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Abstract. The influence of molecular diffusion on the nuclear magnetic
resonance (NMR) signal can be exploited to estimate compartment size
distributions in heterogeneous specimens. Theoretical relationships between the
NMR signal intensity at long diffusion times and the moments of a general
distribution of isolated pores with characteristic shapes (planar, cylindrical or
spherical) are established. A numerical method based on expressing a general
diffusion-attenuated NMR signal profile in a series of complete orthogonal
basis functions is introduced and subsequently used to estimate the moments
of the compartment size distribution. The results on simulated and real data
obtained from controlled water-filled microcapillaries demonstrate the power of
the approach to create contrast based not only on the mean of the compartment
size but also on its variance. The technique can be used to address a variety of
problems such as characterizing distributions of droplet sizes in emulsions and
of apparent axon diameters in nerve fascicles.

3 Author to whom any correspondence should be addressed.

New Journal of Physics 13 (2011) 015010
1367-2630/11/015010+17$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:evren@helix.nih.gov
http://www.njp.org/


2

Contents

1. Introduction 2
2. Theory 3

2.1. Parallel plates (D = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Cylinders (D = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Spheres (D = 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Estimation of the moments from sampled data 7
3.1. The one-dimensional simple harmonic oscillator-based reconstruction and

estimation technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3. Actions of the R, D and K operators in the simple harmonic oscillator basis . . 9

4. Results 9
4.1. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2. Experiments on size distribution phantoms . . . . . . . . . . . . . . . . . . . . 11

5. Discussion and conclusion 12
Acknowledgment 14
Appendix. The actions ofRk,Dl andKm 14
References 15

1. Introduction

In heterogeneous media, one frequently encounters molecules of one kind trapped within
isolated compartments of the host medium. For example in porous media, the vacant regions
(pores) in a solid matrix may be filled by a fluid. In emulsions, globules of one fluid exist
in another immiscible liquid, yielding a distribution of droplets. The physical properties of
the resulting heterogeneous medium critically depend on the distribution of pore or globule
sizes. Of the numerous methods for measuring compartment size distribution, nuclear magnetic
resonance (NMR) offers significant advantages, probing pore geometry in large domains non-
invasively. NMR’s exquisite sensitivity to molecular diffusion makes it particularly useful in
restricted domains. For example, one approach, originally proposed by Packer and Rees [1],
assumes a known statistical distribution of compartment sizes, such as a log-normal distribution,
and uses NMR-based molecular displacement measurements to infer the parameters of that
distribution. Variants of this approach have been used in examining food products [2, 3], oil
suspensions [4, 5] and most recently in characterizing axon diameter distributions in white-
matter fibers of the brain [6].

Alternative experimental techniques, exploiting the internal magnetic field induced by
susceptibility differences within the porous medium, have also been proposed [7, 8]. However,
our approach to determining compartment size distributions involves the sensitization of NMR
acquisitions to diffusion via the existence or application of external magnetic field gradients;
hence, the technique can be used in the absence of significant susceptibility differences. One
such realization of the experiment is depicted in figure 1, in which a pair of pulsed-field
gradients [9] of strength G, duration δ and separation 1 are incorporated into a stimulated
echo NMR experiment [10].
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Figure 1. The pulsed-field gradient stimulated-echo NMR pulse sequence. The
oscillatory-shaped radiofrequency pulses rotate the magnetization by 90◦. The
rectangular pulsed-field gradients encode the displacement of spins.

