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Abstract—Diffusion tensor magnetic resonance imaging 
(DT-MRI) is capable of providing quantitative insights into 
tissue microstructure in the brain. An important piece of informa-
tion offered by DT-MRI is the directional preference of diffusing 
water molecules within a voxel. Building upon this local direc-
tional information, DT-MRI tractography attempts to construct 
global connectivity of white matter tracts. The interplay between 
local directional information and global structural information is 
crucial in understanding changes in tissue microstructure as well 
as in white matter tracts. To this end, the right circular cone of 
uncertainty was proposed by Basser as a local measure of tract 
dispersion. Recent experimental observations by Jeong et al. and 
Lazar et al. that the cones of uncertainty in the brain are mostly 
elliptical motivate the present study to investigate analytical 
approaches to quantify their findings. Two analytical approaches 
for constructing the elliptical cone of uncertainty, based on the 
first-order matrix perturbation and the error propagation method 
via diffusion tensor representations, are presented and their 
theoretical equivalence is established. We propose two normalized 
measures, circumferential and areal, to quantify the uncertainty 
of the major eigenvector of the diffusion tensor. We also describe 
a new technique of visualizing the cone of uncertainty in 3-D. 

Index Terms—Cone of uncertainty, diffusion tensor imaging 
(DTI), eigenvector dispersion, normalized areal measure, normal-
ized circumferential measure. 

I. INTRODUCTION 

DIFFUSION tensor magnetic resonance imaging (DT-MRI) 
is a noninvasive in vivo imaging technique uniquely ca­

pable of probing tissue microstructure in the brain [1]–[5]. 
DT-MRI has provided great impetus for quantifying and char­
acterizing changes in human brain morphology [5]–[8] and in 
anatomical connectivity of white matter tracts [9]–[16]. 

Within an imaging voxel, the directional information of white 
matter tracts is usually obtained from the major eigenvector of 

Asterisk indicates corresponding author. 

the diffusion tensor [1]. Using this local directional informa­
tion, DT-MRI tractography attempts to construct global anatom­
ical connectivity of white matter tracts. The interplay between 
local directional and global structural information is crucial in 
understanding changes in white matter tracts. With this end in 
view, the cone of uncertainty (COU) was proposed by Basser 
[17] as a local measure of tract dispersion, but the shape of 
the cone had been presumed circular both in [17] and in later 
studies [18]–[24]. For example, the noninformative prior in an­
gular space used by Behrens et al. [23] and the zeroth order di­
rectional uncertainty proposed by Parker et al. [24] were mod­
eled after directional dispersion that is symmetric or circular. 
Although we have previously described an analytical method 
based on error propagation via diffusion tensor representations 
to account for asymmetry in tract dispersion [25], [47] the ex­
perimental observations by Jeong et al. [26] and Lazar et al. 
[27], [28] that the cones of uncertainty in the brain are mostly 
elliptical call for a closer investigation of analytical approaches 
to support their nonparametric studies, which were based on the 
bootstrap method. Since the dispersion is actually elliptical, the 
proposed analytical local measure of tract dispersion has a crit­
ical role to play in both deterministic and probabilistic methods 
of tractography [23], [24], [29]–[32]. 

To date, there are two analytical methods that can be em­
ployed to study tract dispersion—perturbation [17], [20], [29], 
[33], [34] and error propagation via diffusion tensor representa­
tions [25], [47]. Although Hext [33] did discuss the asymmetry 
of the dispersion of the eigenvector of a second order tensor, the 
formulation he provides, as we will show, was not suitable for 
practical computation and visualization because the covariance 
matrix of the eigenvector was not explicitly given, which might 
explain why it was not adopted in DT-MRI studies even though 
his work was made known by Anderson [29]. Furthermore, the 
formulation by Hext was based upon the ordinary linear least 
squares method, which has been shown to be less optimal than 
the nonlinear least squares method when applied to diffusion 
tensor estimation [35]–[37]. We should also remark that pre­
vious DTI studies on tract or eigenvector dispersion [17], [20], 
[29], [33] did not provide an explicit expression for the covari­
ance of the eigenvector of the diffusion tensor and these studies 
were also based on the linear least squares method of DTI. 

