
based estimates of orientation and HARDI-based orientation estimates computed 
using the scheme we present in Section 2.1. The orientation heterogeneity is evi­
dent from the HARDI-based renderings at each voxel since HARDI measurements 
can resolve multiple dominant directions of molecular diffusion in a voxel, a lack­
ing feature of DTI. Since the HARDI data acquisition is very nascent, not many 
techniques of processing the HARDI data have been reported in literature. In the 
following section we will review the recently reported techniques of HARDI data 
denoising, which may be done prior to further analysis or visualization. 

1.1. Review. We will first briefly describe the physics of acquisition and then 
point to various recent restoration techniques followed by methods for computing 
anisotropy measures from HARDI. This will be followed by an overview of our 
method. 

1.1.1. Physics of Diffusion MR and HARDI Acquisition. The random process of 
diffusion of water molecules is described by the diffusion displacement PDF pt(r). 
This is the probability that a given molecule has a diffusion displacement of r 
after time t. The relation between the measured MR signal, and the diffusion 
displacement PDF is given by [13] 

S(q)
(1) pt(r) = exp(−2π i q · r) dq ,

S0 

where S(q) is the MR signal when a diffusion gradient pulse of strength G and 
duration δ is applied yielding the wave vector q = γδG where γ is the gyromagnetic 
ratio for protons. S0 is the image acquired with no diffusion encoding gradient 
applied. The above formula indicates that water displacement probabilities are 
simply the Fourier transform of S(q)/S0. It is the orientational modes of pt(r) that 
are taken to be the underlying fiber directions. 

The HARDI processing proceeds by acquiring diffusion weighted images with 
many diffusion encoding gradient directions, effectively sampling a spherical shell of 
the q-space (the space of diffusion encoding gradients) as described by Tuch [51]. It 
is desired that this sampling minimize the average angle between gradient directions 
so that the diffusion signal may be accurately reconstructed. The gradient direction 
for each image has been chosen to correspond to the vertices of an icosahedron which 
has been repeatedly subdivided. Our data sets include diffusion-weighted images 
acquired with the application of diffusion gradients along 81 or 46 directions in 
addition to one image with no diffusion weighting. Since the process of diffusion 
is known to have antipodal symmetry [30], we need to sample only one of the 
hemispheres in q-space. 

1.1.2. Restoration. Processing of HARDI data sets has received increased attention 
lately and a few researchers have reported their results in literature. The use of 
spherical harmonic expansions have been quite popular in this context since the 
HARDI data primarily consists of scalar signal measurements on a sphere located 
at each lattice point on a 3D image grid. Tuch et al. [53, 52] developed the HARDI 
acquisition and processing and later Frank [30] showed that it is possible to use 
the spherical harmonics expansion of the HARDI data to characterize the local ge­
ometry of the diffusivity profiles. Although elimination of odd-ordered terms and 
the truncation of the Laplace series provide some level of smoothing, there is no 
discussion of smoothing the data across the lattice points. Chen et al. [20] find 
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a regularized spherical harmonic expansion by solving a constrained minimization 
problem. However the expansion is a truncated spherical harmonic expansion of 
order four, restricting the level of complexity that can be modeled using this ap­
proach. In [33], Jansons and Alexander described a new statistic, persistent angular 
structure, which was computed from the samples of a 3D function. In this case, 
the function described displacement of water molecules in each direction. The goal 
in their work was to resolve voxels containing one or more fibers. However, there 
was no discussion on how to restore the noisy HARDI data prior to resolution of 
the fiber paths. More recently, Descoteaux et al., [23, 24], proposed an analyti­
cal solution to the reconstruction of the diffusion orientation distribution function 
(ODF). They model the signal using a spherical harmonic function of order eight 
and fit this model to the noisy data using a regularization constraint involving the 
Laplace-Beltrami operator for smoothing the HARDI data over the sphere of di­
rections at each voxel. Their analytic form for the ODF reconstruction requires a 
numerical solution to a linear system and they do not consider regularization across 
the 3D lattice which can be important in order to obtain a piecewise smooth repre­
sentation of the given HARDI data. Wiest-Daessle et al. [62, 61] described several 
variants of non-local mean denoising applied to diffusion MRI. The approach which 
is applicable to HARDI involved considering the dataset as a vector-valued image, 
however this approach does not respect the directional relationship among the im­
ages. Assemlal et al. also employ only spatial regularization approaches to robustly 
determine the diffusion ODF [1] and PDF [2] fields. Savadjiev et al. [46] formulate 
a novel spatial regularization in terms of the underlying 3D curves which represent 
neuronal fibers. 

In contrast to HARDI denoising, DT-MRI denoising has been more popular and 
numerous techniques exist in literature. For sampling of the techniques used to 
denoise DT-MRI, we refer the reader to [50, 17, 60, 57, 58, 19, 27, 9, 28, 3, 32]. 
Most of these works use a linearized Stejskal-Tanner equation [47] describing the 
MR signal decay with the exception of Wang et al., [57, 58]. Using the Stejskal-
Tanner equation as is, is quite important in preserving the accuracy of the restored 
data and this was shown in the experiments in [58]. Another important constraint 
in the DTI restoration is the positive definiteness of the tensors, in this context, 
work in [18] introduced an elegant differential geometric framework to achieve the 
solution. The work in [57, 58] and [60] chose alternative methods to impose the 
positive definiteness of the restored tensor fields namely, a linear algebraic and a 
PDE-based method respectively. Approaches to filtering based on the Riemannian 
geometry of the manifold of symmetric positive-definite matrices have been reported 
[31, 14]. 

