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Abstract 

This report introduces a novel method to characterize the diffusion-time dependence of the diffusion-weighted magnetic resonance 
(MR) signal in biological tissues. The approach utilizes the theory of diffusion in disordered media where two parameters, the random 
walk dimension and the spectral dimension, describe the evolution of the average propagators obtained from q-space MR experiments. 
These parameters were estimated, using several schemes, on diffusion MR spectroscopy data obtained from human red blood cell ghosts 
and nervous tissue autopsy samples. The experiments demonstrated that water diffusion in human tissue is anomalous, where the mean-
square displacements vary slower than linearly with diffusion time. These observations are consistent with a fractal microstructure for 
human tissues. Differences observed between healthy human nervous tissue and glioblastoma samples suggest that the proposed 
methodology may provide a novel, clinically useful form of diffusion MR contrast. 
© 2006 Elsevier Inc. All rights reserved. 
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1. Introduction

Magnetic resonance (MR) imaging or spectroscopy 
measurements of the translational self-diffusion of water 
molecules have found widespread use in biophysical inves
tigations of materials and biological tissues [1]. Water dif
fusion behavior in tissue can be observed via magnetic 
resonance from multiple experimental perspectives and 
modeled in different mathematical fashions. Clinically, sim
ple diffusion-weighted MRI has proven to be highly sensi
tive to tissue microstructure changes that correlate with 
acute tissue injury, particularly in ischemic brain injury 
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doi:10.1016/j.jmr.2006.08.009 

* Corresponding author. Fax: +1 301 435 5035. 
E-mail address: evren@helix.nih.gov (E. O ¨ zarslan). 
or stroke [2]—this has proven utility for making treatment 
decisions in the treatment of stroke patients [3]. MR mea
surement of the orientational dependence of water diffusion 
in nervous tissue also has proven useful for the detection of 
coherent, anisotropically oriented white matter structures 
in the human brain [4]. In most published studies that in
volve diffusion MR, one observes the MR signal intensity 
dependence based on the magnitude or orientation of ap
plied diffusion sensitizing gradients. However, some studies 
have suggested additional information about tissue micro-
structure can be obtained if other parameters of the exper
iment, such as the diffusion time, were also varied [5,6]. 
This paper will demonstrate novel, previously unrecog
nized information that is obtainable from q-space diffusion 
MR studies of biological tissues. 
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1 Note that d is an integer. 
Extracting structural information from the diffusion-
attenuated MR signal requires models of biological tissue 
[7] that link biophysical features of the underlying micro-
structure to the measured diffusion-weighted MR signal. 
Previous models of the biophysical relationship between 
tissue microstructure and water diffusion observed experi
mentally have assumed (or by computational necessity 
required) that the tissue under investigation be described 
simply with cells that are simple cylinders or spheres and 
that the simple geometric constructs create multiple unique 
water compartments [8–10]. Another example is the appli
cation of the diffusion tensor model originally developed 
for liquid crystals to describe the signal attenuation in 
nervous tissue environments with structural anisotropy 
[4]. Valuable and clinically useful information has been 
obtained from these models. However, it is well-known 
that neurons and glia are not uniformly sized spheres or 
cylinders and that subsequent combined populations of 
neurons and glia in a holistic tissue environment have a 
more complicated architecture on several different length 
scales than the above models were able to envision. Previ
ous studies have demonstrated that neurons have a fractal-
like appearance [11,12], and the fractal dimension, as a 
measure of complexity, can be indicative of the different 
cell types [13,14]. In this paper, we report a novel mathe
matical model of water diffusion that accounts for some 
of the microstructural complexity probed by water diffus
ing in nervous tissue on several different length scales— 
the barriers to water diffusion presented by cellular organ
elles and cytoskeletal proteins, by the complex shapes of 
nervous tissue cells, and by the complex spatial arrange
ments of neurons and glia in tissue. 

