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Abstract  

An analytical framework of error propagation for diffusion tensor imaging (DTI) is 

presented. Using this framework, any uncertainty of interest related to the 

diffusion tensor elements or to the tensor-derived quantities such as eigenvalues, 

eigenvectors, trace, fractional anisotropy (FA), and relative anisotropy (RA) can 

be analytically expressed and derived from the noisy diffusion-weighted signals. 

The proposed framework elucidates the underlying geometric relationship 

between the variability of a tensor-derived quantity and the variability of the 

diffusion weighted signals through the nonlinear least squares objective function 

of DTI. Monte Carlo simulations are carried out to validate and investigate the 

basic statistical properties of the proposed framework.  

Index Terms — Diffusion tensor imaging, error propagation, covariance 

structures, diffusion tensor representations, invariant Hessian, cone of 

uncertainty 
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I. INTRODUCTION 

Diffusion tensor imaging (DTI) is a unique noninvasive magnetic resonance 

imaging technique capable of probing tissue microstructure in the brain [1-7]. DTI 

is a well-established diagnostic technique and has provided fresh impetus in 

monitoring human brain morphology and development [6-12]. Therefore, an 

accurate quantification of uncertainties in tensor elements as well as in tensor 

derived quantities, such as the eigenvalues, eigenvectors, trace, fractional 

anisotropy (FA), and relative anisotropy (RA), is needed so that statistical 

inferences can inform clinical decision making.  

Accurate characterization of variability in tensor-derived quantities is of 

great relevance in various stages of DTI data analysis – from exploratory and 

diagnostic testing to hypothesis testing, experimental design and tensor 

classification. To date, many studies have been conducted on optimal design and 

the effects of noise in DTI [13-24]. In the context of variability studies on tensor-

derived quantities in DTI, there are currently two different methods—perturbation 

and error propagation—which have been studied in the work of Anderson [17], 

Chang et al. [21] and Poonawalla et al. [19]. However, these studies were based 

on the linear objective function of DTI, which may not be appropriate for diffusion 

that is anisotropic [25]. Further, Poonawalla et al. [19] focused only on anisotropy 

(or scalar) calculations. 

In this paper, our goal is to present a general analytical error propagation 

framework for DTI based on the nonlinear objective functions of DTI and to show 

the relevance of various diffusion tensor representations to DTI error 
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propagation. Figure 1 shows three basic diffusion tensor representations and 

their mappings. The proposed theoretical framework allows the uncertainty to be 

calculated for any tensor-derived quantity including the eigenvector — the main 

geometric object of DTI tractography. Within this framework, the cone of 

uncertainty [26-30] can be quantitatively estimated; this framework coupled with 

the observation of Jeong et al. [30] and Lazar et al. [29] provides converging 

evidence that the cone of uncertainty is generally elliptical. A fresh approach is 

taken to show both the geometric and analytical aspects of the proposed 

framework without heavy machineries from differential geometry and tensor 

calculus [31-40]. 

Monte Carlo simulations are carried out to investigate the basic statistical 

properties of the proposed framework. Some material here was previously 

presented in abstract form [23]. 
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II. METHODS

A. Nonlinear DTI Estimation in Different Diffusion Tensor Representations 

In a typical DTI experiment, the measured signal in a single voxel has the 

following form [1], [4], [41]: 

s = S0exp(−bgT Dg), (1)

where the measured signal s  depends on the diffusion encoding gradient vector 

g  of unit length, the diffusion weight b , the reference signal S0 , and the diffusion 

tensor D . The symbol “T ” denotes the matrix or vector transpose. Given 

n ≥ 7 sampled signals based on at least six noncollinear gradient directions and 

at least one sampled reference signal, the diffusion tensor estimate can be found 

by minimizing various objective functions with respect to different representations 

of the diffusion tensor in (1). Different representations of the diffusion tensor 

provide different insights and information about the diffusion tensor itself. We will 

use three distinct diffusion tensor representations that have applications to DTI 

and show how they can be used in DTI error propagation. 

In general, the objective functions for the nonlinear least squares problem 

in different diffusion tensor representations can be expressed as follows: 
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 1 n 7
 
f (γ) = ∑ (si − exp[∑Wij γ j ])

2 (2)
NLS
 2 i=1 j=1
    
ri (γ) 

 1 n 7
 
fCNLS (γ(ρ)) = ∑ (si − exp[∑Wij γ j (ρ)])2 (3)


2 i=1 j=1
 
ri (γ(ρ)) 



1 n 7 
f ENLS (γ(ξ)) = ∑ (si − exp[∑Wij γ j (ξ)])2 (4)

2 i=1 j=1
ri (γ(ξ)) 

where 


si  = the measured diffusion weighted signal with noise, 

7 
ŝi (γ) = exp[∑Wij γ j ] = the diffusion weighted function evaluated at γ , 

j=1 

7 
ŝi
 (γ(ρ)) = exp[∑Wij γ j (ρ)]= the diffusion weighted function evaluated at γ(ρ) ,

j=1
 

7 
ŝi (γ(ξ)) = exp[∑Wij γ j (ξ)] = the diffusion weighted function evaluated at γ(ξ) , 

j=1 

r(γ) = [r1(γ)  rn (γ)]T ,

r(γ(ρ)) = [r1(γ(ρ))  rn (γ(ρ))]T ,

r(γ(ξ)) = [r1(γ(ξ))  rn (γ(ξ))]T ,
 

and 

2 2 2⎛1 − b g − b g − b g − 2b g g − 2b g g − 2b g g ⎞
⎜ 1 1x 1 1y 1 1z 1 1x 1y 1 1y 1z 1 1x 1z ⎟ 

W = ⎜       ⎟ . 
⎜⎜ 2 2 2 ⎟⎟1 − bn gnx − bn gny − bn gnz − 2bn gnx gny − 2bn gny gnz − 2bn gnx gnz⎝ ⎠

The three representations of the diffusion tensor are 
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γ = [γ1 γ 2 γ3 γ 4 γ5 γ6 γ7 ]T 

]T 
(5)

= [ln(α) D D D D D Dxx yy zz xy yz xz 

ρ = [ρ ρ ρ ρ ρ ρ ρ ]T (6)1 2 3 4 5 6 7 

ξ = [ξ ξ ξ ξ ξ ξ ξ ]T 
1 2 3 4 5 6 7 (7)

= [ln(α) λ1 λ 2 λ3 θ φ ψ]T 



where α  is the parameter for the non-diffusion weighted signal. 

We shall denote γ , ρ , and ξ  as the ordinary, the Cholesky, and the Euler 

representations, respectively. The meaning of each term mentioned here will be 

obvious in the following discussion. Figure 1 shows the mappings between 

different spaces or representations. 

To construct the mappings γ(ρ)  and γ(ξ) , we use the main ideas from the 

Cholesky decomposition of a symmetric positive definite matrix and the 

Eigenvalue decomposition of a symmetric matrix [42] in reverse. The connections 

between (5) and (6) and between (5) and (7) can then be established based on 

the following equations: 

D(ρ) = UT U , (8)

and 
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D(ξ) = Q Λ QT = ∑λ iq iq
T
i (9)

i=1 

where U  is an upper triangular matrix with nonzero diagonal elements and qi 

are the column vectors of Q  which depend on the Euler angles. Without loss of 

generality, we shall assume the eigenvalues are arranged in decreasing order, 

i.e. λ1 ≥ λ2 ≥ λ3 . Each column vector of Q  is also an eigenvector of D(ξ) . 

Particularly, we have: 

ρ ρ ρ⎛ 2 5 7 ⎞⎜ ⎟
U(ρ) = ⎜ 0 ρ3 ρ6 ⎟ , (10)

⎜ ⎟0 0 ρ4⎝ ⎠ 
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11Q 12Q 13Q 

21Q 22Q 23Q 
Q31 32Q 33Q 

⎛
⎜ ⎞

⎟
Q = Rz (φ)Ry (θ)Rz (ψ) ⎜ ⎟
=
 , 

⎜
⎝ ⎟

⎠

1 

11 

21 

31 

Q
Q
Q 

cos(θ) cos(φ) cos(ψ) − sin(φ)sin(ψ)⎛
⎜

⎞ ⎛
⎟ ⎜ ⎞

⎟
cos(θ) cos(ψ)sin(φ) + cos(φ)sin(ψ) , (11)⎜
 ⎟ = ⎜
 ⎟
q = 

⎜
⎝ ⎟ ⎜ ⎟− cos(ψ)sin(θ)⎠ ⎝ ⎠ 

12 

22 

32 

Q
Q
Q 

− cos(ψ)sin(φ) − cos(θ) cos(φ)sin(ψ)⎛
⎜

⎞ ⎛
⎟ ⎜ ⎞

⎟
cos(φ) cos(ψ) − cos(θ)sin(φ)sin(ψ) , (12)⎜
 ⎟ = ⎜
 ⎟
q =2 

⎜
⎝ ⎟ ⎜ sin(θ)sin(ψ)⎠ ⎝ ⎟

⎠

33 

23 

13Q 
Q 
Q 

θφcos( ) sin( )
⎜
⎛ 

⎜
⎛

⎟
⎞

⎟
⎞

φθsin( ) sin( ) , (13)⎜ ⎜=⎟ ⎟= 3q 
⎜
⎝ ⎟

⎠
⎜
⎝ θ⎟

⎠ cos( ) 

and 

 =Λ ⎜ 
⎜
⎛λ1 

0 λ 2 

0 
0 
0 

⎟
⎟
⎞

(14)
⎜
⎝ 0 0 ⎟

⎠λ3 

where λ1 , λ2  and λ3  are the eigenvalues of D(ξ) . If D(ξ)  is positive definite then 

its eigenvalues are positive. Finally, the rotation matrices, Rx (Ω) , Ry (Ω) and 

Rz (Ω) represent rotations through angle Ω  around the x, y and z axes,  

respectively, and are defined in Appendix A.  

Given (8) and (9), the mappings, γ(ρ)  and γ(ξ) , can be expressed as: 
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(ρ)
 1 (ρ)
 1 
2 

ρ⎛
⎜
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜


γ
 ⎞
⎟
⎟
⎟
⎟
⎟ 
⎟
⎟
⎟ 
⎟


⎛
⎜
⎜
⎜
⎜
⎜ 
⎜
⎜
⎜ 
⎜


⎞
⎟
⎟
⎟
⎟
⎟ 
⎟
⎟
⎟
⎟

⎞
⎟
⎟
⎟
⎟
⎟ 
⎟
⎟
⎟
⎟


1 

(ρ)
 D (ρ)
 ρ
2 2xx 
2 2 

⎛ γ
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝⎠

γ
γ
 (ρ)
 D (ρ)
 ρ
3 + ρ
53 yy 

2 2 2γ(ρ)
 (ρ)
 D (ρ)
 (15)
γ
 ρ
 + ρ
 + ρ
=
 =
=
 ,
4 4 6 7zz 

(ρ)
 D (ρ)
γ
γ
γ


ρ2ρ5 5xy 

(ρ)
 D (ρ)
 ρ3ρ + ρ5ρ6 6 7yz 

(ρ)
 Dxz (ρ) ρ2ρ7⎝
⎠
 ⎠
⎝
 7 

(ξ)
 1 (ξ)
γ
 ⎛ γ
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝⎠

⎞
⎟
⎟
⎟
⎟
⎟ 
⎟
⎟
⎟
⎟

⎞
⎟
⎟
⎟
⎟
⎟ 
⎟
⎟
⎟
⎟


⎛
 1 

γ
γ
γ

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(ξ)
 D (ξ)
γ
γ
γ


2 xx 

(ξ)
 D (ξ)
3 yy 

γ(ξ)
 (ξ)
 D (ξ)
 (16)
=
=
 .
4 zz 

(ξ)
 D (ξ)
5 xy 

(ξ)
 D (ξ)
6 yz 

(ξ)
 D (ξ)
⎠
7 xz 

Since the expressions for (16) are lengthy but easy to compute, we have 

collected them in Appendix B. 