1.2. Overview of our modeling scheme. In this section we present a novel 
and effective variational formulation that will directly estimate a smooth signal 
S(θ, φ) and the probability distribution of the water molecule displacement over all 
directions p(θ, φ), given the noisy measurement 

ˆ(2) S(θ, φ) = S0 exp(−bD(θ, φ)) + η(θ, φ) , 

where Ŝ is the signal measurement taken on a sphere of constant gradient magnitude 
over all (θ, φ), b is the diffusion weighting factor, D(θ, φ) is the apparent diffusivity 
as a function of the direction expressed by the polar and azimuthal angles on the 
sphere and η(θ, φ) is Rician noise. The noise is due to additive Gaussian noise 
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corrupting the complex-valued k-space measurements. However, for high signal-to­
noise ratios we may consider η to be Gaussian distributed. A variational formulation 
for denoising using a data constraint based on the Rician likelihood was given 
by Basu et al. [9]. However, this leads to a highly nonlinear evolution equation 
since it involves the ratio of two Bessel functions. A modification to the non-local 
means algorithm which can handle Rician noise was presented by Descoteaux et al. 
[25]. However, neither of these approaches address smoothing over the spherical 
domain. In contrast, Clarke et al. [21] propose a robust method for estimating 
fiber orientation distributions in the presence of Rician noise, but they do not 
consider smoothness constraints over the voxel lattice. In this work we will assume 
a high SNR so that the Gaussian additive noise is a good assumption. Since we 
are performing high-field ex-vivo experiments, we can acquire many images and use 
averaging to increase the SNR so that this assumption is valid. 

The variational principle involves smoothing S values over the sphere and across 
the 3D image lattice. The key factor that complicates this problem is that the do­
main of the data at each voxel in the lattice is a sphere. One may use the level-set 
techniques developed by Tang et al., [48] to achieve this smoothing. However, when 
data sets are large, it becomes computationally impractical to apply the level-set 
technique at each voxel independently to restore these scalar-valued measurements 
on the sphere. Alternative approaches to solving variational problems over non-
planar domains have been described in recent literature. Cecil et al. [15] propose 
several numerical approaches to dealing with discontinuous derivatives due to peri­
odic boundaries encountered when solving problems on S1 and S2 . Liu et al. [37] 
proceed by finding a conformal mapping from the surface to the plane, then solving 
the problem in the 2D parameter space. Bogdanova et al. [12] presented explicit 
formulations of differential operators on parametric surfaces in terms of the Rie­
mannian metric. Since our input data are sparsely distributed over a triangulated 
sphere (gradient directions are computed by subdividing an icosahedron, we simply 
use the spherical triangles as our computational domain. We arrive at a computa­
tionally efficient solution to this problem by using the finite element method (FEM) 
on the sphere and choosing local basis functions for the data restoration. Unlike 
the reported work on spherical harmonic basis expansion of the diffusivity function 
on the sphere [29, 43, 20], the FEM basis functions have local support and are more 
stable to perturbations due to noise in the data. From the denoised data we will 
compute a probability, pt(θ, φ), of molecular diffusion over a sphere of directions. 

The rest of this paper is organized as follows: Section (2) contains a variational 
formulation of the HARDI denoising problem including smoothing the scalar signal 
over a sphere of directions at each 3D lattice point and across lattice points, com­
putation of probability of water molecular diffusion over the sphere of directions 
and several measures of anisotropy computed from the field of probability densities. 
In section (3), we present several experimental results depicting the performance of 
our algorithms on synthetically generated and real data sets. Finally, we conclude 
in section (4). Appendices A and B contain the details of the finite element basis 
used and the element as well as the global equations. 

2. Formulation of the HARDI restoration. Normally, the diffusion weighted 
images are quite noisy especially when acquired using large field gradients. One can 
reduce some amount of noise by signal averaging for each gradient direction used. 
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However, this by itself does not preserve the details in the data. We now present a 
variational formulation for effective denoising of the HARDI data. 

2.1. Variational smoothing. We propose a membrane-spline deformation energy 
minimization for smoothing the measured image Ŝ(x, θ, φ). The variational principle 
for estimating a smooth S(x, θ, φ) is given by 

µ
min E(S) = |S(x, θ, φ) − Ŝ(x, θ, φ)|2dS dx 
S 2 Ω S2 

(3) +  ∇(θ,φ)S 2dS dx + g(x) ∇xS dx 
S2 Ω 

where Ω is the domain of the image lattice and S2 is the sphere on which the signal 
measurements are specified at each voxel. The first term of Equation (3) is a data 
fidelity term which makes the solution to be close to the given data. The degree of 
data fidelity can be controlled by the input parameter µ. The second term is a regu­
larization constraint enforcing smoothness of the data over the spherical domain at 
each voxel. The minimizer of this energy term is a membrane spline over the sphere 
which is in Sobolev space H1(S2) [49]. The third term is another regularization term 
which causes the solution to be piecewise smooth over the spatial domain (the 3D 
voxel lattice). The minimizer of this TV norm is in the space BV (R3), functions of 
bounded variation [35]. g(x) inhibits smoothing across discontinuities in S over the 
lattice. More on this in section (2.3). The choice of membrane spline smoothness 
over S2 is motivated by the partial volume effect in MRI. The signal at each voxel 
is the average over a volume much larger than a single axonal fiber. Within this 
volume there may be fibers of varying orientation and regions of isotropy. Though 
the diffusivity function may be nearly discontinuous over S2 at a point near a fiber 
bundle, it is highly unlikely for the volume average to be so. For this reason, we do 
not use TV norm minimization over the spherical domain. 