Based on our recent work [25], [47], we have identified 
the covariance matrix of the major eigenvector of the dif­
fusion tensor as the most appropriate object for quantifying 
local tract dispersion. In this paper, we will reformulate the 
first-order matrix perturbation method used by Hext to obtain 
the same covariance matrix obtained in [25] and [47]. The 
reformulation has two very important roles—analytical as 
well as practical. First, as a practical construct, it renders the 

http://ieeexplore.ieee.org/Xplore/home.jsp
mailto:guankoac@mail.nih.gov


835 KOAY et al.: THE ELLIPTICAL CONE OF UNCERTAINTY AND ITS NORMALIZED MEASURES IN DIFFUSION TENSOR IMAGING 

technique of first-order matrix perturbation more suitable for 
computing and visualizing the elliptical cone of uncertainty. 
Second, as a theoretical construct, it enables the constructive 
proof of the equivalence between the two covariance matrices 
obtained from two different approaches—the first-order matrix 
perturbation and the error propagation method via diffusion 
tensor representations. 

Although the covariance matrix of the major eigenvector con­
tains all the necessary information for constructing the ellip­
tical COU, a normalized scalar measure of the elliptical COU 
may also be useful in understanding tract dispersion and in dis­
playing uncertainties of the cones as an image. To this end, 
we propose two new normalized measures—the normalized cir­
cumferential and areal measures of the elliptical COU. We also 
propose a new approach for constructing the COU that would 
resolve the issue of overlapping cones in neighboring locations. 

II. METHODS 

A. Review of Nonlinear Estimation of the Diffusion Tensor in 
Different Tensor Representations 

Diffusion tensor estimation by a linear least squares method 
initially proposed by Basser et al. [1], [2] is now a routine pro­
cedure in DT-MRI studies even though recent studies [35]–[37] 
have shown the nonlinear least squares method to be more ap­
propriate and accurate than the linear least squares method. Re­
cently, we initiated a line of investigation starting from the basic 
properties of MR noise [38], particularly the fundamental re­
lationship between Gaussian and Rician noise, to the methods 
for nonlinear estimation of the diffusion tensor [36], [37], and 
error propagation for DT-MRI via diffusion tensor representa­
tions [25], [47]. The common theme of our approach in these 
works can be characterized as nonlinear and analytical because 
the problem faced in each stage of this line of investigation was 
essentially nonlinear but analytically tractable. In brief, this line 
of investigation attempts to make DT-MRI more quantitative 
and more accessible. 

Throughout this paper, we will use the same notation as em­
ployed in our previous works, [37] and [25], [47]. Although we 
have tried to make the present work as self-contained as pos­
sible, we should mention that it is intricately connected to the 
nonlinear least squares estimation of the diffusion tensor [37] 
and the method of error propagation via diffusion tensor repre­
sentations [25], [47]. Therefore, readers are encouraged to skim 
through [37] and [25], [47] to get a more holistic picture of 
the interconnectedness of various concepts and ideas introduced 
here and in [25], [47], [37]. 

In general, the objective functions for the nonlinear least 
squares problem in DTI in the ordinary [37] and Euler diffusion 
tensor representations [25] and [47] can be expressed respec­
tively as follows: 

(1) 

and 

(2) 

and the covariance matrices of these representations are given 
by [25], [47]: 

(3) 

and 

(4) 
The matrix or vector transposition is denoted by superscript . 
The notations used in (1)–(4) are defined in Appendix I. 

B. Error Propagation Framework 
The core idea of error propagation is to transform one co­

variance matrix to another covariance matrix of interest through 
an appropriate mapping between the underlying representations 
[25], [47]. 

