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Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics
(e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However,
the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry
limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relax-
ometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relax-
ation data needed for material and tissue characterization without compromising data quality. Unlike the
conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly
applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce
the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data,
with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord
tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relax-
ation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and
relaxation parameters, etc. This result brings this important type of contrast closer to being realized in
preclinical, clinical, and other applications.

� 2015 Published by Elsevier Inc.
1. Introduction

The power of NMR spectroscopy was significantly increased
by the inclusion of a second dimension in the Fourier domain,
expanding the ability to determine molecular structure, dynam-
ics, and kinetics [1]. In recent years, there have also been
increasing numbers of important developments and novel appli-
cations of multi-dimensional MR relaxometry to characterize
the microstructure-related water dynamics (multiple compo-
nents, exchange, correlations, etc.) in biological tissue [2–10],
food sciences [11,12], material sciences [13–16], porous media
physics [17–19], and geophysics [20,21].

NMR relaxometry has been further advanced by the develop-
ment of novel multi-dimensional diffusion/relaxation pulse
sequences [8,13,19,22–26] and robust and accurate two-dimen-
sional (2D) inverse Laplace transform (ILT) algorithms and data
analysis methods [27–31]. However, the large amount of MR relax-
ation data and long scan times required for 2D relaxometry render
this method infeasible and impractical for most preclinical and
clinical applications. Faster data acquisition, improved
experimental designs, and more efficient data reconstruction
methods requiring a reduced amount of data are highly desired
to make 2D relaxometry practicable.

Recently, compressed sensing (CS) was introduced and success-
fully applied in the MRI field to accelerate data acquisition [32–37].
The conventional CS is mainly performed on the reconstruction in
the Fourier space (k-space), which relies on the sparsity of the MRI
images. However, to our best knowledge, no attention has been
paid to the possibility of direct CS reconstruction from undersam-
pled 2D relaxation signals, denoted as Laplace space.

One widely used 2D ILT algorithm used in 2D relaxometry was
developed by Venkataramanan, et al. about a decade ago [27,28]. In
their algorithm, it was shown that the 2D relaxometry signal could
be compressed into a small matrix without losing useful informa-
tion, which demonstrates the sparsity of the 2D relaxometry signal
in some basis representations [32,38,39]. Noticing that, a natural
question it raises is whether CS could be adopted to reduce the
amount of data required for 2D relaxometry. Unfortunately, the
authors in [27,28] only focused on compressing data to reduce
the computation memory required to and accelerate the calcula-
tion of 2D relaxation spectra.

Recently, inspired by these findings, we proved the feasibility of
the CS for the 2D relaxometry in theory and developed an efficient
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CS algorithm to reconstruct the 2D relaxometry from undersam-
pled 2D relaxometry signals directly [39]. Using numerical simula-
tions, the efficiency of the CS algorithm was used to recover 2D
relaxometry using a vastly reduced number of MR measurements
[39].

In this work, we develop and systematically demonstrate an MR
experimental data analysis pipeline to apply this newly proposed CS
algorithm to real experimental 2D relaxation spectra with a vastly
reduced data set, suitable for material and tissue characterization
without compromising data quality. This is an important develop-
ment and test of the algorithm to find out the potential systematic
artifacts in experiments and the best acceleration factor that can
be achieved for each 2D relaxation spectra from various samples.

We illustrate this new approach using MR data obtained on a
7 T vertical wide-bore Bruker MRI scanner similar to those used
in preclinical imaging applications. Both T1–T2 and T2–T2 relaxom-
etry NMR data were acquired on a well-characterized urea/water
phantom, which shows two exchanging components. T1–T2 MRI
relaxometry was also performed on a fixed porcine spinal cord.
In addition, numerical simulations of the 2D relaxation spectra
were used to assess the effects of noise on the CS-based recon-
struction of the 2D ILT.

2. Materials and methods

2.1. Experiments

2.1.1. Urea/water phantom
The aqueous urea model system has been chosen for this study

since it has two distinguishable types of protons in the transverse
Fig. 1. Pulse sequences diagrams for the three pulse sequences used in this work: (a) IR-C
time in the CPMG, sm is the mixing time in the REXSY, n1 and n2 are the number of loo
relaxation time (urea proton has a shorter T2 than water proton)
and urea is highly soluble in water [23,40]. A 7 M-urea solution
was made by dissolving urea powder (Sigma–Aldrich, Inc., USA)
into phosphate buffered saline (PBS, pH = 7.4), resulting in a
urea/water proton ratio of 20%/80%. Then, 0.2 mM Gd-DTPA
(Magnevist�; Berlex, Inc.) and 0.025 lM MnCl2 were added to the
urea solution to reduce relaxation times. The pH of the urea solu-
tion was titrated to 8.1 with NaOH. An 80 lL solution was then
transferred to a 5 mm susceptibility-matched Shigemi NMR tube
(Shigemi Inc., Japan). All NMR experiments were completed within
24 h after the solution was prepared to ensure stability of the
phantom [23,40].

2.1.2. Porcine spinal cord
Porcine spinal cord was excised after necropsy and immediately

immersion fixed in a 4% formalin solution. All animal handling pro-
tocols were approved by the NIH Heart, Lung, and Blood Institute
(NHLBI) Animal Care and Use Committee. Prior to the MRI experi-
ments, the spinal cord was washed and fully rehydrated with PBS
and then placed in a 10 mm susceptibility-matched Shigemi NMR
tube (Shigemi Inc., Japan) with Fluorinert (3 M, St. Paul, MN) filling
the open spaces during the MRI experiments.