2.2. Finite element method based smoothing of S(θ, φ). We will consider 
a deformation energy functional which is a weighted combination of the thin-plate 
spline energy and the membrane spline energy, which is commonly used in computer 
vision literature for smoothing scalar-valued data in ℜ3 (see McInerney et al., [41], 
Lai et al., [36]). In our case, the data at each voxel is an image on the sphere, 
S(θ, φ), so the problem is inherently 2 dimensional. 

The diffusion-encoding gradient directions are taken as the vertices of a subdi­
vided icosahedron, to achieve a nearly uniform sampling of gradient directions over 
the sphere. We map this piecewise planar approximation of the sphere to the global 
FEM coordinate system (u, v) by setting (u = θ, v = φ) for each gradient direc­
tion. This domain is triangulated so each face of the subdivided icosahedron will 
have a corresponding triangle in the (u, v) domain. A periodic boundary condition 
is imposed so that S(2π, v) = S(0, v). The area element in the (u, v) domain is 
du dv = sin φdθdφ. A similar mapping was used by McInerney & Terzopoulos [41] 
and Vemuri and Guo [56] for finite elements over a spherical domain. 

Note that, after mapping, the data can be seen as a height field over the (u, v) 
plane. The smoothness of the height function, z(u, v), will be enforced by the 
smoothing functional 
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The weight on the membrane term is α and the weight on the thin-plate term is β. 
Once we have computed a smooth z(u, v), the result will then be mapped back to 
the image on the sphere, S(θ, φ). 

The data energy due to virtual work of the data forces, f , and virtual displace­
ment, z, is 

(5)	 Ed = − z(u, v)f(u, v)du dv. 
Ω 

By the principal of virtual work, the spline system is in equilibrium when the total 
work done by all forces is zero for all virtual displacements. 

The restoration of S(θ, φ) at each voxel is formulated as the energy minimization 

(6)	 min E(S) = min (Ep(S) + Ed(S)), 
S S 

with ∇Ep(S) = −∇Ed(S) defining the equilibrium condition of the system. 
We use polynomial shape functions, Ni, as a basis for the unknown smooth 

approximation, z, of the data over the u, v plane. We may write z as 

i=1 

n 

(7)	 z(u, v) = qiNi(u, v) = Nq 

where N is a (1 × n) row vector, and q is a column vector of nodal variables. 
The domain, Ω, is partitioned into triangular elements, Ωj , each with their own 

local shape functions. The shape functions, in terms of local (barycentric) coordi­
nates are given in Appendix A. For each element j, we have, 

(8)	 z(u, v) = Nj(u, v)qj 

for (u, v) ∈ Ωj . In the rest of this section we will derive linear equations for the 

element potential energies, Ej
p, and data energies, Ej

d, in terms of the coefficients 

qj . Finally, we will assemble a global linear system, and solve for q. This will allow 
us to evaluate z(u, v) using Equation 7. 

The global potential energy is the sum of the energies of each finite element, 

(9)	 Ep  Ej 
p 

j 

where the local potential energy function for each element is given by 

Ωj

j j j j j(10) Ej = (α|z |2 + α|z |2 + β|z |2 + 2β|z |2 + β|z |2)du dv. p u v uu uv vv 

The element strain vector (given by Dhatt and Touzot [26]) is 
  

jzu 
 

j 
z

 

v 
 

ǫj 
 

j 
(11)	 = z

 

uu 
 

j 
uv 
j 

z
zvv 

  

which may be rewritten as 
	  

(N1)u . . . (Nn)u 
	 (N1)v . . . (Nn)v 
	  

(12) ǫj =  (N1)uu . . . (Nn)uu 
 qj = Bqj 

	  

(N1)uv . . . (Nn)uv 

(N1)vv . . . (Nn)vv 

	  
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where we have defined B as the (5 × n) matrix of derivatives of the nodal basis 
functions. We can then rewrite the element potential (strain) energy as 

(13) Ej 
p = ǫjT Dǫjdu dv 

Ωj 

where we define 
  

α 0 0 0 0 
 0 α 0 0 0  
  

(14) D =  0 0 β 0 0  , 
  

0 0 0 2β 0 
0 0 0 0 β 

  

the diagonal matrix containing the membrane and thin-plate spline weighting fac­
tors. We have the option of finding solutions in the space H1 by setting β = 0, or 
in H2 by making β > 0. In general, the parameter values depend on the angular 
resolution of the underlying signal. Making the values too high may smooth out 
salient details, and setting the values too low may result in fitting the spline to 
the noise. In practice we determine the values empirically by processing synthetic 
datasets. 

Since qj is constant over each element we can derive the element stiffness matrix, 
K, in terms of D and B giving us the element strain energy as, 

jT Kj j(15) Ej = qjT BjT DBjqjdu dv = q q .p 
Ωj

We will model the data constraint as springs pulling z(u, v) toward the measured 
values z0(u, v), as illustrated in Figure(2). The force at each point will obey f = 
k(z − z0), where k is the spring constant. For small displacements the spring 
constant, k = µ

2 where µ is the data constraint coefficient from Equation (3). 