In this paper, we describe a strategy to measure all moments of the compartment size
distribution associated with a medium comprising a collection of non-connected pores directly
from a single NMR signal attenuation profile, hence obviating the assumed existence [1]–[6] of a
known parametric size distribution. Compared to other studies that have attempted to bypass the
assumption of an underlying parametric distribution [11]–[14], our approach does not employ
the Gaussian phase approximation; hence, it can be used when a significant attenuation of the
NMR signal is present. Furthermore, our technique can be used for geometries comprising
planar and cylindrical as well as spherical pore shapes, albeit a mixture of these pore geometries
is not allowed. To this end, theoretical expressions linking the moments of the compartment size
distribution to the NMR signal attenuation are derived. Next, we propose to use a complete basis
of orthogonal functions to represent the general NMR signal attenuation profiles that makes it
possible to estimate the moments of the compartment size distribution accurately and efficiently.
We verify these derived expressions and the accuracy of the estimation method via simulations.
Finally, we apply the method to real data obtained from controlled distributions of water-filled
microcapillaries.

2. Theory

When an ensemble of pores with different sizes are examined via NMR, each pore’s contribution
to the overall signal is proportional to the number of spins that reside within that pore. In
this paper, we consider ensembles of parallel plates, coherently oriented cylinders and spheres
corresponding to the cases D = 1, 2 and 3, respectively, where D denotes the number of
dimensions along which the diffusion process is restricted. The gradients are assumed to be
applied perpendicular to the walls. If the size of each pore can be characterized by the length,
a, then the total signal from the ensemble, as a function of q = (2π)−1γ δG, where γ is the
gyromagnetic ratio, is given by

E(q) =

∫
∞

0 da aD f (a) E(q, a)∫
∞

0 da aD f (a)
. (1)

Here E(q, a) is the signal attenuation for a single pore of size a, and f (a) is the pore size
distribution function whose features we are interested in extracting. The ensemble average of a
quantity X (a) is defined via the relation

〈X (a)〉e =

∫
∞

0
da f (a) X (a). (2)
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Clearly, the numerator and denominator in equation (1) can be written as 〈aD E(q, a)〉e and
〈aD

〉e, respectively.
Given the E(q) data for the ensemble, estimation of the nth order moment of the pore size

distribution, 〈an
〉e, is possible by applying an operator Qn that satisfies the conditions

Qn E(q) =
1

〈aD〉e

∫
∞

0
da aD f (a)Qn E(q, a) (3)

and

Qn E(q, a) = ζn an−D, (4)

where ζn is a constant. When these conditions are met, the nth moment of the pore size
distribution is given by

〈an
〉e =

〈aD
〉e

ζn
Qn E(q). (5)

Therefore, the problem of calculating all moments of the pore size distribution is reduced to
finding a class of operators Qn that satisfy equations (3) and (4) for n = 0, 1, 2, . . . and n 6= D.

In this paper, we shall consider the long diffusion time (D01 � a2
max) and the narrow pulse

(D0δ � a2
min) regimes, where D0 is the bulk diffusivity of the fluid within the compartments,

and amax and amin are, respectively, the sizes of the largest and smallest compartments in the
ensemble. Under these experimental conditions, three different operators, denoted by I, D and
K, provide all moments of a general pore size distribution. These operators are defined through
their action on an arbitrary function F(q) to be

Rk F(q) = βk

∫
∞

0
dq qk−1 F(q), k = 1, 2, . . . , D, (6)

where β1 = 2, β2 = 2π and β3 = 4π ,

Dl F(q) =
(−1)l

(2π)2l

d2l F(q)

dq2l

∣∣∣∣
q=0

, l = 1, 2, 3, . . . (7)

and

Km F(q) =

∫
∞

0
dq

(
1

q

d

dq

)m

F(q), m = 1, 2, 3, . . . . (8)

To build a physical understanding of these operators, when applied on an arbitrary NMR signal
attenuation profile E(q), we recall that E(q) can be envisioned to be the characteristic function
of a displacement distribution because of the relationship [15]–[17]

P(x) =

∫
dq ei2πqx E(q), (9)

where P(x) is an ensemble-average propagator indicating the likelihood that the spins will
undergo a displacement, x , along the gradient direction. More generally, similar definitions
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for higher dimensional spaces are possible, in which case q and x will be replaced by vectors.
See [18] for discussions about the relations between propagators in different dimensional spaces.