2.1.3. NMR and MRI measurements
Both the NMR measurements of the urea/water phantom and

the MRI experiments on the fixed spinal cord were performed on
a 7 T Bruker vertical-bore microimaging lMRI scanner equipped
with an Avance III console, and a micro2.5 microimaging gradient
system (Bruker BioSpin, Billerica, MA). All specimens were kept at
a bore temperature (�17 �C) during scanning.
PMG, (b) REXSY, and (c) IR-ME with imaging. s1 is the inversion delay, s is the echo
ps in the first and second dimensions.



Fig. 2. Flowchart of the pipeline used in this work.
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2.1.4. 2D NMR of urea/water phantom
Two different 2D NMR relaxometry pulse sequences were per-

formed on the urea/water phantom: (a) T1–T2 correlation relaxom-
etry was performed using an inversion�recovery (IR) preparation
‘‘filter,’’ followed by Carr–Purcell–Meiboom–Gill (CPMG) pulse
trains (IR-CPMG) (Fig. 1a); (b) T2–T2 exchange relaxometry was
performed using relaxation exchange spectroscopy (REXSY)
(Fig. 1b), which consists of two CPMG pulse trains separated by a
mixing time, sm, during which the magnetization is stored back
along the longitudinal axis. A gradient spoiler was placed after
the IR pulse in the IR-CPMG sequence and during the mixing period
in the REXSY sequence to ‘‘crush’’ any remaining magnetization in
the transverse plane.

In the IR-CPMG pulse sequence, 50 IR points were sampled log-
arithmically from 50 ms to 5 s; 250 echoes were acquired in the
CPMG pulse trains with a temporal spacing of s = 2 ms. The pre-
scan delay was set to 15 s to ensure full inversion recovery. A
two-step phase cycling scheme was used (Fig. 1a), and only one
repetition was acquired. An equilibrium CPMG echo train was also
acquired with an inversion�delay of 15 s and four repetitions. In
the REXSY experiments, the same parameters were used as in the
IR-CPMG experiments, with the mixing time, sm, starting from
50 ms, and then 100 ms and then in 100 ms steps until reaching
1000 ms. The repetition time (TR) was 8 s.

2.1.5. T1–T2 MRI of porcine spinal cord
T1–T2 correlation relaxometry was performed by an IR-prepared

multiple spin echo (ME) sequence (Fig. 1c) with 36 inversion
delays logarithmically distributed from 260 ms to 5000 ms and
50 spin echoes starting at 5 ms and continuing to 250 ms in 5 ms
increments. The other acquisition parameters were:
TR = inversion-delays + 12 s, matrix size = 64 � 64, slice thick-
ness = 1 mm, field of view (FOV) = 10 mm � 10 mm, and a two-
step phase cycling. Hermite pulse shapes were applied for both
excitation and refocusing pulses with bandwidth (5400 Hz) match-
ing and proper gradient crasher, and a 5 ms hyperbolic secant
inversion pulse was used for uniform inversion of the sample. A
magnetization equilibrium scan was also acquired with an inver-
sion�delay equal to 12 s with four repetitions.

2.2. Theory and data analysis

The following data analysis flowchart (Fig. 2) was developed
and used in this work to validate and test the efficiency of the CS
framework. Experiments with dense sampling points were first
performed to approximate the ground truth. After the raw data
were preprocessed, 2D relaxation spectra were calculated from
the full data set via 2D ILT. Random samples were then obtained
from the preprocessed full data with different acceleration factors,
R (where 1/R is the fraction of the full data). The subsamples were
then processed using two pipelines: CS reconstruction and conven-
tional 2D ILT reconstruction. 2D relaxation spectra from each sub-
sample were then compared to the result obtained from the full
data, in the experiments, or to the ground truth, in the simulations.

2.2.1. Preprocessing
To remove the bias caused by Rician noise in the IR-ME MRI

data, the noisy ME MRI magnitude data were first processed by a
methodology we proposed and validated previously to transform
1D Rician magnitude data to Gaussian-distributed data [41–43].
Furthermore, region of interest (ROI) analysis was performed to
satisfy the signal-to-noise ratio (SNR) requirements of the 2D ILT,
which generally needs a high SNR to obtain stable and accurate
solutions. Here ROIs in white matter with a relatively homogenous
geometric mean T2 (gmT2) were selected.
In the IR-CPMG and IR-ME experiments, the CPMG and ME data
were subtracted from the corresponding equilibrium data to cancel
the potential artifacts caused by imperfect 180� inversion pulses.
Then, the experimental data from all three pulse sequences can
be written as:

Mðs1; s2Þ ¼
XNm

m¼1

XNn

n¼1

FðTm; TnÞ exp � s1

Tm

� �
exp � s2

Tn

� �
þ �ðs1; s2Þ ð1Þ

where s1 is the inversion delay in the T1–T2 sequences and the accu-
mulated echo time n1s of the first CPMG in the T2–T2 sequences; s2

is the accumulated echo time n2s of the second CPMG or ME; F(Tm,
Tn) is the 2D probability density function (pdf) of the two corre-
sponding relaxation parameters; Nm and Nn are the number of sam-
pling points in each dimension of F; and e(s1, s2) is the noise, which
is assumed to be Gaussian in most 2D ILT algorithms. Here Nm = 100
and Nn = 100 were set for all of the following analysis.
2.2.2. 2D ILT
Inversion of the 2D LT is generally ill-conditioned; a small

change in M may result in large variations in F(Tm, Tn). One practi-
cal technique to obtain a stable solution is minimizing N:

N �
XN1

i¼1

XN2

j¼1

Mðsi; sjÞ �
XNm

m¼1

XNn

n¼1

FðTm; TnÞ exp � si

Tm

� �
exp � sj

Tn

� �" #2

þ a
XNm

m¼1

XNn

n¼1

F Tm; Tnð Þ2

ð2Þ

with a data-quality term with nonnegative constraints on F, and a
second term for Tikhonov regularization. Above, N1 and N2 are the
number of measurements in the first and second dimension, and
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a is the regularization parameter. Eq. (2) can be rewritten in the
form of a kernel matrix for the full data:

N � M � K1FK 022
��� ���2

þ akFk2 ð3Þ

where || � || is the Frobenius norm of a matrix, and K1 and K2 are the
kernels of the first and second dimension with the matrix size
N1 � Nm and N2 � Nn.

Here, a fast and widely used algorithm proposed by
Venkataramanan et al. [28] to solve the minimization problem
was applied. In this algorithm, the data are partially compressed
by using the singular value decomposition (SVD) of Ki

Ki ¼ UiSiV
0
i i 2 f1;2g ð4Þ

By truncating the small singular values with a threshold
(1 � 10�3 of the largest single value), Si can be reduced to a much
smaller matrix with dimensions Ni � si. Then, the data matrix M
can be projected onto the column space of K1 and the row space

of K2 with a much smaller dimension: eM ¼ U01MU2 with the new
matrix size s1 � s2 [27,28]. Now Eq. (3) can be rewritten in an iden-

tical structure, but with the compressed data eM and kernels of a
much lower dimension [27,28,39].

For a given value of the regularization parameter, a, a unique
solution can be obtained from Eq. (2) or Eq. (3) by solving the con-
strained optimization problem. An S-curve based method, which
calculates the fitting error to the measurements v(a) with a series
of a, was used to robustly determine the optimal value of a
[27,31,44]. The best a is chosen within a user-defined tolerance,
TOL:

dðlog10vðaÞÞ=dðlog10aÞ ¼ TOL ð5Þ

Here TOL = 0.1 was used for both the simulated data and the exper-
imental data.

2.2.3. Subsampling
After preprocessing the raw data, 1000 random subsamples

were obtained from the full data at each different acceleration fac-
tor, R, by randomly sampling in the 2D relaxometry data matrix.
The subsamples were then reconstructed using CS, and 2D relax-
ation spectra were then calculated from the reconstructed data
via 2D ILT with data compression. As a control, conventional 2D
ILT without data compression was directly performed on the sub-
samples as in Eq. (2).

2.2.4. Brief review of the CS algorithm for 2D-ILT reconstruction
The key concept behind CS reconstruction lies in the relation-

ship between the full data matrix M and the compressed data eM .

Because M ¼ U1
eMU02, and because U1 and U2 are left orthogonal

and have energy spread out across M, these measurements form
an incoherent, tight frame [39]. It means each element of M is an

observation of a dense linear combination of every element of eM
simultaneously. eM also has rapidly decaying singular values. For

these reasons, and the fact that eM has much smaller dimensions

than M, one can capture all the information in eM with a fraction
of the number of measurements in M.

The reconstruction algorithm to recover eM is also based on the

fact that eM has rapidly decaying singular values. The algorithm is a
modification of the singular value thresholding algorithm from Cai
et al. [45]. This optimization problem searches for the matrix X that
minimizes the sum of the singular values, while matching the mea-
surements M ¼ U1XU02. The solution to this optimization problem,

then, has a high probability, close to eM , of being up to a constant
factor of the noise [39]. Some brief steps of the proposed CS
reconstruction were summarized in Appendix A and more infor-
mation can be found in [39].

2.2.5. Comparison
Global similarities were obtained for the pdf, F, from the full

data or the ground truth and one from each subsample by calculat-
ing a correlation coefficient (C) between all of the vectorized ver-
sions. In addition, the geometric mean (gm) relaxation
parameters and the relative volume fraction (f) of each peak in
each 2D relaxation spectra were also calculated and compared to
the results from the full data or ground truth. The results of each
1000 realizations were displayed as Tukey box plots, in which
the notch is the median, the edges of the box are the 25th and
75th percentiles, the whisker length is 1.5, and the outliers are
plotted separately. Further, the paired Student’s t-test was per-
formed on the correlation coefficients from the results of the CS
reconstruction and the control with the null hypothesis that C
are equal in the results via the two methods and the alternative
hypothesis that C is higher in the CS reconstruction than the con-
trol. Fisher z-transformation was applied on the correlation coeffi-
cients before the hypothesis test.

The median of the 1000 2D relaxation spectra data from all sub-
samples at each R is displayed and the variance of the results is
characterized by interquartile range (IQR). The contrast between
the two peaks is defined by the ratio of the smallest amplitude
between the two components over the smaller component’s ampli-
tude in the T2 projection of the displayed 2D relaxometry.