In DT-MRI, the most fundamental covariance matrix is , 
from which other covariance matrices can be obtained [25], 
[47]. For example, can be constructed from as follows: 

(5) 

where , is known as 
the Jacobian matrix of with respect to evaluated at . This 
Jacobian matrix is a locally linear map from to at , e.g., 

(6) 

In general, an explicit mapping, i.e., , is needed to recon­
struct the Jacobian matrix, i.e., ; although exists [39], 
it is neither accurate computationally compared to matrix diago­
nalization nor useful conceptually. To drive home this point, the 
reader is invited to derive the analytical expression of . 
The Euler representation was therefore proposed [25], [47] to 
resolve this issue by expressing the ordinary tensor representa­
tion in terms of the Euler representation, ; this mapping is 
related to the decomposition of a symmetric matrix. As a con­
firmation that these two formulations are indeed equivalent in 
principle, we will derive (4) by substituting (3) into (5) 
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In the above derivation, we used the following well-known 
identity , and, therefore, 

. In practice, it is easier to compute 
than . This seemingly trivial technique of 

transforming one problem to another in which the Jacobian ma­
trix of the latter has a much simpler expression will be exploited 
again later. 

As can be seen above, the Jacobian matrix between repre­
sentations plays a critical role in transforming one covariance 
matrix to another and the Jacobian matrix is, in turn, dependent 
upon the mapping between representations. In light of this un­
derstanding, we will reformulate the perturbation method in the 
next section to elucidate how the Jacobian matrix between the 
ordinary representation and the major eigenvector can be con­
structed so that the covariance matrix of the major eigenvector 
can be obtained. 

We should note that an explicit mapping between represen­
tations is usually needed to construct the Jacobian matrix. Oc­
casionally, such a mapping may not exist or may be too com­
plicated to shed light on the problem at hand. If this is the case 
then the first-order matrix perturbation method may be helpful 
in finding the Jacobian matrix in the form of 
without requiring an explicit mapping of . 

C. First-Order Matrix Perturbation Method Reformulated 

The first comprehensive theoretical analysis of noise in 
DT-MRI via the method of matrix perturbation was carried 
out by Anderson [29], and since then, many studies have built 
upon this work in understanding tract dispersion [27], [30] and 
variability in scalar tensor-derived quantities [20]. Further, it is 
through this work that we learned of the work by Hext [33] in 
which the local dispersion of the major eigenvector was first 
formulated. This formulation of local dispersion is different 
from that of Basser [17] because the latter leads to a circular 
cone of uncertainty. It is important to note that the covariance 
matrix of the second order tensor used by Hext [33], Anderson 
[29], Basser et al. [17], and Chang et al. [20] was based on 
the linear least squares methods, ordinary, or weighted. In this 
work, the covariance matrix of the diffusion tensor is based on 
the nonlinear least squares method, which is consistent with 
our previous works [25], [47], [37]. 

We will introduce a notation, , used by Hext [33] to 
simplify our discussion. Let 

and 

we can write the quadratic form, , as a dot product 
between two vectors as follows, which is a well known trick in 
DT-MRI: 

(7) 

where 

(8) 

is the notation used by Hext, and 

(9) 

The first-order matrix perturbation method begins with the 
eigenvalue equation and the orthonormality condition 

(10) 

and 

(11) 

respectively. Here, is the Kronecker delta function, which 
assumes unity if or zero otherwise.
 

If we take a small variation on both sides of (10), i.e.,

, and of (11), i.e.,
 , the former 

leads to 

(12) 

while the latter leads to 

(13) 

Equation (13) also implies that 

(14) 

and from we obtain 

(15) 

Taking the dot product between (12) with , we have  

(16) 

Since is symmetric, (16) can be further reduced to the fol­
lowing expression by taking (10) into account: 

(17) 
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(18) 

The derivation thus far can be found in Hext [33]. In order to 
obtain the covariance structure of the major vector of the diffu­
sion tensor, we should keep in mind one of the key objects in 
error propagation, namely, the Jacobian matrix between repre­
sentations in a form similar to (6). Although (18) differs slightly 
from (6), we will reformulate it to achieve the desired form of 

. Later, we will extend the reformulation from 
to . 