For example, using the three-dimensional version of equation (9), the action of the operator
R3 in isotropic environments can be shown to yield the return-to-origin probability [19].
Similarly, the result obtained by the application ofR2 on axially symmetric environments, when
the gradient orientation is perpendicular to the symmetry axis, will yield a return-to-symmetry
axis probability. Finally, the operator R1 reveals the probability that the spins will return to
their original plane whose normal is parallel to the gradient direction. The class of operators Dl

has a well-defined meaning as well. Taking the Fourier transform of both sides in equation (9)
and expanding the exponential in a Taylor series, it is straightforward to show that the operator
Dl returns the 2lth-order moment of displacements, 〈x2l

〉. It is not clear whether the values
returned by the operators Km can be interpreted in a similar way. However, as we show below,
they complement the information obtained from the preceding operators.

We now consider ensembles of parallel plates and cylindrical and spherical pores, and apply
the above operators to the predicted NMR signal attenuation profiles. The strategy we employ
involves the application of RD, which yields the denominator in equation (1). Subsequently, all
of the remaining operators are applied, each of which returns one of the remaining moments.

2.1. Parallel plates (D = 1)

We shall start by considering an array of parallel slabs (D = 1) with variable spacings between
consecutive plates whose normals are along the gradient direction. The NMR signal attenuation
for a single pore with separation L is given as [20]

E1(q, L) =
sin2(πq L)

(πq L)2
, (10)

where the total NMR signal can be obtained by inserting this expression into equation (1) with
D = 1 and a = L . Applying the operator R1, followed by the other operators D and K, all
moments of the distribution of separations are obtained as

〈L〉e = (R1 E1(q))−1, (11a)

〈L2l+1
〉e = (l + 1)(2l + 1) 〈L〉eDl E1(q), (11b)

〈L2m
〉e =

(−1)m(2m + 1)m!

π2m2m−1
〈L〉e Km E1(q). (11c)

2.2. Cylinders (D = 2)

Next, we consider a pack of coherently oriented cylindrical tubes (D = 2) of varying radius.
The NMR signal for a single tube of radius r0 is given as [21]

E2(q, r0) =

(
J1(2πqr0)

πqr0

)2

. (12)
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A general distribution of cylinder radii, f (r0), can be incorporated into equation (1), with
D = 2 and a = r0. Starting with the operator R2, all operators are applied on the resulting
NMR signal attenuation, E2(q), revealing all moments of the distribution through the following
relationships:

〈r 2
0 〉e = (πR2 E2(q))−1, (13a)

〈r0〉e =
3π 2

16
〈r 2

0 〉eR1 E2(q), (13b)

〈r 2l+2
0 〉e =

(l + 1)! (l + 2)!

2 (2l − 1)!! (2l + 1)!!
〈r 2

0 〉eDl E2(q), (13c)

〈r 2m+1
0 〉e =

(−1)m (2m + 1)!! (2m + 3)!!

25m+3π 2m−2 m!
〈r 2

0 〉e Km E2(q). (13d)

2.3. Spheres (D = 3)

The signal for a single spherical pore (D = 3) of radius R0 is given as [20]

E3(q, R0) =

[
3

(2πq R0)2

(
sin(2πq R0)

2πq R0
− cos(2πq R0)

)]2

. (14)

For an ensemble of spheres whose radii are distributed according to f (R0), all moments of this
size distribution are obtained via the application of the operators starting withR3. The moments
of f (R0) are then given by

〈R3
0〉e =

3

4πR3 E3(q)
, (15a)

〈R0〉e =
8π

9
〈R3

0〉eR2 E3(q), (15b)

〈R2
0〉e =

5

3
〈R3

0〉eR1 E3(q), (15c)

〈R2l+3
0 〉e =

2l3 + 13l2 + 27l + 18

9

2l + 1

22l+1
〈R3

0〉eDl E3(q), (15d)

〈R2m+2
0 〉e =

(m + 1)! (2m + 3) (2m + 5)