Figure 2. Data forces are applied at each vertex in the triangu­
lated domain. 

The element deformation energy due to virtual displacement z(u, v) is given by 

(16) Ej = − Njqjk(Njqj − z0) du dv. d 
Ωj 

Inverse Problems and Imaging Volume 3, No. 4 (2009), 625–648 



633 Variational denoising of DW-MRI 

We can split the deformation energy into two terms : Ej = qjT 
d (Fjqj − f j) by 

defining 

(17) Fj = −k NjT Nj du dv 
Ωj

and 

NjT f j(18) = k z0 du dv. 
Ωj 

We may now balance the deformation energy and data energy by solving the fol­
lowing linear system: 

(Kj + Fj)qj f j(19) = . 

The global linear system for smoothing the entire mesh may be obtained by ap­
propriately summing the local element matrices, as detailed in Appendix B. The 
global system is symmetric, and has a sparse banded structure with 18 nonzero 
diagonal bands. Since the global matrix is positive-definite, an efficient solution to 
q is obtained via Cholesky factorization. 

2.3. Spatial smoothing of S(x). We are now ready to describe the smoothing of 
the data across the 3D lattice. There are many existing methods that one can apply 
to this problem as discussed earlier. Smoothing the raw vector-valued data, S(x), 
is posed as a variational principle involving a first order smoothness constraint on 
the solution to the smoothing problem. Note that the data at each voxel are m 
measurements of S over a sphere of directions and can be assembled into a vector 
after the smoothing on the spherical coordinate domain has been accomplished. We 
propose a weighted TV-norm minimization for smoothing this vector-valued image 
S. This smoothing scheme reduces the effect of inter-region blurring, a drawback 
Gaussian convolution and isotropic diffusion suffer. Our method is a modified ver­
sion of the work in Blomgren et. al., [11]. The novelty here lies in the choice of the 
weighting i.e., the coupling term between the channels. The variational principle for 
estimating a smooth S(x) is given by 

m m

(20) min E(S) = (g(x) Si + 
µ 

(Si − Ŝi)
2)dx 

S 2Ω i=1 i=1 

where, Ω is the image domain, µ is a regularization factor and m is the number of 
images. The first term here is the regularization constraint on the solution to have a 
certain degree of smoothness. The second term in the variational principle makes the 
solution faithful to the data in the L2 sense. We have used the coupling function 
g(x) = 1/(1 + ||∇GA(x)||2) for smoothing HARDI, where GA is the generalized 

anisotropy index defined in ¨ Ozarslan et al., [45] and is computed from the variance 
of normalized diffusivity. For a more detailed discussion on GA, we refer the reader 
to [45]. This selection criterion preserves edges in anisotropy while smoothing the 
rest of the data. This anisotropy measure is chosen since it can be computed without 
explicitly computing the ODF, and it is our goal to smooth the data prior to ODF 
computation. An image of the coupling term for a typical slice is shown in Figure 
(3). 

Here we have used a different TV-norm than the one used by Blomgren and Chan 
[11]. The TVn,m norm is an L2 norm of the vector of TVn,1 norms ( Si(x) 2dx)Ω 
for each channel. We use the L1 norm instead, which is known to have better 
discontinuity preservation properties. 
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Figure 3. S0 (left), GA (center), and coupling factor g (right). 

The gradient descent form of the above minimization is given by 

  

( )

∂Si g∇Si 
= div − µ(Si − Ŝi) i = 1, ..., m 

∂t ∇Si
 

∂Si
 ˆ(21) |∂Ω×R
+ = 0 and S(x, t = 0) = S(x)

∂n 

The use of a modified TV-norm in equation (20) results in a looser coupling between 
channels than when using the TVn,m norm. This reduces the numerical complexity 
of Equation (21) and makes solution for large data sets feasible. 

The gradient descent of the vector-valued image smoothing using the T Vn,m ­

norm 
m

TV [TVn,1(Si)]2 n,m(S(x)) = i=1 

J

presented in [11] is given by, 

  
∂Si(x, t) TVn,1(Si) ∇Si 

= ∇ · ( )
∂t TVn,m(S) ∇Si 

(22) S(x, 0) = S0(x). 

Note that the TVn,m norm appears in the gradient descent solution of the vector-
valued minimization problem. Considering that our data sets consist of up to 82 
images, corresponding to (magnetic field) gradient directions, calculating the TVn,m 

norm by numerically integrating over the 3-dimensional data set at each step of an 
iterative process would be prohibitively expensive. In contrast using our modified 
TV-norm described earlier leads to a more efficient solution. We are now ready to 
present the numerical solution to equation (21). 

2.3.1. Fixed-Point Lagged-Diffusivity. Since the m Equations(21) are coupled only 
through the function g, we can drop the subscript on S with no ambiguity (later 
the subscript will refer to spatial coordinates.) In this section we will discuss the 
numerical solution for each channel, S, of the vector-valued image S. Equation (21) 
is nonlinear due to the presence of Si in the denominator of the first term. We 
linearize Equation (21) by using the method of “lagged-diffusivity” presented by 
Chan and Mulet [16]. By considering ∇S to be a constant for each iteration, and 
using the value from the previous iteration we can instead solve 

  (23) − 1 
(∇g · ∇St + g∇2St+1) + µ(St+1 − S0) = 0 ∇St 

Here the superscript denotes iteration number. Equation (23) can be recast in the 
form 
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We now discretize the above equation in the following. 