It is important to note that the inverse mapping of γ(ρ) , ρ(γ) , which can 

be constructed analytically, is well defined only when the diffusion tensor 

contained within γ  is positive definite, otherwise the modified Cholesky 

decomposition is needed to force the diffusion tensor to be sufficiently positive 

definite [43]. However, the solution obtained from the modified Cholesky 

decomposition is generally not a minimizer of fCNLS (γ(ρ)) . The solution is, 

nevertheless, useful as an initial guess of the minimization of fCNLS (γ(ρ)) . A 

specific algorithm of this type of minimization, where the resultant diffusion tensor 

estimate is both positive definite and a minimizer of fCNLS (γ(ρ)) , can be found in 
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[25]. Finally, the analytical expression of ρ(γ)  based on the Cholesky 

decomposition is shown in Appendix B.  

Another mapping of interest is ξ(γ) . The construction of ξ(γ) , which 

requires the eigenvalue decomposition of a symmetric matrix, e.g. using the 

Jacobi method (34), has two main advantages. First, it is numerically more stable 

and more accurate than the analytical approach of [44]. Second, it can be used 

even when the diffusion tensor within γ  is not positive definite — an additional 

advantage over the analytical approach of [44]. Once the orthogonal matrix, Q , 

is obtained by diagonalization, we still need to solve for the Euler angles, θ , φ , 

and ψ . The solution to this problem is simple but, for completeness, we have 

collected these results in Appendix A. The Euler representation is more useful 

than the representation proposed by Hext [45], a special case of which was used 

by Anderson [17] and Chang et al. [21] in computing the covariance between 

eigenvalues, because the covariance matrix of the major eigenvector of the 

diffusion tensor can be constructed in the Euler representation.  Appendix C 

contains further comments on the representation by Hext.  

The first two objective functions, (2) and (3), have been used in many 

studies [25, 46-50], and the theoretical and algorithmic framework for these 

objective functions was investigated by Koay et al. [25]. To date, the third 

objective function, (4), has not been used for DTI estimation because the direct 

estimation of the eigenvalues and eigenvectors by (4) is impractical due to the 

cost of computation, particularly for the initial solution and for those trigonometric 

functions occurring in the rotation matrix. Nonetheless, (4) as expressed in the 
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Euler representation does provide a foundation for DTI error propagation that is 

conceptually elegant and algorithmically practical. 

We introduce the proposed framework with respect first to the ordinary 

representation for a scalar function in Section II-B and then for a vector function 

in Section II-C. In Section II-D, we discuss commonly used scalar and vector 

tensor-derived quantities and their corresponding gradient vectors, while Section 

II-E covers the diffusion tensor representation and analytical formulae for the 

invariant Hessian structures, a new concept to be defined later, with respect to 

different diffusion tensor representations. Section II-F discusses selected 

applications of the proposed framework.  Figure 7 shows the schematic diagram 

of the necessary steps needed to obtain appropriate covariance structures. The 

segment above the dotted line in Figure 7 deals with diffusion tensor estimations; 

these techniques can be found in [25], while the segment below the dotted line 

pertains to the proposed framework. 
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B. Error Propagation Framework for Scalar Functions 

Let 1 n 7
f NLS (γ) = ∑ (si − exp[∑W 2

ij γ j ]) 2 i=1 j=1 
be the NLS objective function in the

ordinary representation. Let g  be any smooth function (tensor-derived quantity) 

of γ  and let γ̂  be the NLS estimate, i.e. γ̂  is a minimizer of fNLS . The connection 

between the uncertainty of g  and of fNLS  can be represented geometrically. 

To examine the effect of the variability of fNLS  on the variability of g , we 

first focus on the region around f NLS (γ̂)  (the blue contour) and its relation to the 

function g  by projecting the contour around f NLS (γ̂) to the tangent plane of g  at 

g(γ̂)  (Figures 2(A) and 2(B)). 

By 2nd-order Taylor expansion, the change in fNLS  is 

1 T 2Δf NLS (δ) = f NLS (γ̂ + δ) − f NLS (γ̂) ≈ δ ∇ f NLS (γ̂) δ , (17)2 

where δ(γ) ≡ γ − γ̂ and ∇2 fNLS (γ̂) is the Hessian matrix of f NLS . Here, we can 

safely assume that ∇f NLS (γ̂) = 0 because γ̂  minimizes fNLS  (Figure 2(C)). In the 

same vein, the first order change in g  is 

Δg(η) = g(γ̂ + η) − g(γ̂) ≈ ∇T 
η g η , (18)

where η  is defined later. If  γ̂  minimizes fNLS  then the Hessian matrix, ∇2 f NLS , 

is positive definite at γ̂  and can be written as 

1 1 1 12 T T T2 2 2 2∇ f NLS (γ) = Q Λ Q = QΛ Λ Q = QΛ (QΛ ) , (19)

where Q  is an orthogonal matrix and Λ  is a diagonal matrix with positive 

elements. Therefore, we can express the change in fNLS  as:   
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Δf NLS (η) = 1
2 η

T η , (20)

such that 

1 

η ≡ (QΛ 2 )T δ .         (   21)

In the η-coordinate system, the change in fNLS  looks uniform in all 

directions of η  since (20) is the equation of a hyper-sphere (Figure 2(E)). To 

measure or capture the change in g  in a consistent manner, η  has to satisfy 

(20) and be parallel to ∇η g ; the theoretical reason behind the latter condition is  

related to another condition, which we shall refer to as the consistency condition.  

This condition is best explained using a geometric figure and is discussed in the 

caption of Figure 3. These conditions then lead naturally to the following formula: 

η = 2Δf NLS ∇η g / ∇η g ,        (22  )

where ∇η g / ∇η g is a unit vector along ∇η g . Therefore, (18) can be written as 

T TΔg(η) ≈ ∇η g η = ∇η g ( 2Δf ∇ g / ∇η g )= 2Δf || ∇ g || (23)NLS η NLS η 

(Figure 2(F)). By changing the variables from the η-coordinate system back to 

the δ(γ) -coordinate system and squaring (23) (Figures 2(D), 2(E), and 2(F)), we 

arrive at the error propagation equation for DTI [51]: 

2 T 2 −1Δg(δ) ≈ 2Δf (δ)∇ g(γ̂)[∇ f (γ̂)] ∇ g(γ̂) . (24γ NLS γ )

The derivation of (24) is provided in Appendix D. 

Note that there is freedom in setting the magnitude of the change in fNLS , 

Δf NLS (δ) . However, it is more meaningful to use the following definition 

Δf NLS (δ)= f NLS (γ̂) /(n − p) where n − p  is the number of degrees of freedom. 
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Here, p = 7  for DTI, i.e. the number of tensor elements and one reference signal.  

This definition is meaningful because 2 f NLS (γ̂) /(n − 7)  is an unbiased estimate of  

the variance of the diffusion weighted (DW) signals [25], so that Δg(δ)2  can serve 

as an estimate of the variance of g . More importantly, if the change in f NLS were  

to be taken as some multiple of the DW signal variance instead of one unit of the 

DW signal variance, then Δg(δ)2  would no longer be in agreement with the 

familiar notion of variance in statistics. 
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In subsequent discussion, we will denote σ2 
DW  for 2 f NLS (γ̂) /(n − 7) . As an 

example, the variance of γ1 = ln(α) can be calculated by setting g = ln(α) in (24), 

which yields σ2 ≡ Δ ln(α) 2 ≈ σ2 [∇ 2 f −1
ln(α) DW NLS (γ̂) ]11 . Similarly, for γ 2 = Dxx ,

σ 2 
D ≡ ΔD 2

xx ≈ σ 2 [∇ 2 f (γ̂)−1
xx DW NLS ]22 .

We can also work with the objective functions fCNLS (γ(ρ)) and f ENLS (γ(ξ))  

instead of f NLS (γ) so that the variances of interest with respect to a particular  

representation can be computed without elaborate computation. However, it is 

important to realize that the Hessian matrix of the ordinary representation is  

fundamentally different from the Hessian matrices of the Euler and the Cholesky  

representations because the latter matrices do not transform like a tensor.  

Although a detailed discussion on tensor transformation laws is beyond the 

scope of this paper, we shall pursue along a different line by constructing 

covariance matrices of the Euler and the Cholesky representations based on the 

technique explicated in Section II-C. We will show that fundamental geometric 



objects in error propagation from which the covariance matrices are derived are 

the invariant Hessian matrices, and not the Hessian matrices; briefly, an invariant 

Hessian matrix is defined to be the term in the Hessian matrix that is invariant 

with respect to coordinate transformations. 