(−1)m 23m−1 9 π 2m
〈R3

0〉e Km E3(q). (15e)

The derivation of the above expressions for the moments is outlined in the appendix.
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3. Estimation of the moments from sampled data

The above derivations establish the relationships between the moments of the compartment
size distribution and a general NMR signal attenuation profile, E(q), which is inherently
assumed to be a continuous function that extends to infinity. Since the real data are sparsely
sampled and truncated along the q-axis, a method that analytically represents and approximates
the discrete data would be useful. However, traditional methods, such as simple function
fitting, fail to describe general E(q) profiles, while cumulant expansions suffer from a finite
radius of convergence and are very inaccurate at large q-values. Instead, we employ the
recently introduced one-dimensional simple harmonic oscillator (SHO)-based reconstruction
and estimation (1D-SHORE) method [22], which overcomes these difficulties and is outlined
here.

3.1. The one-dimensional simple harmonic oscillator-based reconstruction and
estimation technique

In the 1D-SHORE approach, the diffusion-weighted NMR signal intensity is expressed as

S(q) =

N−1∑
n=0

a′

n φn(u, q), (16)

with

φn(u, q) =
i−n

√
2n n!

e−2π2q2u2
Hn(2πuq), (17)

where Hn(x) is the nth-order Hermite polynomial and u is a characteristic length. The NMR
signal attenuation, E(q) = S(q)/S(0), can also be expressed in this basis as

E(q) =

N−1∑
n=0

an φn(u, q), (18)

where

an =
a′

n

S0
(19)

and S0 = S(0) is the non-diffusion-weighted signal, which can be estimated from the
coefficients a′

n:

S0 =

N−1∑
n=0

a′

n φn(u, 0) =

N−1∑
n=0,2,4,...

√
n!

2n/2 (n/2)!
a′

n. (20)

The functions φn are based on the well-known eigenfunctions of the quantum-mechanical
Hamiltonian for the SHO, which form a complete orthogonal basis for the space of square-
integrable functions [23]. However, our definitions of the eigenfunctions are slightly different
from their forms as commonly used in quantum mechanics. Specifically, our basis is not
normalized, but the scaling is such that when diffusion is Gaussian, and u2

= 2D0(1 −

δ/3) = 〈x2
〉, the coefficients are given by an = δn0, where δi j is the Kronecker delta and
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D0 is the diffusion coefficient. Moreover, the phase convention dictated by the factor i−n

in equation (17) ensures that the real and imaginary parts of E(q) are symmetric and
antisymmetric, respectively—a necessary condition for the propagator, P(x), to be real when
an are real. Despite these minor differences from the basis used in quantum mechanics, our basis
functions still satisfy the relationship

Aφn(u, q) =

{
0, n = 0,
√

n φn−1(u, q), n > 1,
(21)

where A is the ‘lowering operator’ defined by

A=
i

√
2

(
2πuq +

1

2πu

d

dq

)
. (22)

We note that Assemlal et al [24] have represented the q-space signal in a basis of
Gaussian–Laguerre functions and subsequently showed that these functions can be related to
the basis functions we have used in this study.

3.2. Implementation

The problem of transforming a discrete set of measured signals into a set of coefficients can
be cast as a set of linear equations. Given an M-dimensional vector of signal values, S, with
components Sm = S(qm), an M × N dimensional matrix, Q, whose components are given by
Qmn = φn(u, qm), can be computed. The problem is reduced to a matrix equation S = Qa′,
where a′ is the N -dimensional vector of a′

n coefficients. In our implementation, we solve this
equation by computing the pseudoinverse of Q using singular-value decomposition [25]. Next,
S0 is computed using equation (20), which is inserted into equation (19) to determine the
coefficients an.