2.3.2. Discretized Equations. To write Equation (24) as a linear system (ASt+1 = 
f t), we discretize the Laplacian and gradient terms. Using central differences for 
the Laplacian we have 

∇2St+1 St+1 + St+1 + St+1 = x−1,y,z x,y−1,z x,y,z−1 

6St+1 + St+1 + St+1 + St+1 (25) − x,y,z x+1,y,z x,y+1,z x,y,z+1 

We define the standard central differences to be 
1 

ΔxS = (Sx+1,y,z − Sx−1,y,z )
2
1 

ΔyS = (Sx,y+1,z − Sx,y−1,z )
2
1 

(26) ΔzS = (Sx,y,z+1 − Sx,y,z−1)
2

We can rewrite Equation (24) in discrete form using the definitions in Equation (26) 

−Sx−1,y,z − Sx,y−1,z − Sx,y,z−1 √ 
µ (ΔxSt)2+(Δy St)2 +(ΔzSt )2
 

+(6 + )Sx,y,z
 g 

−Sx+1,y,z − Sx,y+1,z − Sx,y,z+1 
J 

1 = (µS0 (ΔxSt)2 + (ΔySt)2 + (ΔzSt)2 
g 

(27) +ΔxgΔxSt + ΔygΔyS
t + ΔzgΔzS

t) 

This results in a sparse linear system. The matrix of coefficients of St+1 has 7 
nonzero bands, and is given by 

  

µ St 
06 + −1 . . . −1 . . . −1 . . . 

g0 
  

µ St 
1 

 −1 6 + −1 . . . −1 . . . −1 
 g1 

(28) 
  

.µ St 
2 

 0 −1 6 + −1 . . . −1 . . .  
g2 

  

. . . . . . . . . . . . . . .. . . . . . 

The matrix in Equation (28) is symmetric and diagonally dominant. We employ 
the conjugate gradient descent to solve this system. The solution of Equation (28) 
represents one fixed-point iteration. This iteration is continued until |St−St+1| < c, 
where c is a small prespecified tolerance. 

2.4. Computing probabilities. The probability in Equation (1) can now be eval­
uated by computing the quantity S(q)/S0 and performing the FFT. If the sig­
nal, S, is assumed to decay mono-exponentially from the origin of q-space (where 
S(0) = S0), one can interpolate the signal values for arbitrary q. It is then pos­
sible to extrapolate (using the monoexponential decay model) from the spherical 
coordinate locations to grid points in cartesian space and then perform the FFT on 
this extrapolated data. The result is a probability of water molecule displacement 
over a small time constant. Since the quantity of interest is primarily the direc­
tion of water displacement, one can integrate out the radial component of pt(r) to 
get pt(θ, φ). This is commonly referred to as the diffusion orientation distribution 
function or simply ODF. Computing the ODF with this method is computationally 
expensive since it requires a 3D FFT at each voxel, and then a numerical integration 
for each direction. For the sake of efficiency, we will compute a probability profile 
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(not the ODF), which will make processing large datasets feasible. This probability 
profile, written as pt(r, θ, φ) quantifies the probability that a water molecule diffuses 

through a sphere of fixed radius, r. A more detailed treatment by ¨ Ozarslan et al. 
can be found in [44]. This scheme provides a fast way to calculate the orientation 
profiles. In our implementation we have evaluated the series given in [44] up to 
l = 6 terms since the reconstructed surfaces have very simple shapes which can be 
accurately represented using a truncated spherical harmonics series, and r0 was set 
to 17.5µm. An alternative approach is to use the Funk-Radon Transform proposed 
by Tuch [51], however this introduces smoothing due to a spherical convolution step 
which would make evaluation of our denoising algorithm more difficult. 

To enhance the visual impact of the probability profiles we apply a sharpening 
transform to the distribution by subtracting a uniform distribution (sphere) from 
each profile, as shown in Figure (4). The radius of the sphere is the minimum of 
the probability over all directions. By performing this operation the direction of 
maximum probability becomes more apparent. 

Figure 4. Original probability profile (left), Minimum probability 
sphere (center), and sharpened probability profile (right). 

3. Experimental results. The denoising and rendering techniques described in 
the previous section were first applied to a synthetic HARDI dataset. This dataset 
was generated using the technique described by ¨ Ozarslan et al. in [45]. The dataset 
was designed to depict a region of curving fibers, a region of straight fibers, and a 
crossing between the two. A total of 81 acquisition directions are simulated with b 
= 1500 s/mm2 . 

A small sample of the probability surfaces p(θ, φ) computed from the synthetic 
data, taken from near the crossing region, is shown in Figure (5a). The real-valued 
synthetic data was corrupted with Gaussian noise of zero mean, and variance σ2 = 
0.005. p(θ, φ) surfaces computed from the noisy data (without any denoising) are 
shown in Figure (5b). The same voxels are shown – after smoothing over the 
spherical manifold at each voxel independently – in Figure (5c), after smoothing 
over the image lattice, in Figure (5d) and after both techniques have been used, in 
Figure (5e). The parameter values used for the restoration were µ = 0.97, α = 0.40, 
β = 0.22, k = 100. The right-hand side plate in each figure shows the sharpened 
profiles computed from the S values depicted on the left-hand side. Note that the 
probability surfaces in figure 5e) depict better smoothing than those in either of 5c) 
or 5d), visually indicating that one needs to perform smoothing on the sphere and 
across the lattice and not just one or the other. 