Without loss of generality, we assume that . 
Since we are interested in the dispersion of the major eigen­
vector, we will take . We should point out that the disper­
sion of the medium and minor eigenvectors can be similarly de­
rived. Note that (18) results in three separate equations, namely 

(19) 

(20) 

and 

(21) 

Note that (19) is a consequence of (15) and not of (17). Equa­
tions (19)–(21) can be combined into a single matrix expression 
given by 

which is , or

, or (22) 

In the above derivation, we have used the orthonormality con­
dition, i.e., . 

The above reformulation based on can be easily extended 
to resulting in 

(23) 

where is a 3 7 matrix given by 

Therefore, we have and . 
Finally, the covariance of the major eigenvector can be ex­

pressed nicely as [25], [47] 

(24) 

Interestingly, the formulation used by Basser [17] or Fuku­
naga [34] and later by Chang et al. [20] can be deduced from 
the present framework starting from (22) 

or

so that 

(25) 

In retrospect, it may seem trivial that (22) can be deduced 
from (25). Although such a derivation is short, it may seem too 
artificial without sufficient motivation on the crucial role played 
by the Jacobian matrix in error propagation. Furthermore, the 
covariance of the major eigenvector as a geometric structure for 
quantifying local tract dispersion is a concept that was intro­
duced only recently [25], [47]. From (25), we see that the vector, 

, is perpendicular to the major eigenvector, , because 
is a linear combination of and . For completeness, we pro­
vide the expression for the angle of deviation of the right circular 
cone of uncertainty [17], [20] 

(26) 

Note that is taken to be the standard deviation of the tensor 
elements in computing the angle in (26), [17], [20], [29]. 

As mentioned above, an explicit mapping between represen­
tations may not be available as is the case between and but 

can still be computed. 
In concluding this section, we will demonstrate that (24) can 

be derived from the approach proposed in [25], [47]. The co­
variance of the major eigenvector of the diffusion tensor using 
the Euler representation is given by [25] and [47] 

(27) 

Substituting (4) into (27), we have 
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(28) 

Two important identities were used in the derivation above: 
, and 

. Although the derivation above shows that (28) can be 
obtained from (27), it is important to point out that it shows only 
the existence of but not necessarily the construction 
of . Fortunately, as we have seen in this section, we 
know of one such construction. 

For completeness, we will outline the steps needed to con­
struct the cone of uncertainty following the approach used by 
Hext. From (28), we know that the joint confidence re­
gion for is the ellipsoid [40] given by 

where is the upper quantile for an distribution 
with 2 and degrees-of-freedom; the plus sign on 
denotes the matrix pseudoinverse which is needed here because 
the matrix rank of is two rather than three. Equivalently, 
one can write 

and finally because 
the eigenvectors of the diffusion tensor are orthogonal 
and the eigenvectors of are also the singular vec­
tors [41]. Let the eigenvalue decomposition of be 

; the last term is due
to and (24). Then, choosing to be 

or will give 
us the principal directions of the ellipse of the COU whose
area corresponds to the joint confidence region for . 
Note that can be found by solving for the root 
of where 
is the incomplete Beta function [42]. We should also mention 
that the covariance matrix of the major eigenvector may also be 
obtained from the average dyadics of the bootstrap estimates 
of the major eigenvector as described in [25, Appendix X] and 
[47]. 

D. COU Visualization and Normalized Circumferential and 
Areal Measures 

We propose here a technique of COU construction for visu­
alization and two normalized measures for quantifying uncer­
tainty in the major vector of the diffusion tensor. We will pro­
vide detailed information on the new construction of COU as 
well as the computation of the normalized measures in this sec­
tion. 

A simple closed or Jordan curve [43] on the unit sphere di­
vides the unit sphere into two regions. If the simple closed curve 
is not the great circle then one region will be greater than the 
other. The proposed normalized areal measure, denoted by , 
is the ratio of the area of the smaller region on the unit sphere, 
which is enclosed by a simple closed curve whose Gnomonic 

(or central) projection [44] on the -plane is an ellipse as de­
picted in Fig. 1 and Fig. 2(A), to the area of the hemisphere. The 
ratio of the circumference of the simple closed curve on the unit 
sphere to the circumference of the great circle of the unit sphere 
is another normalized measure, denoted by , that is related to 
the cone of uncertainty. As a spin-off of making these normal­
ized measures practical for computation, we have a technique of 
constructing the COU, depicted in Fig. 2(B), that avoids over­
lapping cones in neighboring regions. 