Note that the above estimation scheme assumes a prior estimate of u. Although the
completeness of the basis functions ensures the convergence of the estimates for any u, the rate
of this convergence may depend on the particular choice of u. Therefore, in our implementation,
we first estimate a maximum value for u obtained from the first few points of S(q) data
under the assumption of Gaussianity of the signal. The basis functions are designed such that,
when the signal is Gaussian, all coefficients except a0 vanish yielding the expected behavior
E(q) = exp(−2π 2q2u2). Starting from this estimate of the maximum u, we gradually reduce
the u-value. At each value of u, we estimate the an coefficients using the scheme described
above and compute the signal attenuation values at the data points, which will be denoted by
E est(u, q). Subsequently, the mean-squared error defined by

ε(u) =
1

M

M∑
i=1

(E est(u, qi) − Edata(qi))
2, (23)

where Edata(qi) are the original data points, is computed. The search for the optimal u continued
until ε(u) falls below 1 × 10−15, or a local minimum is achieved, whichever comes first. The last
set of u and an values is retained for subsequent analysis.
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3.3. Actions of the R, D and K operators in the simple harmonic oscillator basis

Once the an coefficients and u are estimated as described above, the actions of the compartment
size distribution operators are conveniently expressed in the SHORE basis via the relations

R1 E(q) =
1

√
2π u

N−1∑
n=0,2,...

(−1)n/2
√

n!

2n/2 (n/2)!
an, (24a)

R2 E(q) =
1

2πu2

N−1∑
k=0,2,...

(−1)k/2

(k − 1)!!

N−k−1∑
l=0,2,...

2(k−l)/2
√

(k + l)!

(l/2)!
ak+l, (24b)

R3 E(q) =
1

√
2π2u3

N−1∑
n=0,2,...

√
n! an

n∑
m=0,2,...

(−1)(m−n)/22n−3m/2 0 ((n − m + 3)/2)

(n − m)! (m/2)!
, (24c)

Dl E(q) = u2l
N−1∑

k=0,2,...

(k + 2l − 1)!!

k!

N−k−1∑
s=0,2,...

(−1)s/2

√
2k−s (k + s)!

(s/2)!
ak+s, (24d)

K1 E(q) = −2π 2u2R1 E(q) + (2π)3/2u
N−1∑

n=2,4,...

√
n! an

n−1∑
m=0,2,...

(−1)(m+n)/22−m/2

(n − m − 1)(m
2 )!(n−m

2 − 1)!
.

(24e)

The derivations of the above expressions are straightforward but tedious and left out for brevity.
All derivations involved writing the Hermite function in the definition of the basis functions as a
power series and then carrying out the integrations term by term. Note that the SHO basis has the
remarkable property that the lowering operator, A, naturally arises within the integrand of the
definition for theKm operator. Therefore, the identity in equation (21) was used in the derivation
of equation (24e). The action of Km for m > 1 was not evaluated because they concern high-
order moments of the compartment size distribution, which are unlikely to be feasible or useful
in practice.

4. Results

4.1. Simulations

To validate the derived expressions for the moments and to assess the accuracy of the
1D-SHORE technique, we simulated distributions of planar, cylindrical and spherical pores.
We assumed that the pore sizes were distributed according to a beta density function because,
unlike in the case of more popular functions such as log-normal or gamma distributions, the
beta density function is able to accommodate negatively skewed distributions. Here we include
the results obtained for cylindrical pores for brevity. To ensure that the radii of cylinders are
distributed according to a beta distribution, the interval between 0 and 20 µm was divided into
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Figure 2. The left panel shows the beta distributions simulated (inset) and the
E(q) profiles calculated for ensembles of cylinders whose radii are distributed
according to those density functions. The right panel depicts the corresponding
moments where the hollow squares show analytical values, while the moments
estimated from the simulated E(q) profiles are depicted with solid diamonds.
The black curves and symbols correspond to the beta distribution with positive
skewness (α = 3.5, β = 6.5), whereas the red color is used for the negatively
skewed distribution (α = 6.5, β = 3.5).