One of the goals in this paper is to show that with one condition ― which 

is that the tensor estimate has to be positive definite [25], [47], [50] ― separate 

minimizations of each objective function are unnecessary and the variances 

computed from one representation can also be obtained rather easily from 

another representation by a continuous coordinate transformation between the 

representations. Before we discuss the technique of coordinate transformation 

between representations, we will work on error propagation for vector functions 

and on practical variance or covariance computations of commonly used tensor-

derived quantities in the next two sections. 
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C. Error Propagation Framework for Vector Functions 

The discussion thus far has focused mainly on the proposed framework for any  

scalar function of γ . Here, we will extend the framework to include vector 

functions so that quantities of interest such as the variance-covariance matrix of 

γ  or of the major eigenvector of the diffusion tensor can be obtained. Without 

loss of generality, we will assume the vector function g = [g , g , g ]T
1 2 3 consists of 

three scalar functions. By the 1st order Taylor expansion of g  at  γ̂ , we have 

 

⎛ ∂g ∂g ⎞⎜ 1 1 ⎟
⎜ ∂η1 ∂η p ⎟⎛ g1(γ̂ + η) − g1(γ̂) ⎞ ⎜ ⎟⎛ η1 ⎞⎜ ⎟ ∂g2 ∂g2 

⎜ ⎟
Δg(η) = g(γ̂ + η) − g(γ̂) = ⎜ g2 (γ̂ + η) − g2 (γ̂)⎟ ≈⎜  ⎟⎜  ⎟ . (25)

⎜ ∂η ∂η ⎟⎜ ⎟ 1 p ⎜ ⎟
⎝ g3 (γ̂ + η) − g3 (γ̂) ⎠ ⎜ ⎟⎝η p ⎠∂g3 ∂g3⎜⎜ ⎟⎟∂η ∂η⎝ 1 p ⎠

The variance-covariance matrix of g  can be defined as: 

Σg (η) ≡ Δg(η) ⋅ Δg(η)T (26)

⎛ ⎞∂g1 ∂g1⎜ ⎟ ⎛ ∂g1 ∂g2 ∂g3 ⎞⎜ ∂η ∂η ⎟ ⎜ ⎟1 p ⎛ η ⎞1 ∂η ∂η ∂η⎜ ⎟⎜ ⎟ ⎜ 1 1 1 ⎟∂g2 ∂g2= ⎜  ⎟⎜  ⎟(η1  ηp )⎜    ⎟ (27)
⎜ ∂η1 ∂ηp ⎟⎜η ⎟ ⎜ ∂g1 ∂g2 ∂g3 ⎟
⎜ ∂g ∂g ⎟⎝ p ⎠ ⎜ ⎟3 3 ∂η ∂η ∂ηp p p
⎜⎜  ⎟⎟ ⎝ ⎠
∂η ∂η⎝ ⎠ 1 p 
 

T T T T T T
⎛ (∇ g ⋅ η)(η ⋅∇ g ) (∇ g ⋅ η)(η ⋅∇ g ) (∇ g ⋅ η)(η ⋅∇ g ) ⎞⎜ η 1 η 1 η 1 η 2 η 1 η 3 ⎟ 
T T T T T T= ⎜ (∇ g ⋅ η)(η ⋅∇ g ) (∇ g ⋅ η)(η ⋅∇ g ) (∇ g ⋅ η)(η ⋅∇ g )⎟ (28)η 2 η 1 η 2 η 2 η 2 η 3 

⎜⎜ T T T T T T ⎟⎟
⎝ (∇η g3 ⋅ η)(η ⋅∇η g1) (∇η g3 ⋅ η)(η ⋅∇η g2 ) (∇η g3 ⋅ η)(η ⋅∇η g3 )⎠

Under the consistency condition, there are three possibilities in choosing η : 
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η = σDW ∇η g1 / ∇η g1 , η = σDW ∇η g2 / ∇η g2 , and η = σDW ∇η g3 / ∇η g3 . But the

correct choice of η  in each element of the matrix in (28) is again determined by 

the same consistency condition. This condition also  ensures that the matrix in 

(28) is symmetric. As an example, let us consider the case of two distinct tangent  

planes, say of g1  and of g2 . In this case, η , which appears in the off-diagonal 

term, (∇T 
η g 1 ⋅ η)(ηT ⋅∇ η g 2 ) , of (28), can be taken to be either σDW ∇η g1 / ∇η g1 or 

σDW ∇η g2 / ∇η g2 . It is important to note here that either one will yield the same  

result, which is ∇T
η g 1 ⋅∇ η g 2 . In other words, the projection of ∇T 

ηg1 onto the

tangent plane of g2  or the projection of ∇T 
η g2 onto the tangent plane of  g1  will  

yield the same co-variation. Taking the consistency condition into account, the 

final expression of (28) can be written as 

T T T⎛∇ g ⋅∇ g ∇ g ⋅∇ g ∇ g ⋅∇ g ⎞η 1 η 1 η 1 η 2 η 1 η 3⎜ ⎟ 
2 T T TΣg (η) = σDW ⎜∇η g2 ⋅∇η g1 ∇η g2 ⋅∇η g2 ∇η g2 ⋅∇η g3 ⎟ (29)

⎜⎜ T T T ⎟⎟∇η g3 ⋅∇η g1 ∇η g3 ⋅∇η g ∇ g3 ⋅∇η g2 η 3⎝ ⎠

 

or , equivalently, 

Σg (η)  ≡ σ (η) = σ (η)σ (η)ρ (η) (30)ij i j ijij 

where σi (η) = σDW ∇ η gi and 
∇T g 

ρ (η) = η i ∇ η g j
ij ⋅ 

∇ η g i ∇ η g j 

is the correlation

coefficient. Note that 
∇T 

η gi

∇η gi 

is a unit vector parallel to ∇η gi . Finally, the  

variance-covariance matrix in the δ(γ)  coordinate system has the following 

expression 
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 2 T 2 −1[Σg( γ̂) ] = σDW ∇ γ gi (γ̂)[∇ f NLS (γ̂)] ∇ γ g j (γ̂) (31)
ij 

or 

Σ
ij 
≡ σ = σ σ ρ (32)g( γ̂) ij i j ij 

where 

T 2 −1σ = σ ∇ γ gi (γ̂)[∇ f NLS (γ̂)] ∇ γ gi (γ̂) (33)i DW 

and 

T 2 −1∇ γ gi (γ̂)[∇ f NLS (γ̂)] ∇ γ g j (γ̂)
ρ = (34)

T 2 −1 T 2 −1ij 
∇ g (γ̂)[∇ f (γ̂)] ∇ g (γ̂) ∇ γ g j (γ̂)[∇ f NLS (γ̂)] ∇ γ g j (γ̂)γ i NLS γ i 

is the correlation coefficient. As an example, it can be shown that the variance-

covariance matrix of γ  can be expressed as Σ 2 2 
γ = σDW [∇ f NLS (γ̂)] −1 , see 

Appendix E for various Hessian structures and Appendix F for the derivation of 

Σ 2 2 −1
γ = σDW [∇ f NLS (γ̂)] . 

The reader should be cautious not to be misled into thinking that the 

covariance matrix of the Euler representation, Σξ , is simply 

σ 2 [∇ 2 f (γ(ξ̂DW ))] −1
ENLS . These two quantities are closely related but they are not 

equivalent. As mentioned earlier, the Hessian matrix of the Euler representation 

is not a tensor. This means that its inverse will not be invariant with respect to 

coordinate transformations. In Appendix F, it is shown that the covariance matrix 

of the Euler representation, Σξ , is equal to σ2
DW [inv(∇ 2 f −1

ENLS (γ(ξ̂)))] , where 

inv(∇2 f )  denotes the invariant Hessian matrix of f , which is the part of the 

Hessian matrix that is invariant with respect to coordinate transformations. It is 
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noteworthy that we can discover these invariant Hessian structures within the 

proposed framework using the technique discussed in this section, see Appendix 

F. 
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D. Scalar and Vector Functions of the Diffusion Tensor  

As mentioned earlier, variance computation for certain tensor-derived quantities 

can be greatly simplified by using the appropriate diffusion tensor representation. 

The most commonly used tensor-derived quantities are listed below [2], [5]: 

1. Trace: Trace = Tr(D) = Dxx + Dyy + Dzz (35)

2. Fractional Anisotropy: 3 ⎡ 1 Tr(D)2 ⎤
FA = ⎢1− 2 ⎥ 2 ⎣ 3 Tr(D )⎦

or 

2 2 2 

FA = 1 ⎜⎛ (λ1 − λ 2 ) + (λ2 − λ3 ) + (λ3 − λ1) ⎞
1/ 2 

⎟ (36)⎜ 2 2 2 ⎟2 λ + λ + λ⎝ 1 2 3 ⎠ 

3. Relative  Anisotropy: 3 ⎡Tr(D2 ) 1⎤RA = ⎢ 2 − ⎥ 2 ⎣Tr(D) 3⎦
or

2 2 2 1/ 2
1 ((λ − λ ) + (λ − λ ) + (λ − λ ) ) 1 2 2 3 3 1RA =
2 λ + λ + λ1 2 3

(3  7)

4. Eigenvalues of D :    λ1,λ2 , and λ3 as defined in (9), and (14) (38) 

5. Eigenvectors of D : q1,q2 , and q3  as defined in (9), and (11-13) (39)

It should be noted here that the first component in each representation, γ,ρ, and 

ξ , is ln(α)  and, therefore, the partial derivative of any tensor-derived quantity
 

with respect to ln(α)  is 0. 

Since Tr(D) = Tr(Λ) and Tr(D2 ) = Tr(Λ2 ) , it is clear that the variance 

computation for (35), (36), and (37) is equally tractable in both the ordinary and 

the Euler representations. However, the variance-covariance computation of 

(38), and (39) is most convenient in the Euler representation. 
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The formulae listed below are the gradients of the most commonly used 

tensor-derived quantities; the first three formulae are expressed with respect to 

both the ordinary representation and the Euler representation, while the last two 

are expressed with respect to the Euler representation only: 

1. gradient of Trace:

∇ γTr = [0 1 1 1 0 0 0]T or

 ∇ξTr = [0 1 1 1 0 0 0]T (40)

2. gradient FA: Let a = (λ 2 
1 − λ 2 ) + (λ 2 − λ ) 2 

3 + (λ − λ ) 23 1 and b = λ2
1 + λ

2 + λ2
2 3  

then 1 ⎛ a 1/ 2 ⎞FA = ⎜ ⎟ 
2 ⎝ b ⎠

. The gradient of FA with respect to the Euler  

representation is ∇ξ FA = [0 ∂FA ∂ TFA ∂FA
∂λ ∂λ ∂λ 0 0 0 

1 2 3 
] ,

where 

∂FA λ (λ − λ ) + (λ − λ )1 1 2 1 3= − FA + ,
∂λ1 b 2ab 

∂FA λ (λ − λ ) + (λ − λ )2 2 1 2 3= − FA + , 
∂λ2 b 2ab 

and

∂FA λ (λ − λ ) + (λ − λ )3 3 2 3 1= − FA + . 
∂λ3 b 2ab 

The gradient of FA with respect to the ordinary representation has the 

following components:  

∂ ⎛ ⎡ ⎤ δ ⎞FA 1 Tr(D) 1 Tr(D) ij ⎜ ⎟= ⎢ D ⎥ − (2 2 ij∂Dij FA Tr(D ) ⎝⎜ ⎣⎢1+ δ ij Tr(D ) ⎦⎥ 2 ⎠⎟ 
4  1)
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3. gradient of RA: Let Tr = λ1 + λ 2 + λ3 , the gradient of RA with respect to the

Euler representation is  ∇ RA = [0 ∂RA ∂RA ∂ TRA
ξ ∂λ1 ∂λ ∂λ 0 0 0

2 3 
] ,

where 

∂RA RA (λ 
= − + 1 − λ 2 ) + (λ 1 − λ 3 )

2 ,

∂λ1 Tr 2 RA Tr
 

∂RA RA (λ2 − λ1) + (λ2 − λ= − + 3 )
2 ,

∂λ2 Tr 2 RA Tr
 
 and


∂RA RA (λ 
= − + 3 − λ 1 ) + (λ 3 − λ 2 ) . 

∂λ3 Tr 2 RA Tr 2
 

The gradient of RA with respect to the ordinary representation has the 

following components: 

∂RA 3 Tr(D2 ) ⎛ ⎡ 1 Tr(D) ⎤ δ ⎞
= ⎜ D − ij ⎢ ⎥  ⎟ (42)

∂Dij RA Tr(D) 3 ⎜ ⎢1+ δ Tr(D 2 ) ij ⎟
⎝ ⎣ ij ⎥⎦ 2 ⎠

4. Gradients of the eigenvalues are: [∇ξλ1] i = δ 2i ,

 3)[∇ξ λ 2 ]i = δ3i and [∇ξ λ3 ]i = δ4i   (4

5. Gradients of a component of an eigenvector: i.e., q = [Q Q Q ]T
1 11 21 31 

 .