Fig. 1. Gnomonic (or central) projection. 

Fig. 2. (A) Inverse Gnomonic projection of an ellipse of the u,v-plane onto the 
unit sphere is accomplished by normalizing the vector p in Fig. 1 to unit length 
so that the normalized vector is s. (B) The proposed construction of the COU 
is based on the inverse Gnomonic projection of an ellipse of the u,v-plane onto 
the unit sphere. 

Let be a point on the upper hemisphere whose Gnomonic 
projection on the -plane is the point , Fig. 1. Let be de­
noted in vector form by 

(29) 

The point in vector form can be obtained by normalizing 
to unit length 

(30) 

Therefore, the components of are functions of and . 
Suppose that the major and the minor axes of the ellipse coin­

cide with the axes of the -plane. Let the length of the major 
and the minor axes be and , respectively. Specifically, we 
have and 
which are taken from the previous section. The normalized 
areal measure, , which is a dimensionless quantity, with values 
ranging from zero to unity can then be expressed as follows: 

(31) 
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in terms of the coefficients of the first fundamental form [45]; the 
region is defined by and the coefficients 
of the first fundamental form are 

and 

The surface integral above can be further simplified to show 
explicit dependence on and 

(32) 

where K and are, respectively, the complete elliptic integrals 
of the first kind and the third kind [46], which are defined below 
for completeness 

and 

The derivation of (32) is provided in Appendix II.
 
It is interesting to note the special case which occurs when
 

the ellipse on the u,v-plane becomes a circle where . 
In this case, the normalized areal measure is given by 

(33) 

The derivation of (33) involves a simple change of variables to 
polar coordinates starting from (B2) and is left to the reader. 
The two limiting cases in which the variable approaches zero 
or infinity confirm that the proposed normalized areal measure 
is bounded in the interval between zero and unity. 

Finally, the normalized circumference of the simple closed 
curve, as depicted in Fig. 2(A), is given by 

(34) 

where . 

Again, the normalized circumferential measure is also a di­
mensionless quantity. The derivation of (34) is provided in Ap­
pendices V and VI. When , the normalized circum­
ferential measure is reduced to 

It is only when that is in one to one correspondence 
to , i.e., . In general, maps to multiple and 
vice versa. 

III. RESULTS 

We shall outline the basic idea of constructing the covariance 
matrix of the major eigenvector of the diffusion tensor with an 
example similar to that presented in [25] and [47]. The technique 
of error propagation via diffusion tensor representations will be 
denoted by “EP” while the reformulated perturbation technique 
described in the previous section will be denoted by “RP.” We 
will take a synthetic diffusion tensor, given by 

as known. The eigenvalue-eigenvector pairs of this tensor are 

and 

Further, the trace and the fractional anisotropy (FA) of this syn­
thetic diffusion tensor are 0.0021 mm /s and 0.4176, respec­
tively. 

The mean covariance matrix of the major eigenvector of this 
tensor, based on EP and RP is essentially equivalent except for 
some rounding errors 

Full details on this and related computations that require the 
notion of average covariance can be found in [25] and [47]. 

The computation above is carried out based on a signal-to­
noise ratio (SNR) of 50 and on a design matrix that was 
constructed from a 35 gradient direction set with four spherical 
shells having values of 0, 500, 1000, and 1500 s/mm .
 

The eigenvalue-eigenvector pairs of
 are 

and

Finally, the only difference between the eigenvalue-eigenvector 
pairs of and of is in the minor eigenvalue, 
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for , which is of no consequence in 
practice. 