10 000 segments. The E(q) profile corresponding to each of these radii was computed, then
multiplied by the value of the beta distribution

f (r0; α, β) =
(r0/C)α−1(1 − r0/C)β−1

C B(α, β)
(25)

at that radii, where B(α, β) is the beta function and C is the maximum value of the radius,
taken to be 20 µm in the simulations. Two such distributions of radii are considered: one
with (α, β) = (3.5, 6.5) and the other with (α, β) = (6.5, 3.5). The inset in the left panel of
figure 2 illustrates these two probability distribution functions, where the first distribution is
drawn in black, while the second distribution is depicted in red. A total of 81 data points
were generated for each ensemble of pores, and the resulting E(q) profiles are illustrated in
the left panel of figure 2. The moments were computed via the 1D-SHORE methodology using
equations (24a)–(24e) and (13a)–(13d). The estimated moments as well as the ground truth
values obtained from equation (25) are plotted in the right panel of figure 2. It is clear that
excellent agreement is achieved between the predicted and estimated values for the moments
in both cases. Obviously, the first moment yields the mean value, i.e. µ = 〈r0〉e, while the
standard deviation of the ensemble can be obtained via the expression σ = (〈r 2

0 〉e − µ2)1/2.
For the first distribution, the predicted values were 7.0 ± 2.9 µm, where the estimates yielded
7.3 ± 2.6 µm. For the second distribution, the predicted and estimated values were 13.0 ± 2.9
and 13.2 ± 2.3 µm, respectively.

It may be possible to estimate the higher-order descriptors of the underlying compartment
size distribution as well. For example, the skewness of the distribution can be computed via
γ1 = σ−3 (〈r 3

0 〉e − 3µσ 2
− µ3). Its expected values are 0.35 and −0.35 for the two distributions.

The estimates from the moments yielded γ1 values of 0.46 and −3.41. Clearly, although the
moments are very accurate, measures that depend on the higher-order differences between these
moments are not. Therefore, we expect that these higher-order descriptors cannot be reliably
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estimated from real data although the method performs reasonably well for the mean and
standard deviation.

4.2. Experiments on size distribution phantoms

All experiments were performed on an 8.4 T Bruker NMR spectrometer equipped with a
Micro5 probe capable of producing gradient strengths up to 1900 mT m−1 in each direction.
The preparation of the size distribution phantoms is described in detail in [26]. Briefly, hollow
microcapillaries with different inner diameters (ID) of 10 ± 1, 13 ± 1, 17 ± 1, 19 ± 1, 20 ± 1,
21 ± 1 or 29 ± 1 µm (Polymicro Technologies, Phoenix, AZ, USA) were immersed in water for
several days for filling. Then, one phantom comprising only 19 ± 1 µm tubes (SD000) and three
size distribution phantoms (SD001, SD002 and SD003) were prepared by mixing different-
sized microcapillaries in one NMR tube. The size distribution phantoms were designed to have
variations in both the mean diameter and the breadth of the distributions. The microcapillaries
were carefully counted to ensure an accurate ratio of fibers needed in each specimen (the
volumetric ratios in detail can be found in table 1 of [26]). Note that the microcapillaries
were packed into a 4 mm glass sleeve, which was then inserted into a 5 mm NMR tube. The
5 mm NMR tube was aligned with the main axis parallel to the z-direction of the NMR magnet.
Typical line widths of 4–20 Hz were obtained after shimming for all size distribution phantoms.
Pulsed-field gradient experiments were performed using the stimulated echo sequence with
the following parameters: 48 q-values were collected with a maximum gradient strength of
1600 mT m−1 and with 1/δ = 150/3 ms, resulting in a maximum q-value of 204.3 mm−1 and
the number of scans of 32.