Since the expressions are more involved, we have collected these

formulae in Appendix G.

Some of the preliminary formulae used to derive (40), (41), and (42) are collected 

in Appendix H. 
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E. Coordinate Transformation between Different Tensor Representations 

As discussed in Section II-C and Appendix F, invariant Hessian structures are 

very important to variance-covariance computation.  Particularly, we have used 

the technique explicated in Section II-C to derive the invariant Hessian structures  

of the ordinary and Euler representations in Appendix F. For convenience, these 

structures are explicitly given here: 

) 2 2 T ( ˆ 2 ˆ )inv(∇ f (γ)) = ∇ f (γ) = W S − RS W ,     (44NLS NLS 

5) 2 T T 2inv(∇ fCNLS (γ(ρ))) = Jρ (γ)W (Ŝ − RŜ)WJρ (γ) , (4

 2 T T 2inv(∇ f ENLS (γ(ξ))) = Jξ (γ)W (Ŝ − RŜ)WJξ (γ) , (46)

where the invariant Hessian matrix of f  is denoted by inv(∇2 f ) . Please refer to 

Appendix E for the terms defined above.  

We have previously mentioned why the expression, σ 2 2 
DW [∇ f ENLS (γ(ξ̂))] −1 ,

should not be taken as the definition of the covariance matrix of the Euler 

representation. On intuitive ground, variance or covariance of a quantity should 

be invariant with respect to coordinate transformations, or equivalently, it can be 

said that variance or covariance of a quantity should transform like a tensor. 

Here, we will show how the invariance property of the covariance matrix is  

violated if one insists on using σ2 2 
DW [∇ f ENLS (γ(ξ̂))] −1  as the covariance matrix of  

the Euler representation. According to (31), we need to construct ∇ξ γ j (ξ) so that

[Σ T
γ(ξ̂) ] = ∇ξ γ i (ξ̂)Σξ ∇ξ γ j (ξ̂)

ij 
 or

 
T

Σ = [∇ γ (ξ̂)  ∇ γ (ξ̂)] Σ [∇ γ (ξ̂)  ∇ γ (ξ̂)]γ(ξ̂) ξ 1 ξ j ξ ξ 1 ξ j 



  = J (γ(ξ̂)) Σ JT (γ(ξ̂)) (47)ξ ξ ξ

Since the covariance structure should be invariant with respect to coordinate 

transformation, one expects Σγ(ξ̂)  in (47) to be equal to Σ 2
γ = σDW [∇ 2 f −

NLS (γ̂)] 1 .

However, the invariance property is violated if one substitutes the following 

expression 

−1n
2 2 −1 2 ⎛ T T ( ˆ 2 ˆ ) ⎞Σξ = σDW [∇ f ENLS (γ(ξ̂))] = σ ⎜ J (γ(ξ̂))W S − RS WJξ (γ(ξ̂)) + ∑ ri ŝi Ti ⎟DW ξ

⎝ i=1 ⎠ 

into (47): 
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 2 ⎛ T T 2 ⎞
−1 

TΣ ( ˆ ) = σDW J (γ(ξ̂)) ⎜ Jξ (γ(ξ̂))W (Ŝ − RŜ)WJξ (γ(ξ̂)) + ∑ 
n 

ri ŝi Ti ⎟ Jξ (γ(ξ̂))γ ξ ξ 
⎝ i=1 ⎠ 

n⎡ −1⎛ ⎞ −1 ⎤
−1 

2 T T T 2= σDW ⎢ (Jξ (γ(ξ̂))) ⎜ Jξ (γ(ξ̂))W (Ŝ − RŜ)WJξ (γ(ξ̂)) + ∑ ri ŝi Ti ⎟(Jξ (γ(ξ̂))) ⎥
⎣ ⎝ i=1 ⎠ ⎦ 

2 ⎡ ⎛ 2 T −1 −1 ⎞⎤
−1 n 

= σDW ⎢ ⎜∇ f NLS (γ(ξ̂)) + ∑ ri ŝi 
⎡(Jξ (γ(ξ̂))) Ti (Jξ (γ(ξ̂))) ⎤ ⎟⎥ . (48)⎢⎣ ⎥⎦⎣ ⎝ i=1 ⎠⎦ 

Comparing (48) and Σ 2 2 
γ = σ DW [∇ f NLS (γ̂)] −1 , we see that the additional error 

introduced in the estimation of Σγ(ξ̂)  violates the invariance property of the 

covariance matrix. 

In brief, the covariance matrices in various tensor representations are 

derived from the invariant Hessian structures and their expressions are given 

below: 

 2 2 −1 2 T 2 −1Σγ = σ [inv(∇ f (γ))] = σ [W (Ŝ − RŜ)W] , (49)DW NLS DW 

2 2 −1 2 T T 2 −1Σ = σ [inv(∇ f (γ(ρ)))] = σ [J (γ)W (Ŝ − RŜ)WJ (γ)] , (50)ρ DW CNLS DW ρ ρ  and 

2 2 −1 2 T T 2 −1Σξ = σDW [inv(∇ f ENLS (γ(ξ̂)))] = σDW [Jξ (γ(ξ̂))W (Ŝ − RŜ)WJ ξ (γ(ξ̂))] . (51)



F. Applications 

1) Average Variance-Covariance Matrix: The average variance-covariance matrix

for a given diffusion tensor is a very useful quantity to compute in a simulation 

study; it is directly related to average DW signals where the estimated signals are 

assumed to be fitted perfectly to the observed signals, i.e., the residuals are zero. 

One can see then that the average variance-covariance matrices can be easily  

derived from (49), (50), and (51), and are given by:  
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2 T ˆ 2 −1= σDW [W S W] , (52)Σγ 

53)2 T T ˆ 2 −1Σρ = σ [J (γ)W S WJ (γ)] , (DW ρ ρ 

2 T T ˆ 2 −1Σξ = σ [J (γ)W S WJ (γ)] .  (54)DW ξ ξ 

The symbol, Σ , represents the average quantity of Σ . The method of  

averaging and the derivations of (52), (53), and (54) are discussed in Appendix I.  

It should be noted here that σ2 
DW  has to be defined differently from the 

previous definition, which was based on the estimated DW signal variance, 

because the residual sum of squares is now assumed to be zero. Therefore, 

σ2 
DW  has to be taken from a known variance with respect to the Rician-distributed 

DW signals. The technique on transforming the variance with respect to the 

Gaussian-distributed complex signals to the variance with respect to Rician-

distributed magnitude signals at a prescribed level of signal-to-noise ratio (SNR)  

can be found in Koay et al. [52], [25]. For SNR > 5, σ2 
DW  is an acceptable 



approximation to σ2 
Gaussian ; σGaussian  represents the standard deviation of the 

Gaussian-distributed complex signals. 
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Once the average covariance matrices with respect to various tensor  

representations are known, the mean variance of any tensor-derived quantity or 

the mean variance-covariance between any two tensor-derived quantities can 

then be computed based on the techniques explained in the preceding sections.  

As an example, the mean variance of Dxx can be expressed as  

−
 2 ≡ Δ 2 ⎡ 1 ⎤σD D xx ≈ σ   2 T ˆ 2 

xx DW (W S W⎢ )
⎣

 ⎥⎦ 22 
. Here, we use this approach to show the

rotational variance of Tr of a prolate tensor based on the variance-covariance 

matrix in (52), Figure 4. This framework will also be useful in analyzing the effect 

of gradient sampling schemes on tensor-derived quantities without the need for a 

computationally intensive bootstrap to quantify uncertainty, see Jones [53]. It is 

clear that the variance of trace exhibits rotational asymmetry, Figure 4. 

Increasing the number of gradient directions will not reduce the systematic  

variation, Figure 4. The theoretical reason for this phenomenon is that the 

experimental design for DTI is not rotationally invariant [54].   

 



2) Elliptical Cones of Uncertainty of the Principal Eigenvectors: Based on the

technique expounded in Section II-C and Section II-D, the variance-covariance 

matrix of the components of an eigenvector can be computed quite easily. This 

particular variance-covariance matrix is useful in constructing the elliptical cone 

of uncertainty about that eigenvector. 

Without loss of generality, we shall take the major vector of a diffusion 

tensor to illustrate the method in this section. By (11), q = [Q Q Q ]T 
1 11 21 31 , and

(31), we have 

T[Σ ] = ∇ Q (γ̂)Σ ∇ Q (γ̂) . (55)q ξ i1 ξ ξ j11 ij 

According to the perturbation method proposed by Hext [45], q1  is normal to the 

plane of the elliptical cone of uncertainty. In other words, the eigenvector that is 

associated with the smallest eigenvalue of  Σq1 
 is parallel to q1 , therefore, the 

other two eigenvectors are perpendicular to q1 . The same observation can be 

made within the proposed framework. That is, the equation of a sphere, 

Q 2 + Q 2 + Q 2 =
11 21 31 

 1 , will force Σq1 
 to be a matrix of rank 2, therefore, the smallest 

eigenvalue of Σq1 
 is essentially zero. Another argument for this observation is  

based on the dyadics formulation; it is presented in Appendix J. We shall outline 

the basic idea with an example. If we have 

⎡ ⎤T 
γ = ln(1000.0)×10 + 4 s/mm 2 10.208 6.7889 4.0029 1.3871 −0.66383 2.1784 ×10 − 4 mm 2/s ,⎢ ⎥⎣ ⎦

then the major eigenvector is q1 = [0.9027 0.3139 − 0.2940]T and the major

eigenvalue is  0.00114 mm2 / s . 
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We shall denote the lower right 3x3 submatrix of Σξ as Σξ 5:7,5:7 
 and

.098 
[

⎛ 14
 

 10.271 − 13.473 ⎞
⎜ ⎟ 

Σ −5
ξ ] = ⎜−14.098 604.232 − 575.827⎟×10

5:7,5:7 ⎜ ⎟
⎝ 13.473 − 575.827 579.015 ⎠ 

 based on the SNR level of 50

and on a design matrix, W , that was constructed from a 35 gradient direction set 

with 4 spherical shells having b values of 0, 500, 1000, and 1500 s / mm2 . 

Similarly, we shall denote the lower 3x3 submatrix of 

∇ξq1 ≡ ∇ξQ11(γ̂),∇ξQ21(γ̂),∇ξQ31(γ̂)  as ∇ξq1 5:7,1:3 
, particularly, we have  

⎛ − 0.2863 − 0.0670 − 0.9505⎞
⎜ ⎟[∇ξq ] = ⎜− 0.3139 0.9027 0.0 ⎟ 1 5:7,1:3 
⎜ ⎟− 0.3197 0.9470 0.0295⎝ ⎠ 

for our example.