Although it is interesting to compare the angle of deviation of 
the two major axes of the elliptical COU to that of the circular 
COU, a consistent comparison cannot be easily made because 
the formalism used in the circular COU, (26), is ill-suited for es­
tablishing the joint confidence region for the major eigenvector. 
Specifically, the angle of deviation of the circular COU is de­
rived from a hyper-cuboid region in the space of the diffusion 
tensor elements determined by rather than from a confidence 
region in the space of the elements of the major eigenvector. 
With this issue in mind, we will present a qualitative comparison 
by adjusting the confidence level of the elliptical COU. 
Here, we will take to be 0.3173, which is the area covering 
the two tails of the normal distribution at one standard deviation 
apart from the center, i.e., at and . Therefore, we have 

for this particular example. 
The angle of deviation for the principal directions of the el­

liptical COU are given by , 
and , respectively, where 
and are the first two largest eigenvalues of . In the con­
text of the example discussed here, we have and 

while the angle of deviation of the circular cone of 
uncertainty is . We also show here the SNR depen­
dence of , and
 based on the same design matrix and the 
underlying true tensor, see Fig. 3.
 

Fig. 3. The angle of deviation (in degrees) as a function of SNR.The red curve, 
1 , and the blue curve, 1 , denote the angles of deviation of the major and the 
minor axes of the elliptical cone of uncertainty, respectively. The dotted curve, 
1 , denotes the angle of deviation of the circular cone. At each SNR, 5000 
samples were generated to obtain an estimated angle of deviation. 

Using the same simulated human brain tensor data used in 
[37] and [25], [47] together with the experimental design de­
fined in the above example, the normalized areal measure map, 
which corresponds to the 0.95 joint confidence region (or 95% 
confidence region) at an SNR level of 15, can be obtained and is 
shown in Fig. 4(C) while the corresponding image of the cones 
of uncertainty is shown in Fig. 5. Fig. 4(A) and (B) show the 
FA map and the cones of uncertainty within the region bounded 
by the rectangular box indicated in Fig. 4(A). Fig. 4(D) and (E) 
are, respectively, the normalized circumference map, see Ap­
pendix V, and the eccentricity map of the ellipse of the cone 
of uncertainty. The eccentricity of an ellipse is given by 

and it is assumed that . 

IV. DISCUSSION 

In this work, one of our main objectives is to elucidate the 
connection between the first-order matrix perturbation method 
and the error propagation method via diffusion tensor represen­
tations by way of an important example—the covariance of the 
major eigenvector of the diffusion tensor, and to show that these 
two methods are distinct but complementary. The other main 
objective is to provide new normalized scalar measures related 
to the cone of uncertainty and to outline a new technique of vi­
sualizing the cone of uncertainty. 

The covariance matrices of the eigenvector of the diffusion 
tensor as obtained from the perturbation method and the error 
propagation method via diffusion tensor representations are 
in principle equivalent, but are in practice very different; the 
first-order matrix perturbation as reformulated here is simpler, 
and therefore, more efficient than the approach via diffusion 
tensor representations. However, the error propagation via 
Euler representation is more coherent in that the uncertainty 
of any tensor-derived quantity, scalar-valued or vector-valued, 
can be obtained from the Euler representation alone while the 
first-order matrix perturbation method requires two distinctly 
different representations. Consequently, two Jacobian matrices 
of the eigenvalues and of the eigenvectors with respect to the 
ordinary tensor representation are needed in the first-order 
matrix perturbation method. It is important to note that the 
reformulation of the first-order matrix perturbation method 
proposed in this work makes the perturbation method practical 
for 3-D visualization of the cones of uncertainty. We should 
also point out that the proposed reformulation makes use of the 
covariance matrix of the diffusion tensor that is derived from 
the nonlinear objective function of diffusion tensor estimation 
[25], [47], [37]. 

Here, we outline the main findings of this work. First, the 
perturbation method is reformulated to obtain the covariance 
of the major eigenvector of the diffusion tensor. Second, this 
covariance matrix is shown to be equivalent to that derived from 
the error propagation method based on the Euler representation. 
Third, when a mapping between representations of interest is not 
available then it is likely that the first-order matrix perturbation 
method may be helpful in finding the Jacobian matrix so that 
the transformation from one covariance structure to another can 
be realized. Finally, two new normalized measures of the cone 
of uncertainty and a new technique of visualizing the cone of 
uncertainty are described. 