The top panel of figure 3 illustrates the inner diameter distributions weighted by the number
of spins that reside within tubes of their respective IDs, and the predicted ID values. Note that
these values are obtained by assuming that the nominal ID values provided by the manufacturer
are correct. Previous experiments in similar microcapillaries [27]–[30] have demonstrated that
there may be some global offset in the actual ID, while no evidence was found to suggest a
significant spread within a specimen prepared from tubes of the same ID. Therefore, the standard
deviation values of 1 µm reported by the manufacturer seem to represent the uncertainty rather
than the variation within one specimen. On the other hand, the standard deviations that are
tabulated in figure 3 quantify the spread of the distributions. Therefore, in the SD000 specimen,
we report this value to be 0. We would like to stress that the predicted values may exhibit
some inaccuracy due to any offset in the actual ID values and because some capillaries may be
partially filled with water.

Figure 3 also demonstrates the real data and the 1D-SHORE fit to them. All fits appear
to be accurately approximating the signal attenuation curves, and the extrapolations seem to be
acceptable. The mean and standard deviation estimates obtained using the theoretical framework
introduced in this study are overlaid on the graphs. In the SD000 specimen, the µ2 value was
slightly larger than 〈r 2

0 〉e. This observation is consistent with our predicted value of 0 for the
standard deviation. The deviations between the predicted and estimated values may be due to
the effects discussed above. However, comparing the results for different phantoms, it is clear
that the trends in the mean and standard deviation values are consistent with the trends in their
predicted values. Therefore, we conclude that it may be possible to create contrast based on the
mean and standard deviation values of compartment size distributions using the methodology
of this study.
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Figure 3. The top panel shows the histograms illustrating the composition of the
four different specimens of water-filled microcapillaries. Each color represents
one of these specimens. The SD000 specimen contains nothing but the 19 µm
tubes. The corresponding real NMR data and the 1D-SHORE fit to them are
depicted in the four panels below.

5. Discussion and conclusion

Accurate estimates of the moments are possible when the narrow diffusion gradient pulse
duration (δ) and long pulse separation (1) conditions are met. Further, a relatively dense
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sampling of q-values, large enough to create a significant attenuation of the NMR signal, is
necessary. These conditions can be met, for example, in the fringe field of superconducting
magnets or in currently available low-cost mobile NMR systems. When the signal is acquired
in a more traditional setting that involves a homogeneous static magnetic field, pulsed-field
gradients can be employed to sensitize the signal to diffusion. In such experiments, the long-1
condition is usually simple to fulfill for microscopic pores. However, it may be more challenging
to meet the short-δ condition, the violation of which is expected to yield an underestimation of
the moments. This deviation introduced by the diffusion pulse duration is expected to compete
against the effect due to the finite range of q-values sampled. Therefore, the value of the
mean compartment size may be overestimated or underestimated depending on the experimental
design and the underlying pore size distribution.

A similar situation may arise when the surface relaxivity of the restricting walls, which
is ignored by our method, is significant. In such environments, molecules may lose their
magnetization when they get in contact with the walls. Since such collisions occur more
frequently within smaller pores, their contribution to the aggregate signal may be reduced,
hence introducing a bias towards larger estimates for the pore size. This effect is expected
to be significant when the specimen comprises a broad size distribution and very small
compartments. A competing effect becomes apparent when the signal attenuation for a single
pore is considered. Although surface relaxation effects tend to attenuate the true signal, the
signal attenuation value, E(q), may be increased, especially at smaller q-values [31]. In some
cases, this effect may act against the effect of surface relaxation mentioned earlier.

As mentioned in the introduction, this formalism can be used to characterize compartment
size distributions when the pores are isolated. As such, the method can be applied readily
to study specimens such as emulsions and many food products. However, in more complex
environments such as axonal fiber bundles in white matter in the nervous system, the accuracy
of the results provided by the method needs to be investigated. One particular concern is
the presence of extracellular medium in white matter. In some studies aiming to characterize
axon diameter distributions, the diffusion of water molecules in the interstitial space has been
assumed to be Gaussian [6]. If this assumption is to be employed, the Gaussian component
can be removed from the signal profile [32] prior to the estimation of the moments using the
introduced technique. For very densely packed cylindrical fibers, the space between the cells
can be assumed to be isolated pores as well. Since the size of these ‘pores’ scales with the size
of the fibers, the estimated moments can still be used to create contrast that depends on the
features of the underlying fiber diameter distribution.