2.3. Simulations

T1–T2 relaxometry experiments were simulated by a Monte
Carlo method to further test and validate the efficiency of the pro-
posed CS reconstruction. The data acquisition protocol used in the
T1–T2 MRI of spinal cord was applied here. Two broad peaks with-
out exchange in the 2D T1–T2 relaxogram with positions and pat-
terns similar to those obtained from spinal cord white matter
were used as the joint pdf, F, to generate the data following Eq.
(1) with Gaussian noise at various SNRs. Stable estimates were
obtained by performing 1000 realizations for the full data with
one random sample taken for each acceleration factor in each
realization.

Furthermore, the potential artifacts caused by Rician noise were
also simulated. An ROI consisting of 100 voxels with an IR-ME
sequence was synthesized. Within each voxel, the data MR were
generated by changing the distribution of the signal in Eq. (1) from
Gaussian to Rician at SNR = 200:

MRðs1;s2Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNm

m¼1

XNn

n¼1
FðTm;TnÞexp � s1

Tm

� �
exp �s2

Tn

� �
þ �1ðs1;s2Þ

� �2

þ �2 s1;s2ð Þ2
s

ð6Þ

where �1 and �2 are Gaussian noise. The averaged data in the ROI
were taken as the complete data set (SNR = 2000) with 1000 repe-
titions. The following subsampling and data analysis was the same
as described in Section 2.2 and the simulations with Gaussian noise.

3. Results

3.1. Simulations

3.1.1. Noise type
For the full data with Gaussian noise at SNR = 2000, the 2D ILT

algorithm yields a close estimate (Fig. 3b) of the ground truth
(Fig. 3a) with a correlation coefficient C = 0.92 (Fig. 3g).
Uncorrected Rician noise introduces spurious peaks in the long-



Fig. 3. 2D T1–T2 relaxometry of (a) the simulated ground truth, (b) full data with Gaussian noise at SNR = 2000, (c) full data with magnitude signal, (d) full data with
transformed (Rician noise corrected) signal, (e) CS reconstruction from the transformed data at R = 5 and (f) the corresponding control. (g) The results of the correlation
coefficients of (b�d). (h) The normalized T2 projections of (a�f). (i) The results of the correlation coefficients of the CS reconstruction from the data with Gaussian noise
(black), the transformed signals from magnitude data (red) and its corresponding control (blue) at various acceleration factors, R. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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T2 regime, which are visible in both the T1–T2 relaxometry (red
arrow in Fig. 3c) and its 1D projection onto the T2 axis (red arrow
in Fig. 3h). In addition, the two peaks are merged indistinguishably
into one in both the T1 and T2 dimensions. The application of the
signal transformation correction successfully removes the spurious
peaks and makes the ground-truth peaks distinguishable (Fig. 3d
and h) concomitant with the recovery of the correlation coefficient
from 0.85 to 0.90 (Fig. 3g).

Subsampling was performed both on the data with Gaussian
noise and on the data with the transformed signal. The results
are shown in Fig. 3i, in which only the median was plotted for
the data with Gaussian noise for display. Within the transformed
data, the CS reconstruction successfully achieves a high correlation
coefficient C � 0.90 with a small variance until R reaches 5, which
is significantly higher than the results of the control (p < 1 � 10�9).
Except for the higher correlation coefficients, better contrast is also
observed with CS reconstruction. For example, at R = 5, the contrast
between the two peaks is 69% with the CS reconstruction, but 89%
in the control, where the ground truth is 34%.
3.1.2. Noise amplitude
The quality of the T1–T2 spectra from the full data itself

decreases as the SNR in the simulations with Gaussian noise
decreases (Fig. 4). For example, the correlation coefficients drop
from 0.94 to 0.84 when the SNR decreases from 10,000 to 200
(Fig. 4l). Except for the decrease in the correlation coefficient, the
contrast between the two peaks is also artificially reduced owing
to the larger noise amplitude, which can be seen by comparing
the T1–T2 spectrum with different noise amplitudes (Fig. 4a–c).
The contrast in the 1D T2 projection is changed from 60% to 85%
when the SNR drops from 2000 to 800, where the two peaks are
indistinguishable at SNR = 200.

The CS reconstruction from subsamples successfully maintains
the quality of T1–T2 spectra at similar levels as the results form
the full data when the SNR decreases. At R = 3, the correlation coef-
ficients from the subsample with CS reconstruction shows almost
identical distributions as the results from the full data with slightly
larger variance (61.5 times higher IQR) until the SNR drops below
800. At R = 5, the correlation coefficients drops a little with larger



Fig. 4. (a–i) T1–T2 relaxometry from the stimulated data with Gaussian noise at three SNR levels (SNR = 2000, 800, and 200) and three acceleration factors: R = 1, 3, and 5. (j)
The normalized T2 projections of (a�c) and the ground truth. (k) The boxplots of the correlation coefficients of the CS reconstruction (red) and the control (blue) from the
simulated data with Gaussian noise at SNR = 800 at various acceleration factors, R, and the broader lines and dots are the median of the data at each R. (l) The boxplots of the
correlation coefficients of the full data (red), CS reconstruction at R = 3 (blue), and R = 5 (green) at various SNR. For the display, the outliers were not shown. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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variance, especially at lower SNR (<2000). Compared to the control,
the results from CS reconstruction show much better quality at
certain acceleration factors. For example, at SNR = 800, the correla-
tion coefficients from the CS reconstruction results are significantly
higher than the control (p < 5 � 10�9) until R P 5.5 (Fig. 4k). At
higher R, the sample size is not large enough to generate good-
quality T1–T2 spectra via either the CS reconstruction or the con-
ventional 2D ILT.
3.2. Urea/water T1–T2 spectra