From Figure (5b), it can be seen that the noise has a large influence on the 
smoothness of the distribution. As expected from the variational formulation, the 
spikes of noise present in the raw data have been smoothed while preserving the 
overall shape of the S profile. This smoothness is evident in the computed proba­
bility profiles as well. 
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A quantitative evaluation can be obtained by comparing the distributions com­
puted from the smoothed data with the ground-truth by using the square root of 
J-divergence (symmetrized KL-divergence) as a measure. This divergence is defined 
as 

(29) d(p, q) = J(p, q) 
J 

where 

(30) J(p, q) = 
1 

2 

n 

i=1 

p(θi, φi) log 
p(θi, φi) 

q(θi, φi) 
+ q(θi, φi) log 

q(θi, φi) 

p(θi, φi) 

In Table (1) we compare the distances, d(p̂, p), between the densities computed 
from the original synthetic data, (p̂), and the unrestored data, the data restored 
only using the FEM method, the data restored using only the TV-norm minimiza­
tion, and the data restored using both techniques. For each technique, the mean 
distance, µ(d(p̂, p)), between the densities in corresponding voxels and the standard 
deviation, σ(d(p̂, p)), is presented. As evident from Table (1), the TV restoration 
has superior performance over the FEM technique in terms of the mean error. The 
combination of techniques has a lower mean error and standard deviation of the 
error than either the L2-norm based or the TV-norm based restoration. Note also 
that the error achieved by applying smoothing over the sphere prior to smoothing 
over the voxel lattice is lower than when the order is reversed. Since TV-norm 
minimization can be seen as a nonlinear diffusion process, performing the denois­
ing in this order propagates smoothed intensities within homogeneous regions. In 
subsequent experiments we perform the denoising in this order. 

Table 1. Error between ground-truth probabilities p ̂ and proba­
bilities computed from restored synthetic data when SNR = 14. 

Method µ(d(p̂, p)) σ(d(p̂, p)) 
p = No Restoration 0.9409 0.2516 

p = FEM Restoration 0.5540 0.1997 
p = TV Restoration 0.2840 0.2129 

p = FEM + TV Restoration 0.1889 0.1748 
p = TV + FEM Restoration 0.2128 0.1631 

Table 2. Error between ground-truth probabilities p ̂ and proba­
bilities computed from restored synthetic data when SNR = 5. 

Method µ(d(p̂, p)) σ(d(p̂, p)) 
p = No Restoration 2.7461 0.3432 

p = FEM Restoration 1.1848 0.2424 
p = TV Restoration 0.9175 0.1903 

p = TV + FEM Restoration 0.4970 0.2046 
p = FEM + TV Restoration 0.6552 0.1984 

The denoising algorithm was applied to a dataset consisting of one non-diffusion 
weighted image and 46 diffusion weighted images of a rat spinal cord. Our data were 
acquired using a 14.1 Tesla (600 MHz) Bruker Avance Imaging spectrometer system 
with a diffusion weighted spin echo pulse sequence. Imaging parameters were : TR 
= 1400 ms, TE = 25 ms, Delta = 17.5 ms, delta = 1.5 ms, bhigh = 1500s/mm2 , 

Inverse Problems and Imaging Volume 3, No. 4 (2009), 625–648 



¨ 638 McGraw, Vemuri, Ozarslan, Chen and Mareci 

blow = 0s/mm2, diffusion gradient strengths = 0 mT/m with 28 averages were 
measured for b = 0s/mm2 and diffusion gradient strengths = 733s/mm2 with 7 
averages were measured for each of the 46 diffusion weighting-gradient directions. 
The 46 directions were derived from the tessellation of a hemisphere. The image field 
of view was 4.3×4.3×12mm3, acquisition matrix was 72×72×40. The approximate 
SNR for the S0 and diffusion weighted images were 58 and 50 respectively. The 
parameter values used for the restoration were µ = 0.97, α = 0.02, β = 0.0, k = 1.0. 

Axial slices before and after denoising are shown for the non-diffusion weighted 
image in Figure (6) and one diffusion weighted image in Figure (7). The ring­
ing artifacts visible near the sample boundary in Figure (6) have been noticeably 
decreased. Note that the edges in the image have been well preserved. 

Figures (8) and (9) show restored probability profiles from rat brain and spinal 
cord datasets. The brain data were acquired using a 17.6 Tesla (750 MHz) Bruker 
Avance Imaging spectrometer system with a diffusion weighted spin echo pulse 
sequence. Imaging parameters were : TR = 2000 ms, TE = 28 ms, Delta = 17.8 
ms, delta = 2.2 ms, bhigh = 1500s/mm2 , blow = 0s/mm2, 6 averages for each of 
the 81 diffusion weighting-gradient directions. The 81 directions were derived from 
the tessellation of a hemisphere. The image field of view was 150 × 150 × 300µm3, 
acquisition matrix was 100×100×60. The approximate SNR for the S0 and diffusion 
weighted images were 206 and 177 respectively. 