In DT-MRI studies, several scalar measures have been pro­
posed to characterize tract dispersion; some are parametric [17], 
[20], [25], [47], [29] while others are not [18], [19], [28]. The 
normalized circumferential and areal measures discussed in this 
work belong to the former and can be viewed as a local para­
metric coherence measure. Since the major eigenvector of the 
diffusion tensor is usually associated with the directional pref­
erence of the diffusing water molecules, the proposed measures, 
which are directly linked to the uncertainty in the major eigen­
vector of the diffusion tensor, may be important for probing the 
integrity of the white matter tracts in the brain. In addition to 
that, these measures have a dependence on the signal-to-noise 
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Fig. 4. (A) A fractional anisotropy (FA) map. (B) The corresponding elliptical 95% confidence cones of uncertainty on the region bounded by the red rectangular 
box in (A) at an SNR level of 15. (C) The map of the normalized areal measure and (D) the map of the normalized circumferential measure. (E) The map of the 
eccentricity of the ellipse of the 95% confidence COU. The maps, (C), (D), and (E), are generated from the 95% confidence COU at ant SNR level of 15. Let the 
minimum value, the lower quartile, the median, the upper quartile and the maximum value of a map (excluding the background) be arranged as an array of five 
elements in ascending order. The arrays associated with (A), (C), (D), and (E) are approximately and respectively {0.013, 0.078, 0.145, 0.299, 0.873}, {0.001, 
0.021, 0.091, 0.239, 0.828}, {0.047, 0.216, 0.455, 0.700, 0.997}, and {0.102, 0.688, 0.817, 0.908, 0.999}. 

Fig. 5. An axial slice of the map of 95% confidence COU at an SNR level of 
15. 

ratio and may be used as a calibration gauge for assessing an 
MRI system or DT-MRI acquisition performance. 

The key advantage of the proposed measures for quantifying 
uncertainty of the major eigenvector of the diffusion tensor is 
that these measures are dimensionless and normalized to unity. 
These measures have direct geometric interpretations. In partic­
ular, the areal measure corresponds directly to the projection of 
the joint confidence region for in the -plane onto the 
unit sphere. Besides the areal measure, the circumferential mea­
sure may be important in gaining insights into the asymmetric 
nature of tract dispersion. It should be clear that the dispersion 
information contained in may be incorporated into mod­
eling the prior distribution of fiber coherence in probabilistic 
(or Bayesian) tractography [23], [24], [32]. Finally, we should 

note that the main motivation behind the proposed technique of 
COU construction is to avoid overlapping cones of uncertainty 
from neighboring regions. 

Readers of Hext’s work [33] will soon realize that hidden in 
the seemingly innocent phrase “in vector notation,” which ap­
peared on the line just above (4.21) in [33], lies the main hurdle 
in rendering that formulation suitable for practical computation 
and visualization. We hope the present study and our earlier 
work [25], [47] prepare readers to look at Hext’s work from 
an illuminating vantage point where the fundamental connec­
tion between the first-order matrix perturbation method and the 
error propagation method is elucidated and the role of the Jaco­
bian matrix is highlighted. 

V. CONCLUSION 

Building upon the covariance matrix of the diffusion tensor 
that is derived from the nonlinear least squares method, the 
first-order matrix perturbation is reformulated and shown to be 
equivalent to the technique of error propagation via diffusion 
tensor representations in expressing the covariance of the major 
eigenvector of the diffusion tensor. Normalized circumferential 
and areal measures of the uncertainty of the major eigenvector 
and a new technique of constructing the cone of uncertainty are 
explicated. 

APPENDIX A 
NOTATIONS 

Here, we describe the notations used in this work. The dif­
fusion tensor is a 3 3 symmetric positive definite matrix 
given by 

The measured (noisy) DW signals are denoted by , while the 
DW functions at or are and 
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, respectively. Supposing that 
is the nonlinear least squares estimate of the parameter 

vector , then the residual vector is a vector whose individual 
component is the difference between the observed and the ex­
pected or estimated signals 

where for .
 