The variance-covariance matrix can then be computed as follows: 

Σ = ([∇ξq ] )Tq1   1  [ Σ
5:7,1:3 ξ ] ([∇ ξq1 ] )  

5:7,5:7 5:7,1:3 
, which has the following numerical

values 

⎛ 3.9182 − 8.9822 2.4405⎞
⎜ ⎟ 
⎜− 8.9822 27.179 1.4387 ⎟×10−5 . 
⎜ ⎟2.4405 1.4387 9.0289⎝ ⎠ 

The eigenvalue-eigenvector pairs of this matrix are: 
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-4{3.0259 ×10 ,[0.32035, - 0.9469, - 0.0273]T },
-5{9.8667 ×10 ,[0.2870 0.0695 0.9554]T },

and 

-20{0 ≅ 2.4915 ×10 ,[0.9027 0.3139 - 0.2940]T }.



It is quite clear then that q1  is parallel to the minor eigenvector of Σq1 
. Note that 

the other two eigenvectors of Σq1 
are not generally equal to the medium and 

minor eigenvectors of the diffusion tensor. Once the eigenvalue-eigenvector pairs 

of Σq1 
and q1  are computed, the 100(1−β)% elliptical confidence cone can be 

constructed quite easily. We shall mention here a simple but important method 

for visualizing the confidence cone. We prefer to use the approach proposed by 

Hext [45] in which the confidence cone is projected onto the unit sphere, thus 

avoiding an important visual ambiguity: if the height of a confidence cone were to 

be scaled proportional to some function of the major eigenvalue, then the spread 

of the cone would be a function not only of  the two nonzero eigenvalues of Σq1 
 

but also of the major eigenvalue of the diffusion tensor. It would then be harder to 

compare two neighboring confidence cones visually. Figure 5 shows an example 

of the elliptical confidence cones constructed from the human brain data. 

30
 



III. RESULTS

A variance-covariance estimate can be obtained from a set of DW 

measurements. Therefore, repeated DW measurements can be carried out to 

measure the uncertainty of the variance-covariance estimate by a graphical 

method based on histogram analysis. This approach will provide a reasonable 

measure of the distributional properties of these estimates. Further, the classical 

sample variance-covariance formulae can be employed to compare with the 

analytically derived value of these estimates. Monte Carlo simulations similar to 

those of Pierpaoli and Basser [5] were carried out to validate the proposed 

method. 

For simplicity, we shall use the simulation condition (including the 

parameter vector, γ ) similar to that of Section II-F2 except at a single SNR level 

of 15. Further, fifty thousand repeated measurements were generated to facilitate 

statistical comparison. Briefly, this parameter vector has Tr of 0.0021mm2/s and 

FA of 0.5278. Further, its major eigenvector is [0.9027 0.3139 − 0.2940]T .

The sample statistics, and the results from the proposed framework with 

respect to two different covariance matrices, Σγ  and Σξ are listed on Table 1. 

The sample statistics, listed as (I) on Table 1, are computed based on classical 

statistical expressions for sample mean and sample variance. Similarly, the 

sample covariance matrix of the major eigenvector is based on classical statistics 

but the sample eigenvectors, {q i1,,q iN } for i = 1,2,3 , have to be properly 

oriented so that their directions are on the same hemisphere as the estimated 

mean major eigenvector. The estimated mean major eigenvector is computed 
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based on the dyadic product formulation [27] where the major eigenvector of  

1 N 
q qT 

1 1 = ∑q1 j q
T

N 1 j  
j=1

corresponds to the mean major eigenvector. An important

observation about this dyadic product is that the medium and the minor 

eigenvectors of q qT
1 1 can be used to construct the covariance matrix of the 

major eigenvector. The argument for this observation is presented in Appendix J.  

The results on (II) and (III) are obtained from the average covariance matrix 

discussed in Section II-F-1. The results on (IV) and (V) are obtained by averaging 

the 50,000 variance estimates of Tr and FA; these variance estimates, (IV) and 

(V), are obtained from the proposed framework with respect to the ordinary and 

the Euler representations, respectively. Further, the DW signal variances were 

estimated from each nonlinear fit using the modified full Newton method 

described in [25]. To complement the results in Table 1, we also show the 

distributional property of these variance estimates in Figure 6.   

Before presenting the results on the covariance matrix of the major eigenvector, 

we will show some results on the dyadics formalism for later comparison. The  

average dyadics from the 50,000 samples of eigenvectors turns out to be  

⎛ 0.8116 0.2813 − 0.2639⎞
⎜ 

0.2813 0.1014 − 0.0918 
⎟  ⎜ ⎟ 

⎜ ⎟− 0.2639 − 0.0918 0.0871⎝ ⎠

and the corresponding eigenvalue-eigenvector pairs 

are 

−1 T{λ , ψ 1} = {9.954 × 10 , [− 0.9027 − 0.314 0.2941 ] } ,1 

−3 T{λ2 , ψ 2} = {3.452 ×10 , [− 0.3210 0.9467 0.0260] } , and
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{λ , ψ } = {1.123×10 −3 T
3 3 , [0.2865 0.0709 0.9555] } .

The average vector before and after normalization is 

1 N 
t = ∑ q 1i = {0.9006,0.3135, − 0.2933} , 

N i=1 
and t̂ = {0.9027,0.3142, − 0.2940} ,

respectively, with a vector norm of t = 0.9977 and (λ1 +1− 2 t ) ≈ 1.2038×10−5 ; 

(λ1 +1− 2 t ) is an approximation to the minor eigenvalue of the covariance 

matrix of the major eigenvector of the diffusion tensor, see Appendix J. 

Here, we present the results on the covariance matrices of the major 

eigenvector; 

  

−4 −3 −4⎛ 4.583×10 −1.034×10 2.751×10 ⎞
⎜ ⎟ 

−3 3 −4⎜−1.024×10 3.100×10− 1.602×10 ⎟ 
⎜⎜ −4 −4 −3 ⎟⎟2.751×10 1.602×10 1.029×10⎝ ⎠

−4 −3 −4⎛ 4.844 ×10 − 1.109 ×10 3.035 ×10 ⎞
⎜ ⎟ 

 , −3 −3 −5 ⎜− 1.109 ×10 3.256 ×10 7.219 ×10 ⎟
⎜⎜ −4 −5 −3 ⎟⎟3.035 ×10 7.219 ×10 1.009 ×10⎝ ⎠

and

−4 −3 −4⎛ 5.218 ×10 − 1.169 ×10 3.066 ×10 ⎞
⎜ ⎟ 

−3 −3 −5 ,⎜− 1.169 ×10 3.460 ×10 8.833 ×10 ⎟ 
⎜⎜ −4 −5 −3 ⎟⎟3.066 ×10 8.833 ×10 1.047 ×10⎝ ⎠

which are obtained respectively by methods, (I), (III), and (V) listed in Table 1. 

Their corresponding eigenvalue-eigenvector pairs are: 

(I ) (I ) −3 T{λ1 , ψ1 } = {3.452 ×10 , [− 0.3213 0.9466 0.0261] } ,

(I ) (I ) −3 T{λ2 , ψ 2 } = {1.123×10 , [0.2863 0.0708 0.9555] } , and

(I ) (I ) −5 T{λ3 , ψ3 } = {1.204 ×10 , [− 0.9027 − 0.3145 0.2938] } for method (I),

(III ) (III ) −3 T{λ1 , ψ1 } = {3.646 ×10 ,[0.3320 − 0.9432 − 0.0124] },
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(III ) (III ) −3 T{λ2 , ψ 2 } = {1.104 ×10 , [0.2735 0.1088 0.9557] } , and

(III ) (III ) −19 T{λ3 , ψ3 } = {3.160 ×10 ≈ 0, [− 0.9028 − 0.3139 0.2940] } for method (III),

and 

(V ) (V ) −3 T{λ1 , ψ1 } = {3.868×10 ,[0.3302 − 0.9439 0.0063] } ,

(V ) (V ) −3 T{λ2 , ψ 2 } = {1.145×10 , [0.2766 0.1032 0.9554] } , and

(V ) (V ) −5 T{λ3 , ψ3 } = {1.515×10 , [0.9025 0.3137 − 0.2951] } for method (V).

Clearly, (λ −5 
1 +1− 2 t ) ≈ 1.2038×10 , a result from the average dyadics, is a good 

approximation to the minor eigenvalue of the sample covariance matrix of the 

major eigenvector, λ(I )
3 . Further, the medium and minor eigenvalue-eigenvector  

pairs from the average dyadics respectively are very close to the largest and 

medium eigenvalue-eigenvector pairs of the sample covariance matrix of the 

major eigenvector. This result validates the analysis represented in Appendix J.  
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IV. DISCUSSION

In this work, our main objective is to present as simply as possible both the 

geometric and analytical ideas that underlie the proposed framework of error 

propagation so that the translation of this work into practice is clear to interested 

readers. 

Here, we outline the main findings of this work. As a technique of error 

propagation, the proposed framework has several desirable features—namely, 

that the uncertainty of any tensor-derived quantity, scalar or vector, can be 

estimated by using the appropriate diffusion tensor representation; that the 

covariance matrices with respect to different diffusion tensor representations can 

be analytically expressed; and that covariance estimation is very accurate and is 

a natural by-product of the modified full Newton method of tensor estimation, a 

description of which can be found in [25]. Figure 7 shows schematically the 

necessary steps needed to obtain the covariance matrices of interest. The 

sample statistics and the simulation results obtained from the proposed 

framework agreed reasonably well, see Figure 6. 

The concept of the average covariance matrix is introduced and applied to 

the issue of rotational asymmetry of the variance of the Trace. This particular  

approach circumvents the need for bootstrap methods [18], [53] in this type of 

investigation. It is not hard to see that a covariance matrix with respect to a 

diffusion tensor representation corresponding to a particular tensor can be 

generated with great ease and efficiency. This technique of generating 

covariance matrices will be very useful in simulation studies but we should 
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emphasize here that it is based on the limiting case of zero-residual. Therefore, 

readers who are interested in analyzing experimental DTI data should use the 

covariance matrices in (49), (50), and (51) of Section II-E rather than the average 

covariance matrices discussed in Section II-F1. A similar idea related to the 

average covariance matrix is that of the average Hessian matrix of the ordinary  

representation, which is also known as the precision matrix [55]. The precision 

matrix is very useful in DTI experimental design [54], [55], and it can also be 

used in constructing the Hotelling’s T2-statistic for testing group differences or the 

Mahalanobis distance for tensor classification. However, we expect the invariant 

Hessian matrix of the Euler representation to be more useful than its regular 

counterpart, Hessian matrix, for tensor classification. These are areas of our 

current interest and we shall present them in future work.   

The confidence cone, or the cone of uncertainty, of the major eigenvector  

in DTI — a concept introduced by Basser [26] and expounded upon by Basser  

and Pajevic [27], was brought to bear in fiber tract visualization by Jones [28]. 