Here, only the fourth echoes of the 250 CPMG echo trains were
used; as a result the matrix size of the full data acquisition is
50 � 62 with SNR P 5000. The T1–T2 spectrum from the full data
is shown in Fig. 5a, in which two peaks are clearly observed: urea
with gmT2 = 30.9 ms, gmT1 = 618 ms, and f = 18.9%; and the water
with gmT2 = 156 ms, gmT1 = 614 ms, and f = 81.1%. The small bias



Fig. 5. T1–T2 spectra of the urea/water phantom from (a) the full data and (b) the CS reconstruction at R = 8, in which the curves along the axes are the 1D projections onto
each dimension. (c�f) are the Tukey box plots of the results from the 1000 realizations in each acceleration factor R, which includes (c) the correlation coefficients, the
percentage of the biases of the urea’s (d) relative volume fraction and (e) gmT2 and (f) the water’s gmT2.
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of the relative volume fractions from 20%/80% is the result of
exchange between the protons on the urea molecules and those
on the water molecules. The projections of the T1–T2 distribution
onto the T1 and T2 axes are shown along the axes in
Fig. 5a and b. A single peak is observed in the projected 1D T1 spec-
trum with gmT1 = 614 ms for both the full data and CS reconstruc-
tion at R = 8. Two peaks are observed in the projected 1D T2 spectra
for which the full data set is used with f = 18.9% and
gmT2 = 30.9 ms for the urea and f = 81.1% and gmT2 = 156 ms for
the water. The corresponding values at R = 8 with CS reconstruc-
tion are f = 18.6% and gmT2 = 30.9 ms for the urea and f = 81.4%
and gmT2 = 156 ms for the water.

In Fig. 5b, the T1–T2 spectrum at acceleration factor R = 8 is pre-
sented; this spectrum has a very high correlation coefficient,
C > 0.999. In contrast, the corresponding value of 1000 simulations
in the control at R = 8 drops to 0.895 as shown in Fig. 5c, which is
significantly smaller than the CS reconstruction (p < 1 � 10�9).
With CS reconstruction at R 6 8, the biases of the urea parameters
are: 60.1% for the f, 60.1% for the gmT1, and 61% for the gmT2. The
corresponding values for the water are: 60.02%, 60.02%, and
60.01%, respectively. In contrast, the corresponding biases in the
control at R = 8 are �3.1%, �0.2%, and �3.2% for the urea and
0.73%, 0.09%, and 0.80% for the water. In addition, the variance of
the results obtained with 1000 random samples is much smaller
than that of the control at R 6 6 and comparable to the control at
R = 7 and 8. At a higher acceleration factor (R P 9), very large vari-
ance and growing bias are observed.

3.3. Urea/water T2–T2 spectra

T2–T2 spectra of the urea/water phantom at different mixing
times are shown in Figs. 6a and 7a. As the mixing time becomes
longer, the total signal intensity decreases while the relative frac-
tion of the off-diagonal peaks increases. A two-site exchange
model was used to fit the amplitudes of the peaks following a
similar protocol as proposed by Does et al. [23] with the estimate
of the urea proton fraction being 19.6% and the exchange rate
0.35 s�1. Two peaks at sm = 50 ms and sm = 1000 ms, with SNRs
of �5000 and 1000 respectively, were chosen to test the perfor-
mance of the CS reconstruction.

At sm = 1000 ms, the off-diagonal peaks (Pab and Pba) appear
with the total relative volume fraction 15.1%, for which the relative
volume fractions of the unchanged urea (Paa) and the water (Pbb)
are 11.3% and 73.6% respectively. At R 6 9, the correlation coeffi-
cients between the CS reconstructed T2–T2 spectra and the one
from full data can be maintained as high as P0.989, which are sig-
nificantly higher than the control (p < 1 � 10�9); this coefficient
begins to fall quickly with larger variance at R P 10. In the control,
there is a strong underestimation of the relative fraction of the off-
diagonal peaks, Pab + Pba, and an overestimation of the water peaks
Pbb, which can be as large as 14.5% and 1.8% at R = 9. CS reconstruc-
tion successfully corrects the biases back (e.g., 1.1% (overestima-
tion) and 0.36% (overestimation) at R = 9), with almost the same
variance at low R and a slightly larger variance at high R (e.g.,
�1.8 times higher in IQR than the control at R = 9). Except for the
precise reconstruction of each peak’s relative fraction, the other
relaxation parameters are also more accurate. For example, the
gmT2 of the peak Pab is underestimated by 8.2% and 3.1% at the first
and second dimension (gmT2,1 and gmT2,2) in the control case at
R = 9, while the overestimations of peaks in the CS reconstruction
are only 1.6% and 0.24%.