The design matrix
 is given by at the bottom of the page. 

. . . . . . . . . . . . . . . . . . . . . 

The two representations of the diffusion tensor, which will be 
used in this work, are the ordinary diffusion tensor representa­
tion, given by 

and the Euler diffusion tensor representation given by 

where is the parameter for the nondiffusion weighted signal. 
The major, medium, and minor eigenvalues are denoted by

, and , respectively. The Euler angles are denoted by 
, and , respectively. Since there are many conventions that 

can be used to parametrize the rotation matrix using the Euler 
angles, we will adopt the convention that is consistent with our 
previous work [25], [47]. 

The matrices and are diagonal matrices whose diagonal 
elements are the observed and the estimated diffusion weighted 
signals, respectively, i.e., 

. . .
. . .

The residual matrix is expressed as: . The element of
the Jacobian matrix, , is  defined as . 
Similarly, we have . Finally, is the es­
timated variance derived from the nonlinear fit (1), i.e., 

, see also [25], [47], and [37]. 

APPENDIX B 

In this Appendix, we will derive (32). First, we evaluate sev­
eral preliminary expressions 

and 

The integrand in (31) is then given by 

Therefore 

(B1) 

where is the region defined by . 
By a change of variables, and , we obtain 

(B2)

where is a circular region (or a disk) defined by .
The limits of integration due to can be introduced into and
the integral is now given by 

(B3) (B3)
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Factoring out the term in the integrand and defining 
, the inner integral can be evaluated using the result 

in Appendix III-(C1), so that we have 

Because the integrand is an even function, we can write 

By the result of Appendix IV, we have 

(B4) 

It is interesting to note that a new mathematical identity shows 
itself quite readily since should be invariant with respect to 
the permutation of and . 

APPENDIX C 

We will derive an expression for this integral which is needed 
in Appendix II 

Define , the derivative of T with 
respect to is given by 

Rearranging in the equation above, we have 

Therefore 

It is clear that 

(C1) 

A faster, more direct but less general approach (not shown 
here) would be to make a trigonometric substitution of 

. 

APPENDIX D 

The goal of this Appendix is to express the integral below 
in terms of the complete elliptic integrals of the first and third 
kinds: 

(D1) 

Define 

and 

we then have 

and 

It is easy to see that 

and 
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are both valid. The former leads to 

(D2) 

while the latter leads to 

(D3) 

Since (D1) and (D2) are equivalent, we can equate them 

so that 

(D4) 

The integral, , can now be expressed in terms of K and 

(D5) 

APPENDIX E 

In this Appendix, the circumference of a simple closed curve 
on the sphere shown in Fig. 2(A) is expressed in terms of the 
complete elliptical integrals of the first and third kinds. The nor­
malized circumference of the simple closed curve on the unit 
sphere can be defined as 

(E1) 
The in the denominator is the normalization factor coming 
from the circumference of the great circle of the unit sphere. 
Without loss of generality, we parametrize the components of 
the vector, , in terms of , and as follows: 

Equation (E1) can be further simplified and expressed in terms 
of the complete elliptic integrals of the first and third kinds: 

(E2) 

where . 
The derivation of (E2) is provided in Appendix VI. 

APPENDIX F 

In this Appendix, our goal is to derive (E2) starting from (E1). 
Provided here are several preliminary expressions 
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With some algebraic manipulations, it can be shown that 

so that the square root of may be written as 

or 

The normalized circumference is then given by 

Since the arc length for each quadrant is the same, the nor-
malized circumference, , can be reduced to 

(F1) 

Similar to the technique used in Appendix IV, let us express 
the integral in (F1) in two different but equivalent ways, as 
shown in the equation at the bottom of the page. 

Since the two expressions and are equivalent, we can 
solve for by equating the two expressions so that is given 
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in terms of , and . Substituting the new expression of 
into , and the normalized circumference is now given by 
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