But, the shape of the confidence cone discussed in these work has always been 

simplified or reduced to being circular. The observation of Jeong et al. [30] and 

Lazar et al. [29] provided clear evidence that  the cone of uncertainty is generally  

elliptical in cross-section. In this work, we have presented several analytical 

tools, based on the proposed framework, the perturbation method, and dyadic  

formalism, for constructing the elliptical cone of uncertainty. According to the 

result derived in Appendix J, it is noteworthy that the length and direction of the 

major and minor axes of the ellipse of the confidence cone are just the medium 
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and minor eigenvalue-eigenvector pairs of the average dyadics  of the particular 

eigenvector—a fact that had escaped notice for sometime!  

The proposed framework can also be used to analyze DTI data 

retrospectively to investigate the reproducibility of a DTI parameter of interest or 

of the fiber orientation.  For example, if there is an insufficient number of 

diffusion-weighted images to perform a bootstrap analysis, at least the 

uncertainty in the tensor elements and tensor-derived quantities can still be 

estimated within the proposed framework. 

Although we have presented some cogent reasons ― the unifying 

principles of diffusion tensor representations, of Taylor approximations of scalar 

and vector functions and, more importantly, of invariant Hessian and covariance 

structures of the nonlinear least squares objective function of DTI ― for 

preferring the proposed framework to the perturbation method, the perturbation 

method is nevertheless a useful technique [17]. The diffusion tensor 

representations studied here are logically equivalent but they are not equally 

useful or significant. It is the variety of applications that made one diffusion tensor 

representation to be preferred to another. 

We have shown that invariant Hessian matrices are more important than 

the Hessian matrices in DTI error propagation because covariance matrices are 

directly linked to them. Further, we also showed how these invariant Hessian 

matrices can be obtained from the proposed framework without employing the 

technique of covariant derivatives in tensor calculus and differential geometry. 

V. CONCLUSION 
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We have developed an analytical and geometrically intuitive error propagation 

framework for diffusion tensor imaging. We have presented the nuts and bolts of 

various aspects of diffusion representations for understanding variability in any 

tensor derived quantity, vector or scalar. This framework provides an analytical 

and efficient method for understanding the dependence of variance of a tensor-

derived quantity on orientation or gradient schemes. Furthermore, it provides an 

approach for computing the necessary parameters in order to construct the 

elliptical confidence cone of an eigenvector. This particular technique will be very  

useful in fiber tractography, group analysis of diffusion tensor data and tensor  

classification. It is also clear that the proposed framework can be adapted to 

other nonlinear least squares problems. 
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APPENDIX A 

ROTATION MATRICES AND A METHOD FOR FINDING EULER ANGLES 

The rotation matrices, R x (Ω) , Ry (Ω) and Rz (Ω) represent rotations through


angle Ω  around the x, y and z axes, respectively, and are defined as follows: 

1 0 0
 
, )
 sin( 

) cos( 
0 cos( 
0 sin( 

Rx ( 
⎞
⎟
⎟ 
⎟

⎠


Ω
−
)
Ω
 
)
Ω
Ω
 

⎛
⎜
⎜ 
⎜

⎝


=
)
Ω
 

)
 

)
 ) 0 cos( 
0 1 0
 

) 0 sin( cos( 

sin( 
Ry ( 

⎞
⎟
 ⎟
⎟
⎠

Ω
Ω
⎛
 

Ω
Ω
 − 

⎜
⎜
⎜

= 

⎝


)
Ω
 , and 

.
) 0
 

0 0 1
 
) 0
 

sin( 
) cos( 

cos( 
sin( Rz ( 

⎞
⎟
⎟ 
⎟

⎠


Ω
−
)
Ω
⎛
 
Ω
Ω
 

⎜
⎜ 
⎜
⎝

=)
Ω
 

The following discussion is on obtaining the Euler angles from the proper rotation 

matrix, Q , which can be expressed columnwise as 

 
ψ
ψ 

φ
φ 

θψ 

11 sin( ) sin( ) 

21 cos( )sin( )
Q
Q
Q31 cos( )sin( ) 

,
⎞
⎟
⎟ 
⎟

⎠


φ
θ
cos( ) cos( ) cos(ψ) − 
ψ
θ
cos( ) cos( ) sin(φ) + 
−
 

⎛
⎜
⎜ 
⎜


⎞
⎟
⎟ 
⎟


⎝
⎠


=
 
⎛
⎜
⎜ 
⎜

⎝


ψ 
ψ 

φ 
φ 

ψ 

θ 
θ 

θ 

Q
Q
Q 

12 cos( ) cos( ) sin( ) 
cos( ) sin( ) sin( ) 22 

sin( ) sin( ) 32 

⎞
⎟
⎟ 
⎟


,

⎠


ψcos( )sin(φ) − 
φcos( ) cos(ψ) − 

−
 

⎝
⎠


⎛
⎜
⎜
⎜


⎞
⎟
⎟ 
⎟

=
 

⎛
⎜
⎜ 
⎜

⎝


 and . 
θ
φ 

θ 

φ
θ 

Q
Q
Q 

13 cos( )sin( ) 
sin( )sin( )23 

cos( )33 

⎞
⎟
⎟ 
⎟

⎠


⎛
⎜
⎜ 
⎜


⎞
⎟
⎟ 
⎟

=
 

⎝
⎠


⎛
⎜
⎜ 
⎜

⎝


By proper rotation, we mean that the determinant of Q  should be positive one. If 

negative one is encountered, we can always change Q  to its additive inverse, 

− Q . Once this step is checked, the Euler angles can then be found as follows: 
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(1) θ = θ1 = cos−1(Q33 )  

(2) If θ ≠ 0 , then 

(a)  φ = atan2(Q23 ,Q13 )  

(b) ψ = atan2(Q 32 ,−Q 31 )

The function atan2  is defined in many programming languages such as C and 

Java. 

In the case where θ = 0 , the rotation matrix  Q  can be shown to reduce to 

⎛cos(φ + ψ) − sin(φ + ψ) 0⎞
⎜ ⎟ 
⎜ sin(φ + ψ) cos(φ + ψ) 0⎟ . 
⎜ ⎟0 0 1⎝ ⎠ 

It is clear that φ  and ψ  can not be uniquely determined and we can set one of 

them to zero. Let ψ = 0 , then  φ = atan2( − Q12 ,Q22 ) . 
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APPENDIX B 

MAPPINGS BETWEEN VARIOUS REPRESENTATIONS 

The components of γ(ξ)  are defined below: 

 γ1(ξ) = ξ1 = ln(α) 

2 2 2γ 2 (ξ) = Dxx (ξ) = [Q11 ] ξ2 + [Q12 ] ξ3 + [Q13 ] ξ4 ,

 2 2 2γ3 (ξ) = Dyy (ξ) = [Q21 ] ξ2 + [Q22 ] ξ3 + [Q23 ] ξ4 

 2 2 2γ 4 (ξ) = Dzz (ξ) = [Q31 ] ξ2 + [Q32 ] ξ3 + [Q33 ] ξ4 

 
γ5 (ξ) = Dxy (ξ)
 

= [Q ][  Q ]ξ + [Q ][  Q ]ξ + [Q ][  Q ]ξ411 21 2 12 22 3 13 23 

 
γ6 (ξ) = Dyz (ξ)
 

= [Q ][  Q ]ξ + [Q ][  Q ]ξ + [Q ][  Q ]ξ4
21 31 2 22 32 3 23 33 

 
γ7 (ξ) = Dxz (ξ) 
= [Q11 ][  Q31 ]ξ2 + [Q12 ][  Q32 ]ξ3 + [Q13 ][  Q33 ]ξ4 

where the components of Q  are functions of ξ5 , ξ6 , and ξ7 . 

For completeness, we will show analytical formulae for each component of  

ρ(γ)  by the Cholesky decomposition with the assumption that the diffusion tensor  

within γ  is positive definite otherwise, as mentioned in the text, the modified 

Cholesky decomposition is to be used for constructing ρ(γ)  [50], [25]. Before  

presenting the formulae, we shall define the following terms to simplify the 

expression of ρ(γ) : 

D1 = Dxx ,
⎛ Dxx Dxy ⎞ D2 = ⎜ ⎟⎜D D ⎟
⎝ xy yy ⎠

 , D3 = D , and det(.)  is the matrix determinant. 
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ρ(γ)  can be expressed as follows: 
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 ρ1(γ) = γ1 = ln(α) 

 1/ 2 1/ 2 1/ 2ρ (γ) = det(D ) = det(D ) = det(γ )2 1 xx 2 

⎛ det(D2 ) ⎞
1/ 2 

ρ3 (γ) = ⎜⎜ ⎟⎟ 
⎝ det(D1) ⎠

 
⎛ det(D3 ) ⎞

1/ 2 

ρ4 (γ) = ⎜⎜ ⎟⎟ 
⎝ det(D2 ) ⎠

 
Dxyρ5 (γ) = 1/ 2det(D1) 

 
Dxx Dyz − Dxy Dxzρ (γ) = 6 1/ 2 1/ 2det(D1) det(D2 ) 

D
ρ7 (γ) = xz . 

det(D1)1/ 2 



APPENDIX C 

A REPRESENTATION BY HEXT 

The representation proposed by Hext [45] is the mapping relating the 

components of Λ  to those of D : 

 
λ
 λ
 λ
⎛
⎜
⎜ 
⎜


⎞
⎟
⎟ 
⎟


1 4 6 

=
QT DQ . (C1)Λ
=
 λ
 λ
 λ
4 2 5 

λ
 λ
 λ
⎝
 ⎠
6 5 3 

where QQT =  I but the off-diagonal elements of Λ  are not necessarily zero. A

special case of (C1) with Λ  being a diagonal matrix was used by Anderson [17] 

to compute the covariance between two eigenvalues. 
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Adapting (C1) to the convention used in this paper, we can show that the 

linear relation in vector form can be expressed as follows:  

λ⎛ 0 

1 

2 

3 

4 

5 

6 

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
 
⎠


=
 
λ
λ
λ

⎜ 
⎜
⎜
⎜
⎜
⎜
⎜ 
⎜
⎜
⎝

λ
λ
λ


ln S1 0 0 0 0 0 0
⎛
⎜
⎜
⎜ 
⎜
⎜
⎜
⎜
⎜ 
⎜


⎛
⎜
⎜
⎜ 
⎜
⎜
⎜
⎜
⎜ 
⎜

⎞
⎟
⎟
⎟ 
⎟
⎟
⎟
⎟
⎟ 
⎟

0 
2 2 2Q11 Q21 Q31 2Q11Q21 2Q21Q31 2Q11Q31 D
0
 xx 
2 2 2Q12 Q22 Q32 2Q12Q22 2Q22Q32 2Q12Q32 D
0
 yy 
2 2 2Q13 Q23 Q33 2Q13Q23 2Q23Q33 2Q13Q33 D
0
 zz 

Q11Q12 Q21Q Q31Q32 Q11Q Q21Q12 Q21Q32 Q31Q Q11Q32 Q31Q12 D
+
 +
 +
22 22 22 xy 

Q12Q13 Q22Q Q32Q33 Q12Q Q22Q13 Q22Q33 Q32Q Q12Q33 Q32Q13 D
+
 +
 +
23 23 23 yz 

D
Q11Q13 Q21Q Q31Q Q11Q Q21Q13 Q21Q33 Q31Q Q11Q33 Q31Q13+
 +
 +
⎝
 ⎝⎠23 33 23 23 xz 

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
 
⎠
0 

0 
0 

We shall denote the above equation as λ = Pγ , the first order differential 

can be written as dλ =
Pdγ so that we can identify the elements of  P  as   



[ ] ∂λ
P i 

ij = 
∂γ j 

or P = J γ (λ) . If the covariance matrix  Σγ is given then it can be

shown that Σ λ = J (λ) Σ γ J
T (λ) = PΣ PT 

γ γ  γ . See Section II-E and Appendix F for

the technique for transforming covariance matrices from one representation to 

another.  