At mixing time, sm = 50 ms, good CS reconstruction can be
obtained until R = 12. Here the 125 � 125 data matrix was first
evenly subsampled into a 62 � 62 matrix (R = 4); then additional
subsampling was performed randomly on the 62 � 62 data matrix.
In Fig. 7b, the statistical median of the 1000 T2–T2 spectra at R = 12
is shown; the correlation coefficient, C = 0.962, is very close to the
corresponding value (0.964) at R = 4. At R 6 12, the statistical esti-
mations of the other relaxation and amplitude parameters are also
accurate and precise: for example, the median biases of the f,



Fig. 6. T2–T2 spectra of the urea/water phantom at mixing time sm = 1000 ms from (a) the full data and (c) the CS reconstruction at R = 9. (b and d) are the results of (b) the
correlation coefficients and (d) the biases of the relative volume fractions of the off-diagonal peaks as a function of the acceleration factor R, for which the red is the CS
reconstruction and the blue is the corresponding control. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 7. T2–T2 spectra of the urea/water phantom at mixing time sm = 50 ms from (a) the full data and (b) the CS reconstruction at R = 12. (c) Correlation coefficients as a
function of the acceleration factor R, where the red is the CS reconstruction and the blue is the corresponding control. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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gmT2,1, and gmT2,2 of the urea peak are only 60.87%, 60.74%, and
60.45%, respectively, compared with the corresponding results
from the full data.

3.4. Porcine spinal cord ROI analysis

The results of the ROI analysis on the dorsal white matter are
detailed here (Fig. 8). The SNR in the white matter is approximately
200. Two broad peaks are observed in the T1–T2 spectra from the
full data (preprocessed) with the myelin water (MW): f = 46.1%,
gmT2 = 23.8 ms, and gmT1 = 837 ms, and the intracellular/extracel-
lular water (IEW): f = 53.9%, gmT2 = 62.3 ms, and gmT1 = 993 ms.
Here, T2 = 35 ms was used as the separation line between MW
and IEW.

As with our simulations, the noisy Rician signals also introduce
spurious peaks in the long-T2 regime (red arrow in Fig. 8d and g),
but our signal transformation scheme successfully corrects this
artifact. CS performs adequately at R = 2.5, for which the correla-
tion coefficient is 0.97 (significantly higher than the control,
p < 1 � 10�4) and the contrast between the two peaks is preserved
(93% for the CS, 93% for the full data, and a single peak in the con-
trol). At R = 4.0, the two peaks are still visible although the correla-
tion coefficient (0.91) is lower than the control (0.93) now.
Interestingly, the CS reconstruction does well at preserving the
MW relative fraction (biases 6 0.41%), though with larger variance,
for which the underestimation can be as large as 1.8% in the control
at R = 4.0. Student’s t-test was performed on the results of MW rel-
ative fraction from both the CS reconstruction and the control with
the null hypothesis that their means are equal to the result from
full data. The hypothesis is accepted by the results from CS recon-
struction (p P 0.15) except for R = 4.0 (p = 0.02), while it is rejected
by all the results from the control (p < 1 � 10�7).



Fig. 8. The T1–T2 spectra of (d) the original magnitude data in the dorsal porcine white matter, (a) full data with transformed signal, (b) CS reconstruction from the
transformed data at R = 2.5 and (c) at R = 4.0, (e) and (f) the corresponding control. (g) The normalized 1D T2 projections of (a�f). (h�g) The results of (h) the correlation
coefficients and (i) the MW fraction as a function of the acceleration factor R, where the red are the CS reconstructions and the blue are the corresponding controls. The map of
the gmT2 from 10 ms to 400 ms of the spinal cord and the ROI in the dorsal white matter (red curve) are shown at the upper left corner of (a). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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4. Discussion

In this work, our main objective was to design a pipeline to
accelerate the acquisition of 2D relaxation spectra using com-
pressed sensing and then to test and validate its efficiency in main-
taining the quality of the 2D distributions with both simulations
and acquired NMR and MRI experimental data.

Clearly, compared with 1D relaxation spectra, more information
can be obtained from the 2D relaxation spectra, even in simple
well-defined systems like the urea/water mixture studied here.
The 2D spectra can uncover and distinguish different relaxation
components that may be hidden in the 1D spectra. For example,
only one peak can be observed in the T1 spectra of the urea/water
phantom, whereas two peaks are well defined in the T1–T2 relax-
ation spectra. Furthermore, exchange information between differ-
ent components can also be extracted from 2D relaxation spectra
whereas this is not possible in the 1D case. In T2–T2 relaxometry
of the urea/water phantom, the off-diagonal peaks provide direct
evidence of exchange between the protons on the urea and water
molecules; these rates of exchange can be then be quantitatively
characterized by modeling and fitting the intensities of the peaks.
This information cannot be obtained from 1D T2 spectra alone.

The 2D-ILT algorithm proposed by Venkataramanan et al. is
very sensitive to the SNR and the type of noise. For example, in
the simulations, either the change of noise type from Gaussian to
Rician or the decreasing of SNR from 10,000 to 200 will signifi-
cantly affect the quality of the 2D relaxometry. Normally, a high
SNR with Gaussian noise is required for good performance. These
conditions can be easily achieved for most NMR experiments with
large sample sizes at high fields. However, for MRI applications, the
SNR is typically lower and the noisy amplitude signal should be
transformed from a Rician to a Gaussian distribution. Higher SNR
in MRI can be achieved by performing ROI analysis in homoge-
neous regions.