Figure (8b) shows a detail from the rat hippocampus. The piecewise smoothing 
behavior of the algorithm is evident within the anisotropic hippocampus region. 
This region has been smoothed independently of the more isotropic surrounding 
regions. The spherical smoothing term has also suppressed some peaks of the dis­
tribution which were probably due to noise in the acquired data. Figure (8c) shows 
a detail from the rat corpus callosum. The data dependent coupling term in the 
restoration algorithm has permitted intraregion smoothing within the corpus callo­
sum while preventing interregion smoothing. Note that the fiber directions within 
the corpus callosum have been well preserved. 

Figure (9) shows details from the rat spinal cord dataset. Here the noise reduction 
can be seen to enhance the coherence of structures in the inner core of grey matter. 

The data were processed by a MATLAB implementation of the algorithm run­
ning on a system with Intel Quad Core QX6700 2.66 GHz CPU and 4 GB RAM. 
The computation times for the finite element smoothing over the sphere depends 
on the number of diffusion-encoding gradient directions in the image acquisition. 
For the spinal cord data with 46 directions the time was 0.018 seconds per voxel, 
and for the brain dataset with 81 directions the time was 0.038 seconds per voxel. 
The computation time for the TV-norm minimization problem for each diffusion 
weighted image depends on the size of the acquisition matrix. For the spinal cord 
the resolution was 72 × 72 × 40 and the computation time per image was 28.3 sec­
onds. For the brain dataset the resolution was 100 × 100 × 60 and computation 
required 82.4 seconds per image. 

4. Conclusion. In this paper, we presented a new variational formulation for 
restoring HARDI data and an FEM technique for implementing the restoration. 
Our formulation of the HARDI restoration involves two types of smoothness con­
straints. The first is smoothness over the spherical domain of acquisition directions, 
and the second is smoothness between neighboring voxels in the Cartesian domain. 
The smoothing technique is capable of preserving discontinuities in the data. This 

Inverse Problems and Imaging Volume 3, No. 4 (2009), 625–648 



639 Variational denoising of DW-MRI 

was demonstrated on synthetic and real anatomical data. By using J-divergence as a 
measure of distance between distribution, we were able to show quantitatively that 
the combination of restoration techniques performs better than either technique 
alone. 

Appendix A. 

Local element coordinates. We now present the coordinate system for the local 
elements. For local elements, triangular elements are used with a barycentric coor­
dinate system (γ, ξ, η). Each coordinate is in the range [0, 1] and γ + ξ + η = 1 for 
points on the triangle. 

The global coordinates, (u, v), can be computed from the local coordinates by 
[ ] [	 ] [ ] [ ]

u u1 − u0 u2 − u0 ξ u0(31) =	 + . 
v v1 − v0 v2 − v0 η v0 

The Jacobian, J, of the transformation between coordinate systems is defined by 
  

[ ] [ ] [ ]∂u ∂u 
du	 dξ dξ ∂ξ ∂η (32)	 = ∂v = J . 
dv ∂v dη dη 

∂ξ ∂η

Integrals over the (u, v) domain to be converted to integrals over the local (ξ, η) 
domain by 

(33)	 f(u, v)du dv = f(u(ξ, η), v(ξ, η)) det(J)dξ dη. 
Ωj	 Ωj 

Using the Gauss-Radau quadrature rules given in [26], we can approximate the 
integral in Equation (33) by the summation 

5 5 

(34)	 wiiwjjf(u(ξj , ηi,j ), v(ξj , ηi,j )) det(J) 
i=1 j=1 

where ηi,j = ri(1 − ξj), wjj = aj(1 − ξj), ξj , and wii are given in Table 3. 

Table 3. Gauss-Radau weights 

i ri wii ξi ai 

1 0.0469100770 0.1184634425 0.0398098571 0.1007941926 
2 0.2307653449 0.2393143353 0.1980134179 0.2084506672 
3 0.5 0.2844444444 0.4379748102 0.2604633916 
4 0.7692346551 0.2393143353 0.6954642734 0.2426935942 
5 0.9530899230 0.1184634425 0.9014649142 0.1598203766 

Derivatives over (u, v) can be written in terms of local coordinates by applying 
the chain rule: 
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The partial derivatives of ξ and η with respect to u and v can be computed by 
inverting the Jacobian 

[ ] [ ] [ ] [ ]

∂ξ ∂ξ dξ	 du du 
∂u ∂v J−1(36)	 = = .∂η ∂η dη	 dv dv 
∂u ∂v 

The inverse of J is given by 

[	 ]

1 v2 − v0 −(u2 − u0)J−1(37) =	 . 
det(J) −(v1 − v0) u1 − u0 

We use the fifth order element shape functions given by Dhatt and Touzot [26]. 
This element guarantees C1 (surface normal) continuity across triangles. The quin­
tic basis functions are given by 
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2 2 3
N1 =	 λ (10λ − 15λ + 6λ + 30ξη(ξ + η)) 

N2 =	 ξλ
2(3 − 2λ − 3ξ

2 + 6ξη) 

N3 =	 ηλ
2(3 − 2λ − 3η

2 + 6ξη) 
1 2 2

N4 = ξ λ (1 − ξ + 2η)
2
 

N5 = ξηλ
2
 

1 2 2

N6 = η λ (1 + 2ξ − η)