It is evident that this representation, λ , has a simpler expression than that 

of the proposed Euler representation, ξ . However, this representation cannot 

answer questions regarding the uncertainties in the eigenvectors, i.e. the elliptical 

cone of uncertainty of the major eigenvector, without resorting to the perturbation 

method.  
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APPENDIX D 


THE DERIVATION OF A KEY EQUATION ON ERROR PROPAGATION 

As defined in the main text, we have ∇ ˆ
1 1 2 f NLS (γ) = QΛ 2 (QΛ 2 )T and 

1 1
 

η ≡ (QΛ 2 )T δ = Λ 2
QT δ where Q  is an orthogonal matrix and Λ  is a diagonal 

matrix with positive elements. Therefore, we can write − 1 

δ = QΛ 2η . This is 

equivalent to the following expressions in component form:  

iηi = ∑
∂η 

δ j (
j ∂δ j 

)D1

and 

 
∂δ

δi = ∑ i η j (D2)
j ∂η j

where 

1∂η ∂δ − 1
i 2 T i 2= [Λ Q ]ij and = [QΛ ]ij . ∂δ ∂ηj j

 

Δg(δ)2 ≈ 2Δf (δ)|| ∇ g ||2 
NLS η 

∂g(η) ∂g(η) ⎡ ∂δ j ∂g(δ)⎤⎡ ∂δk ∂g(δ)⎤ 
= 2Δf (δ)∑ = 2Δf (δ)∑⎢∑ ⎥⎢∑ ⎥∂η ∂η ∂η ∂δ ∂η ∂δi i i i ⎢⎣ j i j ⎥⎦⎣ k i k ⎦ 

⎛ ∂g(δ) ⎞⎡ ∂δ ∂δ ⎤⎛ ∂g(δ) ⎞
 
= 2Δf (δ)∑∑⎜

⎜ 
⎟
⎟⎢∑ j k 

⎥⎜⎜ ⎟⎟
 
j k  ⎝ ∂δ j ⎠⎣ i ∂ηi ∂ηi ⎦⎝ ∂δk ⎠
 

⎛ ∂g(δ) ⎞⎡ − 1 − 1
2 ⎤⎛ ∂g(δ) ⎞ 

= 2Δf (δ)∑∑  
j k  ⎜

⎜ 
∂δ j

⎟
⎟
⎣⎢
∑ 
i 

[QΛ 2 ] ji [QΛ ]ki
⎦⎥⎝
⎜⎜ ∂δk ⎠

⎟⎟
 
⎝ ⎠
 

⎛ ∂g(δ) ⎞⎡ − 1 − T ⎤⎛ ∂g(δ) ⎞ 
= 2Δf (δ)∑∑⎜

⎜ 
⎟
⎟⎢∑[QΛ 2 ] ji [(QΛ 2

1

) ]ik ⎥⎜⎜ ⎟⎟

j k  ∂δ i ⎦ ∂δ
⎝ j ⎠⎣ ⎝ k ⎠ 
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⎛ ∂g(δ) ⎞ −1 T ⎛ ∂g(δ) ⎞ 
= 2Δf (δ)∑∑⎜ ⎟([QΛ Q ] )⎜ ⎟jk ⎜ ⎟⎜ ⎟∂δ ∂δj k  ⎝ j ⎠ ⎝ k ⎠

T 2 −1= 2Δf (δ)∇ g(γ̂)[∇ f (γ̂)] ∇ g(γ̂) . (D3)γ NLS γ 

From the above derivation, we also see that 

|| ∇ 2 T 
ηg || = ∇ γ g(γ̂)[∇ 2 f (γ̂)] −1 

NLS ∇ γ g(γ̂) and − 1

 ∇ g = Λ 2Q Tη ∇ δ g .
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APPENDIX E 

HESSIAN STRUCTURES IN DIFFERENT REPRESENTATIONS

Here, we provide explicit Hessian expressions with respect to various  

representations studied in this paper: 

) 2 T 2∇ f NLS (γ) = W (Ŝ −RŜ)W , (E1

2) ( ˆ ˆ ) 
n

ˆ2 T T 2∇ fCNLS (γ(ρ)) = Jρ (γ)W S −RS WJρ (γ) + ∑ ri si Pi , (E
i=1 
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 2 T T 2∇ f ENLS (γ(ξ)) = Jξ (γ)W (Ŝ −RŜ)WJξ (γ) + ∑ 
n 

ri ŝi Ti , (E3
i=1 

)

where S  and Ŝ  are diagonal matrices whose diagonal elements are the 

observed and the estimated diffusion weighted signals, respectively, i.e. 

⎛ s1 ⎞ ⎛ ŝ1 ⎞
⎜ ⎟ ⎜ ⎟ˆS = ⎜  ⎟ , and S = ⎜  ⎟ . 
⎜ ⎟ ⎜ ⎟s ŝ⎝ n ⎠ ⎝ n ⎠ 

Further, we have R = S − Ŝ , 
∂γ

[J  i
ρ (γ)]ij ≡ ∂ρ j

, 
∂γ

[J i
ξ (γ)]ij ≡ 

∂ξ j
,

[ ] 7 ∂ 2 γ 
Pq = ∑ (−W ) i

kl qi 
i=1 ∂ρk∂ρ l

, and [ ] 7 ∂ 2 γ 
T = ∑ (−W ) i

q kl qi
i=1 ∂ξk∂ξl

. Equations (E1) and (E2)

have been previously derived and studied by Koay et al. [25]. 



APPENDIX F 

COVARIANCE STRUCTURES IN DIFFERENT REPRESENTATIONS 

In (31), we have the following equation 

2 T 2 −1[Σ ] = σ ∇ g (γ̂)[∇ f (γ̂)] ∇ g (γ̂) .g( γ̂) DW γ i NLS γ jij 

To construct the covariance matrix with respect to the ordinary representation,  

we write, 

2 T 2 −1[ ]  [  ]  = σ ∇ γ ( ˆ )[∇ f γ ∇ γ ( ˆ )Σγ ≡ Σγ( γ̂) DW γ i γ NLS ( ˆ )] γ j γij ij 

or 
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2 T 2 −1Σγ ≡ Σγ( γ̂) = σDW [∇ γ γ1(γ̂)  ∇ γ γ j (γ̂)] [∇ f NLS (γ̂)] [∇ γ γ1(γ̂)  ∇ γ γ j (γ̂)],
2 2 −1 T= σ J (γ(γ̂))[∇ f (γ̂)] J (γ(γ̂))DW γ NLS γ
 

2 2 −1 T
= σ I[∇ f (γ̂)] I ,DW NLS 

2 2 −1= σ [∇ f (γ̂)] ,DW NLS 

where J γ (γ(γ̂)) = I and I  denotes the identity matrix. 

To construct the covariance matrix with respect to the Euler representation, we 

write, 


 2 T 2 −1[ ] [  ]  ξ ≡ Σ = σ ∇ ξ i ( ˆ )[ f γ ∇ ξ j ( ˆ )Σ 
ij ξ( γ̂) ij DW γ γ ∇ NLS ( ˆ )] γ γ 

or 

[ ] ] 2 T 2 −1Σ ≡ Σ = σ ∇ ξ (γ̂)  ∇ ξ (γ̂) [∇ f (γ̂)] [∇ ξ (γ̂)  ∇ ξ (γ̂)ξ ξ( γ̂) DW γ 1 γ j NLS γ 1 γ j
 

2 2 −1 T
= σ J (ξ(γ̂))[∇ f (γ̂ )] J (ξ(γ̂)) ,DW γ NLS γ
 

2 (−1)(−1) 2 −1 T (−1)(−1)
= σDW [J γ (ξ(γ̂))] [∇ f NLS (γ̂)] [J γ (ξ(γ̂ ))] , 



2 T (−1) 2 (−1) −1= σ [[J (ξ(γ̂))] [∇ f (γ̂)][J (ξ(γ̂ ))] ] ,DW γ NLS γ

 2 T 2 −1NT = σ [J (γ(ξ̂))[∇ f (γ̂)]J (γ(ξ̂))] . (F1)DW ξ NLS ξ 

NTTwo identities: J (γ(ξ̂ξ )) ⋅ J γ (ξ(γ̂)) = J (ξ(ξ̂ξ )) = I and J (γ(ξ̂)) = [J (ξ(γ̂))]−1 
ξ γ  

were used in the derivation of (F1). 

Equation (F1) is very important because we have discovered the part of the 

Hessian matrix that is invariant with respect to transformation without using the 

concept of invariance derivative in tensor calculus. Interestingly, the invariant 

Hessian matrix of the Euler representation is exactly the first term of the Hessian 

matrix in (E2).  
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APPENDIX G 

GRADIENT COMPUTATION: EIGENVECTORS 

The gradient of the first, second and third components of q1  can be written as: 

cos( ) cos( )sin( ) 
cos( )sin( ) 

cos( ) cos( )sin( ) 
ψφ

φ 

θ 

θ 

ψφ 

ψ 

, 

⎞
⎟
⎟
⎟
⎟
⎟ 
⎟
⎟
⎟
⎟
⎠


− 

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

= 

cos( ) cos( )sin(φ) −ψ
θ
 
cos( )sin(φ) −ψ 

−
 
−
 

⎛
 

⎝


∇
 

0
 
0
 
0
 
0
 ξQ11 

φθψcos( )sin( )sin( )−
φsin( )sin( )ψψ −φθcos( ) cos( ) cos( ) 
φθcos( )sin( )sin( )ψ ⎠ψ −φcos( ) cos( )⎝

⎞
⎟
⎟
⎟
⎟
⎟ 
⎟
⎟
⎟ 
⎟

, 

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜ 
⎜


=
∇


0
 
0
 
0
 
0
ξQ21 and 

ψθcos( ) cos( )− 
0 

ψθsin( )sin( ) ⎠⎝

⎞
⎟
⎟
⎟
⎟
⎟ 
⎟
⎟
⎟
⎟


⎛
⎜
⎜
⎜
⎜
⎜
⎜ 
⎜ 
⎜
⎜

=
 ξQ31∇
 . 

0
 
0
 
0
 
0
 

Similarly, the gradient of the components of q2  and q3 can be computed quite 

easily. 
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APPENDIX H 

GRADIENT COMPUTATION: TENSOR-DERIVED QUANTITIES 

A few notations and conventions are introduced here to keep the formulae shown 

in (38), (39), and (40) in a compact form: 

(1) The indices i=1, 2, 3 denote x, y, z, respectively. 