In both simulations and the MRI experiments on the spinal cord,
the presence of Rician noise introduces spurious peaks in the long
T2 regime because the rectification of the complex MR signal pro-
duces a ‘‘noise floor’’ which, uncorrected, is fit by the 2D-ILT rou-
tine in both dimensions. This baseline signal biases the signal
decay, leading to the appearance of artifactually long-T2 compo-
nents and decreasing the contrast between existing peaks. This
phenomenon is quite similar to the one we observed previously
in the 1D T2 spectra from noisy MRI magnitude data. A signal trans-
formation framework we proposed previously for 1D T2 spectra in
multi-echo MRI is successfully applied here to the 2D relaxation
spectra obtained from MRI data to remedy biases caused by
Rician noise. While the method is not perfect, these biases are sig-
nificantly reduced.

CS reconstruction was successfully carried out on the simulated
2D relaxation spectra data, experimental NMR data on a well-
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characterized urea/water phantom, and the IR-ME MRI data from
the porcine spinal cord. With the CS reconstruction, the size of
the data matrix can be reduced significantly without compromis-
ing the quality of the final 2D relaxation spectra. Compared with
the controls, 2D relaxation spectra obtained from subsamples
using CS reconstruction shows a better approximation to the
ground truth or to the results from full data, as demonstrated by
the higher global correlation coefficient; better contrast between
local peaks; and more accurate relative volume fraction and relax-
ation parameters. A disadvantage of the CS reconstruction is that it
admits more outliers at higher R, where the noise in some subsam-
ples causes the CS reconstruction to fail. However, the number of
these problematic subsamples becomes negligibly small as a func-
tion of the number of data points collected [39]. Additionally, the
CS-reconstruction algorithm proposed here is very fast with pro-
cessing time: approximately several seconds for each reconstruc-
tion on an Apple desktop computer with 4 cores.

The maximum acceleration factor, R, that can be achieved using
CS reconstruction depends on the noise amplitude, noise type, the
experimental design of the MR data acquisition protocol, and the
underlying ground truth. In the simulation, better T1–T2 spectra
are obtained at a high SNR (2000) than at a low SNR (800) at the
same acceleration factor. In the T2–T2 spectra of the urea/water
phantom, R = 12 can be achieved at a mixing time, sm = 50 ms,
but the maximum R at a mixing time sm = 1000 ms is 9, for which
the SNR is around 5 times lower and the relaxometry spectra
appear more complex. As for the simulations of the 2D relaxation
spectra with MRI, the maximum R is approximately 5 even after
the noise correction, maybe due to that CS is performed with an
already small data matrix.

Two distinguishable peaks were observed in the T1–T2 spectra
of the white matter from the porcine spinal cord, which were
assigned to be myelin water (shorter relaxation times) and intra-
cellular/extracellular water (longer relaxation times). These
results were consistent with previous 1D T2 spectra measures in
the white matter in vivo or ex vivo [41,46–48]. Here the maxi-
mum R that can be achieved is equal to or less than 4.0, which
is smaller than in the simulations. Several reasons may contribute
to this reduction: (1) the SNR is lower in the experiments since
the number of voxels in the ROI is less than 100; (2) the noise
is still not Gaussian even after preprocessing since there might
be some systematic artifacts; (3) heterogeneities may exist
among voxels and ROI-type analysis might not be the best
method; (4) the underlying ground truth of the T1–T2 relaxation
spectra of the biological tissue is still poorly known, thus there
might be biases in the T1–T2 relaxation spectra when the com-
plete data set is used. Interestingly, even with a decreased corre-
lation coefficient, CS reconstruction corrects the bias in
estimating the MW and IEW fraction with the conventional 2D
ILT method, though with larger variance.

The biggest obstacle to migrating 2D relaxation spectra mea-
surement to in vivo preclinical and clinical MRI scanning applica-
tions is the long acquisition time. For example, the total
acquisition time for the IR-ME experiments in this experiment
was �21 h. With CS, the time can be reduced to �6 h by an accel-
eration factor R = 3.5, but these times are still too long for in vivo
applications. However, the parameters chosen in our time-con-
suming IR pulse sequences were conservative, leading to a long
pre-scan delay. There are other MRI pulse sequences with shorter
acquisition times, such as the saturation-recovery prepared mul-
ti-echo (SR-ME) with echo-planer (EPI) acquisition pulse
sequences, proposed by Does and Gore [2], whose total acquisition
time is about 1 h. If the same acceleration factor R = 3.5 can be
achieved there, the total acquisition time could be reduced to
17 min. In addition, even higher acceleration factors will be possi-
ble as SNR increases with improvements in scanner hardware.
One practical concern of the CS reconstruction is the random
sampling, which might be limited by the natural structure of the
CPMG or multi-echo pulse trains, i.e., the reduction of the scan
time is only achievable in the first dimension of the three pulse
sequences (Fig. 1) used in this study. However, in high-field MRI
scanners, safety concerns, primarily power deposition in tissue
owing to a high specific absorption rate (SAR), limit the total num-
ber of 180� pulses that can be applied per unit time. Therefore, a
practical alternative would be to use a single echo or a few echoes
with a fast MRI acquisition, such as EPI; parallel imaging; and mul-
ti-band excitation. In these cases, acceleration provided by CS
reconstruction could play an important role in reducing the acqui-
sition time further, making 2D relaxation spectrum MRI measure-
ments clinically feasible. Though the three pulse sequences in this
study cannot be directly applied to in vivo preclinical and clinical
studies, the data from these sequences represents the general 2D
relaxometry data structure and the findings in ‘‘compressing’’ the
2D data will be helpful for future pulse sequence designs and data
analysis.