2 
2 2 3 2

N7 = ξ (10ξ − 15ξ + 6ξ + 15η λ) 
1 2 2 3 2

N8 = ξ (−8ξ + 14ξ − 6ξ − 15η λ)
2 

N9 = 
1 
ξ
2
η(6 − 4ξ − 3η − 3η

2 + 3ξη)
2 
1 2 2

N10 = η (2ξ(1 − ξ)2 + 5η λ)
4 
1 2 2

N11 = ξ η(−2 + 2ξ + η + η − ξη)
2 
1 12 2	 3 2

N12 = ξ η λ + ξ η
4	 2 
2 2 3 2

N13 =	 η (10η − 15η + 6η + 15ξ λ) 

N14 = 
1 
ξη

2(6 − 3ξ − 4η − 3ξ
2 + 3ξη)

2 
1 2 2 3 2

N15 = η (−8η + 14η − 6η − 15ξ λ)
2 
1 12 2	 2 3

N16 = ξ η λ + ξ η
4	 2 

N17 = 
1 
ξη

2(−2 + ξ + 2η + ξ2 
− ξη)

2 
1 2 2

N18 = η (2η(1 − η)2 + 5ξ λ). 
4 

(38) 
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The quintic shape functions have nodal variables which can be written in terms 
of local or global coordinates as, 

    

z z 
   zξ zu 
    

   zη zv 
   (39) qξ,η = ,qu,v = . 
   zξξ zuu 
    

zξη zuv 

zηη zvv 

   

The local and global nodal variables are related to each other by 
  

1 0 0 0 0 0 
 0 ξu ηu 0 0 0  

  

 0 ξv ηv 0 0 0  

(40) qu,v =   qξ,η. 
 0 0 0 ξ2 2ξuηu η2 

 

 

u u 
 

0 0 0 ξuξv (ξuηv + ηuξv) ηuηv 

0 0 0 ξ2 2ξvηv η2 
v v 

  

Appendix B. 

Global matrices. We wish to construct global matrices so that the energy balance 
over the entire FEM mesh is given by the linear system 

(41) Kq = f 

where K is a (6n × 6n) matrix since we have 6 variables per node. 
We will consider the simple case of 2 elements. Expanding the element Equa­

tion(19) in terms of nodal variables for element 0 we get 
      

K0 K0 K0 0 f0q0,0 0,1 0,2 0 0 
0(42) K0 K0 K0 q = f0 ,1,0 1,1 1,2 1 1 
0K0 K0 K0 q f0 

2,0 2,1 2,2 2 2 

      

and for element 1 we have 
      

K1 K1 K1 1 f1q3,3 3,2 3,1 3 3 

2

K1 
1

,3 2,2 2,1(43) K1 K1 K1 

K1 K1 
,3 1,2 1,1

1 
2 2 
1 

q = f1 . 
q f1 

1 1 

      

where each qj 
l is a (6 × 1) column vector of nodal variables. We expand each Kj 

to be (6n × 6n) by inserting rows and columns of zeros corresponding to each node 
of the mesh. Also expand f j to (6n 1). The global K and q are obtained by 
summing the expanded matrices from 

× 
each element in the mesh. For our 2 element 

example we have 
0 0 0 0 0

       

K  K  K  f  
0,0 0,1 0,2 0 q0 0 

 K0 K0 K0 K1 
  

0 
  f0 + f1 

 

1,1 + K1 
1,2 + K1 q1,0 1,1 1,2 1,3 1 1 1 

      

 K0 K0 
2,1 + K1 K0 

2,2 + K1 K1 
  q   f0 + f1 

 

(44) 0 = . 
2,0 2,1 2,2 2,3 2 2 2 

0 K1 
3,1 K1 

3,2 K1 
3,3 q 0 

3 f3 
0 
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Figure 5. 

(a) Original synthetic data 

 (b) Added Gaussian noise, 2
σ =

0.005, SNR = 14 
(c) Manifold smoothing with α = 
0.01 

(d) Lattice smoothing with µ = 0.95 (e) Manifold smoothing followed by 
Lattice smoothing 

 (f) Added Gaussian noise, 2
σ = 0.04,

SNR = 5 
(g) Manifold smoothing with α = 
0.01 

(h) Lattice smoothing with µ = 0.95 (i) Manifold smoothing followed by 
Lattice smoothing 

Simulations from a 64×64 synthetic high angular reso­
lution diffusion image, subsampled for display purposes. The signal 
profiles, S(θ, φ), are shown on the left side of each panel whereas 
the probability profiles are provided on the right. Results from 
manifold smoothing using FEM, lattice smoothing using TV-norm 
minimization, and a combination of the two techniques are shown 
for noisy data. 
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Figure 6. Original S0 (non-diffusion weighted) image (left), and 
denoised (right) from spinal cord data. 

Figure 7. A slice from the original 3D diffusion weighted image 
(left), and corresponding slice from the denoised (right) spinal cord 
data. 
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Figure 8.

(a) Anterior commissure 

(b) Hippocampus 

(c) Corpus callosum 

 Restored probability profiles from rat brain data over­
laid on anisotropy images. Representative profiles from the region 
of interest (left) are shown for the original (middle) and denoised 
(right) data. 
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Figure 9. 

(a) Pyramidal tract 

(b) Lumbar region 

(c) Thoracic region 

Restored probability profiles from rat spinal cord data 
overlaid on anisotropy images. Representative profiles from the 
region of interest (left) are shown for the original (middle) and 
denoised (right) data. 
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Figure 10. Mapping to barycentric coordinates 
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