(2) δij  is the Kronecker delta function, i.e. δij = 1 for  i = j and δij = 0 for i ≠ j . 

(3) The formulae for the partial derivatives with respect to the off-diagonal 

elements of D  is symmetrized, i.e. ∂FA 
∂D ij

= ∂FA
∂D ji

for i ≠ j . 

For convenience, the formulae that are frequently used are listed here: 
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 ∂Tr(D) 
= δij , (H1)

∂Dij

)∂Tr(D2 ) 4
= Dij , (H2

∂Dij (1+ δij ) 

m m−1 m∂ Tr(D) Tr(D) Tr(D) 4 
= m δij − n Dij , (H3)2 n 2 n 2 n+1∂Dij Tr(D ) Tr(D ) Tr(D ) (1+ δij ) 

 and 

2 m 2 m−1 2 m∂ Tr(D ) Tr(D ) 4 Tr(D )
= m D − n δ . (H4)n n ij n+1 ij∂Dij Tr(D) Tr(D) (1+ δij ) Tr(D) 



APPENDIX I 


AVERAGE COVARIANCE MATRIX 


In the zero-residual case, which is very useful in simulation studies where the 

ground truth is known, the invariant Hessian expressions in (49), (50), and (51) 

reduce to 

  2 T ˆ 2inv(∇ f NLS (γ)) = W S W ,        (I1)

  2 T T 2inv(∇ fCNLS (γ(ρ))) = Jρ (γ)W Ŝ WJρ (γ) , (I2)

and 

  2 T T ˆ 2inv(∇ f ENLS (γ(ξ))) = Jξ (γ)W S WJξ (γ) . (I3)

Further, we have S2 1  ˆ ⎛ ⎞≡ ⎜ ∑ Ŝ 2 
i ⎟ = Ŝ2 , 

⎝ N i=1 ⎠ 
where Ŝ  is known. As an example, the

average invariant Hessian matrix of (I1) can be expressed as follows: 
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1 T ˆ 2 T ⎛ 1 ˆ 2 ⎞ = ∑ W S i W = W ⎜ ∑S i ⎟W
 
N i=1 ⎝ N i=1 ⎠
 

ˆ 2
 

inv(∇2 f NLS (γ)) = ∇2 f NLS (γ) 

T ˆ 2= WT S W = W S W . (I4)

Therefore, the average covariance matrix is: 

2 −1 2 T ˆ 2 −1≈ σ2 [inv(∇ f NLS (γ))] = σDW [W S W] . (I5)Σγ DW 

In other words, we expect the arithmetic mean of Σγ to approach σ2 2 −1
DW [W

T Ŝ W] 

as the number of samples of Σγ  increases. Note that the arithmetic mean and 

the method of averaging used in obtaining (I5) are different but we expect the 

difference between these two quantities to be negligible for a large sample.    



APPENDIX J 


THE CONNECTION BETWEEN THE ELLIPTICAL CONE OF UNCERTAINTY 

AND THE AVERAGE DYADICS 

Let {q11,,q1N } be the collection of properly oriented major eigenvectors with 

respect to the mean major eigenvector and let T 1 N
q1q = ∑q T

1 1 j qN 1 j 
j=1 

be the

average dyadics [27]. Further, let the eigenvalue decomposition of the average 

dyadics be
3 

 ∑ λ ψ ψ T
i i  i 

i=1
 
where λ 1 ≥ λ 2 ≥ λ 3
 .

According to [56], the maximum likelihood estimate of the mean of  

{q11,,q1N } is ψ1 . We shall now show that these eigenvalue-eigenvector pairs, 

{λ2 , ψ 2 } and {λ 3 , ψ 3 } , are related to the length and direction of the major and the

minor axes of the confidence cone of the major eigenvector, q1 . In other words, 

these two eigenvalue-eigenvector pairs are related to the covariance matrix of  

{q11,,q1N } . The argument goes as follows:  

Let the sample covariance of {q11,,q1N } be defined as: 
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N
Σq = 1 

∑ (q1i − ψ1)(q1i − ψ1)T (J1)
1 N −1 i=1 

1 N
T T T T= ∑ (q1iq1i − ψ1q1i − q1i ψ1 + ψ1ψ1 )


N −1 i=1
 

N N NN ⎛ 1 T ⎛ 1 T ⎞ 1 ⎞ T T ⎞ = ⎜⎜ ∑q1iq1i − ψ1⎜ ∑q1i ⎟ −
⎛
⎜ ∑q1i ⎟ψ1 + ψ1ψ1 ⎟⎟ N −1⎝ N i=1 ⎝ N i=1 ⎠ ⎝ N i=1 ⎠ ⎠ 



Let 1 N
t = ∑q

N 1i 
i=1 

, then t t̂ = .
t

If we assume that t̂ ≈ ψ1 , which is not unreasonable

because ψ1  is an estimate of the mean major eigenvector, then we have 

 N ⎛ TΣq ≅ ⎜∑λ ψ ψ − t ψ ψ + ψ ψ ⎟ 
3 

t ψ ψT − T T ⎞ 
i i i 1 1 1 11 N −1⎝ i=1 

1 1 
⎠ 

N T T TΣq1 
≅ λ ψ 2ψ + λ3ψ ψ3 + (λ1 +1− 2 t )ψ1ψ1 .2 2 3−N 1 

( )

When N is large we have λ1 ≈ 1 and t ≈ 1 , so that (λ1 +1 − 2 t ) ≈ 0 . The sample 

covariance is then reduced to 

N T TΣq ≅ (λ2 ψ 2ψ 2 + λ3ψ3ψ3 ). (J2)
1 N −1 

Essentially, the dyadic product formulation suggested in [27] is sufficient to 

construct the elliptical confidence cone without having to use (J1). In retrospect,  

the construction of the confidence cone using (J2) bypasses the need to reorient 

the sample eigenvectors such that they are pointing on the same hemisphere as  

the mean major eigenvector. 
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TABLE AND FIGURE CAPTIONS 


Table 1: Simulation results based on various methods discussed on this paper. 
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(II) 
Expected

value 
based on 

<Ey>

(III) 
Expected 

value 
based on 

< Ex>

(IV) 
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based on 

Ey 
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Ee 

Variance 
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Trace 

-9 
2.9331 x10 

- 9 
3.033 1 × 10 

- 9
3.033 l × 10 

-9 
2.9529 × 10 

- 9 
2.9529 × 10 

Variance 
of 
FA 

- 4 
8.0014 ×  10 

- 4 
8.l 162 × 10 

- 4 
8.1162x10 

- 4
8.1402x l 0 

- 4 
8.1402x 10 



Figure 1. Different Representations and Coordinate Transformations of the 

Diffusion Tensor. As defined in the text, γ  is the ordinary representation of the 

diffusion tensor together with the logarithm of the reference signal. Similarly, ρ  

and ξ  are representations derived from the Cholesky composition and from the 

Eigenvalue composition, respectively. Note that decompositions, Cholesky or 

Eigenvalue, are more numerical in character whereas their compositions are 

more analytical or rather, analytically more tractable.  
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Figure 2. (A) A hyper-surface of the nonlinear objective function, f NLS , with 

respect to the γ  coordinate system with a minimum value of f NLS (γ̂) at γ̂ . A new 

coordinate system centered at f NLS (γ̂) is also shown here and will be denoted as  

the δ -coordinate system. (B) A typical hyper-surface of a tensor-derived quantity 

with respect to a γ -coordinate system. The contours of f  are projected vertically  

onto the tangent plane of g . This tangent plane of g  at g(γ̂)  shows the 

intersection between the contours of f NLS  and those of g . (C) The magnified 

image of the region centered at f NLS (γ̂) with respect to the δ -coordinate system.  

(D) The magnified image of the tangent plane of g  at g(γ̂) . The gradient vector 

of g(γ̂)  shows the direction of greatest ascent with respect to the landscape of g  

around g(γ̂) . (E) A new look of the hyper-surface of fNLS  with respect to the 

transformed  η -coordinate system as defined in both (20), and (21) where the 

change in fNLS  looks uniform in all directions of any unit vector. (F) The tangent  

plane of g(γ̂)  with respect to the η-coordinate system. 
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Figure 3. The consistency condition. As in Figure 2F, suppose the contours of g  

are projected onto the tangent plane of g , depicted here as a circle. The 

contours of g  on the tangent plane provide a means of measuring change or 

variation but this type of change is one-dimensional, that is perpendicular to the 

contours, i.e. parallel to ∇η g . Without loss of generality, we will assume that both 

η  and ∇η g  are normalized to unit length and suppose that  η  is not parallel to 

the gradient of g . This implies the projections of η  onto ∇η g  and of ∇η g  onto η

no longer fall onto the same contours. Therefore, the change in g  cannot be 

measured consistently if η  is not parallel to ∇η g . If η  is perpendicular to  ∇η g  

then the change in g  is always zero by (18). Therefore,  η  must be parallel to 

∇η g . 
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Figure 4. Rotational Asymmetry in the variance of Trace for a prolate tensor. 

Generally, the rotation of a typical tensor requires three parameters, i.e. Euler  

angles. But, analysis of rotational asymmetry of any tensor-derived quantity can 

be studied using a prolate tensor where only two parameters are sufficient, i.e. 

the major eigenvector of the prolate tensor can be parametrized by  

[sin(θ) cos(φ) sin(θ)sin(φ) cos(θ)]T with 0 ≤ θ < π  and 0 ≤ φ < 2π . The plots 

above are computed with a prolate tensor having FA of 0.586 and eigenvalues of 

λ ×10 −3 2 
1 = 1.24 mm / s and λ2 = λ3 = 4.30 ×10 −4 mm 2 / s at SNR = 25. Figures A, B

and C were computed with different numbers of gradient directions: 23, 85, and 

382, respectively. In each plot, the final design matrix, W , was constructed from 

4 spherical shells having b values of 0, 500, 1000, and 1500 s / mm2 .  The color-

coded variation is specific to each plot but the numerical scale, which has been 

normalized to the unit interval, [0, 1] , from [0, 2.0 ×10 −9 mm 4 / s 2 ], is common to all.
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Figure 5. Elliptical confidence cones. (A) FA map. (B) Magnified image of the 

region bounded by a red square on the FA map and (C) the corresponding 

elliptical 95%  confidence cones on that region at SNR level of 15.  
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Figure 6. Histograms of the variance estimates of (A) trace and of (B) FA based 

on three different covariance matrices: Σγ (red), Σξ (blue), and Σλ (green). The 

construction of Σλ  is discussed in Appendix C and it is related to the Hext  

representation. Note that, on Figures 6(A) and 6(B), the lines are superimposed. 

Sample variance of trace (FA), which is computed from the 50000 trace (FA) 

estimates, is shown in Figure6A (Figure 6B) as a vertical line. 
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Figure 7. An overview of the proposed error propagation framework for diffusion 

tensor imaging. The segment above the dotted line deals with tensor estimations 

(these techniques can be found in [25]); while the segment below the dotted line 

pertains to the proposed framework. 
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