In this work, the CS reconstruction was carefully validated in
simulations and a limited number of biological samples. For
in vivo MRI applications, much work is still required, such as reach-
ing a deeper understanding of the ground truth of the 2D relax-
ation spectra in different biological tissues, better modeling and
correction of the noise within MRI acquisitions, and hardware
improvements that will increase the SNR. Only 2D T1–T2 and T2–
T2 MR relaxometry were validated here, but this pipeline can be
easily adapted to other 2D spectra, such as D–T2, D–D, and T1–T1,
provided that the application of the successive ‘‘filters’’ results in
a relationship between the measured magnetization and the relax-
ation parameters that is given by a 2D Fredholm equation.
Moreover, higher dimensional (nD) relaxometry studies can also
be used because compression efficiency can increase in CS with
increased dimensionality particularly when spectral data are
sparse and compactly supported, as appears to be the case with
many experimental relaxation spectra. In addition, further data
compression can be achieved if CS is used both in the Laplace
domain, as is done here, and in the Fourier domain to reduce the
number of MRI acquisitions required for spatial localization.
5. Conclusion

A new MR acquisition and analysis pipeline is proposed to
vastly reduce the amount of 2D relaxation spectral data needed
for material and tissue characterization applications without com-
promising data quality. This greater efficiency is achieved by
reconstruction from incomplete 2D relaxation measurements with
compressed sensing. This pipeline has been validated by 2D spec-
tral simulations, NMR experiments on a well-characterized urea/
water phantom, and T1–T2 relaxometry MRI experiments on a fixed
porcine spinal cord. In addition to maintaining global correlations,
the CS reconstruction from the incomplete measurements pre-
serves other important parameters, including the local contrast
between peaks and the amplitude and relaxation parameters of
the peaks.
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Appendix A. Recover eM from incomplete measurements using
compressed sensing

Let us start with the minimization problem in Eq. (3). With the
SVD in Eq. (4), Eq. (3) can be rewritten as [28,39]

bF ¼ arg minbFP0

M � K1FK 02
�� ��2 þ akFk2

¼ arg minbFP0

U1
bMU02 � U1U01K1FK 02U2U02

��� ���2
þ kMk2

� U1
bMU02

��� ���2
þ akFk2

¼ arg minbFP0

bM � ðS1V 01ÞF S2V 02
� 	0��� ���2

þ akFk2 ðA:1Þ

where the third line comes from U1 and U2 having orthogonal col-
umns, and the second and the third items in the second line being
independent of F. The target of the CS reconstruction is to search for
a matrix X that well approximates the ground trutheM0 � ðS1V 01ÞF S2V 02

� 	0 2 Rs1�s2 with the given subsamples y, which
was chosen from the full data M on random entries

y ¼ RXð eM0Þ þ � ðA:2Þ

where X � f1; . . . ;N1g � f1; . . . ;N2g is the set of random indices
where we observe M with jXj ¼ m and the indices ordered as
X ¼ fðik; jkÞg

m
k¼1, and RX is the sampling operator

RX : Rs1�s2 ! Rm

RXðXÞ ¼ AXðU1XU02Þ
ðA:3Þ

Here AX is a linear operator with random sampling

AX : RN1�N2 ! Rm

AXðXÞð Þk ¼ Xik ;jk

ðA:4Þ

Our CS reconstruction is based on low-rank matrix completion and
the reconstruction step takes the form

min kXk	 :¼
Xr

i¼0

riðXÞ

such that kRXðXÞ � yk2 6 �

ðA:5Þ

where riðXÞ is the ith singular value of a rank r matrix X and the
operator RX satisfies the restricted isometry property (RIP) as
demonstrated in [39]. In the algorithm, instead of solving Eq.
(A.5), we solved the relaxed Lagrangian form

minlkXk	 þ
1
2
kRXðXÞ � yk2

2 ðA:6Þ

Eq. (A.6) is solved using the singular value thresholding algorithm
from [45,49] with a two-step iterative process. Let the matrix
derivative of the L2 norm term in Eq. (A.6) be written as

gðXÞ ¼ R	XðRXðXÞ � yÞ ¼ U01ðA
	
XðAXðU1XU02Þ � yÞÞU2 ðA:7Þ

Another notation is the singular value thresholding operator Sv that
reduces each singular value of some matrix X by v. Let us say the
SVD of X is X ¼ URV 0, then Sv is defined as

SvðXÞ ¼ UR̂V 0; with R̂i;j ¼
maxðRi;i � v ;0Þ; i ¼ j

0; otherwise



ðA:8Þ

The two-step iterative process is then
Yk ¼ Xk � sgðXkÞ
Xkþ1 ¼ SsvðYkÞ

(
ðA:9Þ

With proper choices of s and l, for any initial condition, this

method converges with a high probability to a matrix bM , which is

guaranteed in theorem [39] to be close to eM up to a constant factor

of the noise. The recovered bM is then substituted into Eq. (A.1) to
solve for F. More details about this CS reconstruction process can
be found in [39].
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