Note that we did not attempt to recover the distribution function from its moments in this
study. However, we note that this problem, commonly referred to as the ‘classical moment
problem’, is well studied [33]–[35] yet tricky [36], and care must be exercised in such an
endeavor. Nonetheless, we recognize that much can be learned about the underlying pore size
distribution from an examination of its first few moments.

In conclusion, we presented a method that yields all moments of a general compartment
size distribution uniquely from a single NMR signal attenuation profile, E(q), without the
need to solve an ill-conditioned problem, invoke an underlying parametric compartment size
distribution or employ empirical statistical methods [37]. This formalism provides new insights
into the relations between the features of a compartment size distribution and the NMR signal
obtained from it. It is clear that different characteristics of diffusion, such as zero-displacement
probabilities and the moments of molecular displacements, lead to different moments of the
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compartment size distribution. Further, these associations are different for pore spaces of
different dimensionalities.
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Appendix. The actions of Rk, Dl and Km

In the derivation of the expressions for the moments (equations (11a)–(11c), (13a)–(13d),
(15a)–(15e)), the values returned by the operators Rk are obtained by evaluating the
corresponding integrals in equation (6). The action of the operators Dl is given by calculating
the moments of the average propagator evaluated using equation (7).

Unlike in the cases of Rk and Dl however, the action of the operators Km is non-trivial.
Here, we provide a sketch of the derivations of equations (11c), (13d) and (15e), which are all
obtained by applying the operator Km on the NMR signal attenuation functions.

For the purposes of the derivation, we redefine the pore size (a) as equal to L , 2r0 and 2R0

for the cases of parallel plates (D = 1), cylinders (D = 2) and spheres (D = 3), respectively.
Then, we can define a useful dimensionless variable v = πqa. Note that both a and v are
different for different values of D. However, we do not include D in a subscript for brevity.
For all the three geometries considered, the NMR signal attenuation from a single pore of size
a is given by the unified expression

ED(v, a) = FD(v)2, (A.1)

where

FD(v) = CD v−D/2 JD/2(v), (A.2)

with C1 = (π/2)1/2, C2 = 2 and C3 = (9π/2)1/2. Note that the following relationship
holds [38]: (

1

v

d

dv

)n

FD(v) = CD(−1)nv−n−D/2 Jn+D/2(v). (A.3)

Applying the operator Km on both sides of equation (A.1), we obtain

Km ED(v, a) = (πa)2m−1

∫
∞

0
dv

(
1

v

d

dv

)m

FD(v)2. (A.4)

The integrand in the above expression can be expanded in a binomial series. Along with equation

(A.3), this procedure yields

Km ED(v, a) = (−1)m C2
D (πa)2m−1

m∑
k=0

m!

k! (m − k)!
Ikm D, (A.5)
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where

Ikm D =

∫
∞

0
dv v−m−D Jk+D/2(v) Jm−k+D/2(v),

=
(m + D − 1)!

(2m + 2D − 1)!! 0(k + [(D + 1)/2]) 0(m − k + [(D + 1)/2])
. (A.6)

Evaluating the sum in equation (A.5) and replacing CD, a and v with their values for D = 1, 2, 3,

one obtains the expressions

Km E1(q, L) =
(−1)m π 2m 2m−1

(2m + 1) m!
L2m−1, (A.7a)

Km E2(q, r0) =
(−1)m π 2m−2 25m+3 m!

(2m + 1)!! (2m + 3)!!
r 2m−1

0 , (A.7b)

Km E3(q, R0) =
(−1)m 9 π 2m 23m−1

(m + 1)! (2m + 3) (2m + 5)
R2m−1

0 . (A.7c)

Applying the operator Km on both sides of equation (1) and using the above equations enables

us to establish the relations in equations (11c), (13d) and (15e).
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