Anomalous diffusion is a well-known phenomenon in 
statistical physics in which the mean squared displacement 
of the diffusing particles has a nonlinear scaling behavior 
with time. This process occurs in systems exhibiting fractal 
behavior [15], such as percolation clusters [16,15,17,18], 
where there are restrictions to diffusion at different length 
scales. There have been several NMR studies in which 
the anomalous behavior of water diffusion in nonbiological 
materials have been quantified accurately [19–21]. q-space 
MR experiments provide a noninvasive means to compute 
an ensemble average propagator associated with the diffu
sion process [7,22–24]. Because the length scales that can be 
probed using pulsed field gradient (PFG) experiments coin
cide with those that restrict the molecular motion of water 
in tissue, it may be possible to create a novel MR contrast 
mechanism based on the evolution of these average propa
gators as a function of diffusion time. In this paper our goal 
was to demonstrate the feasibility of estimating the scaling 
exponents that characterize anomalous diffusion in disor
dered media from q-space MR measurements. To investi
gate this point and understand how well such an 
approach characterizes the time evolution of average prop
agators, we show experimental findings from q-space spec
troscopy data obtained from three unique human tissue 
samples. 
2. Theory 

The diffusion process in disordered media and systems 
exhibiting fractal behavior is anomalous. This is the case 
when the mean-square displacement (MSD) of the diffusing 
particles has a diffusion time (t) dependence characterized 
by the power-law 

MSD ¼ hr2i / t2=dw ð1
with dw „ 2, where dw is the walk (or path or trail) dimen
sion quantifying the fractal dimension of the paths fol
lowed by the randomly moving particles. The MSD, Ær 2æ, 
is related to the square of the characteristic length associat
ed with the diffusion process. When dw = 2, the diffusion 
process is ‘‘normal’’ whereas in the case when dw > 2, the 
distances traveled by the particles have a slower-than-linear 
time dependence. This kind of a process is called subdiffu
sion. The opposite case (dw < 2) corresponds to a faster
than-normal diffusion process which is called superdiffu
sion. Various systems that give rise to these different behav
iors are discussed in [15]. 

Another scaling exponent that characterizes the scaling 
behavior of the density of states function for the Laplacian 
operator is called the spectral (fracton) dimension and will 
be denoted by ds. The return-to-origin probability (RTOP) 
[25] for diffusing particles obeys a power-law characterized 
by ds via the expression [15] 

RTOP ¼ P ðr ¼ 0; tÞ / t-ds =2; ð2
where P(r, t) is the probability for the particles to move a 
distance r in time t. For normal diffusion ds = d, where d 
is the embedding dimension.1 In fractals, the fractal dimen
sion df, is related to the walk and spectral dimensions 
through the relationship 

dwdsd f : ð3
2 

A reasonable form of the propagator P(r, t) that incor
porates these scaling relations is given by [15,26] 

df-d C Jr r
Pðr; t U ; ð4

tds =2 t1=dw

where the argument of the function U ensures the scaling 
relation given in Eq. (1). The numerator rdf-d is related 
to the scaling of the ‘‘mass’’ of the fractal with distance 
and the denominator tds =2 is necessary for the time indepen
dence of the total probability. One can immediately show 
that the radial moments of P(r, t) have the scaling behavior 

hrmi ¼ 4p P ðr; tÞr m dr; ð5

/ tm=dw : ð6
Consequently, 1/dw characterizes all moments of the distribu
tion and is called a ‘‘gap exponent’’. However, more generally, 
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the moments of the distribution can be characterized by a 
hierarchy of exponents [26] in which case Eq. (4) is not valid. 

In a one-dimensional PFG experiment, an ensemble 
averaged water displacement probability function P 1ðz; D
is related to the MR signal attenuation E(q,D) through 
the relationship 

-2piqz dq;
P 1ðz;D Eðq; DÞe ð7

where D is the separation time of the two diffusion gradi
ents and q = cdG/2p, where c is the gyromagnetic ratio, d 
is the diffusion pulse duration assumed to be much smaller 
than D, and G is the magnitude of the diffusion gradient 
whose direction defines the z-axis. Therefore, the water dis
placement probabilities can be computed from the signal 
attenuations via a discrete Fourier transform. Note that 
P 1ðz; DÞ is the projection of the three-dimensional average 
propagator, P ðr; DÞ onto the z-axis. In isotropic space, this 
projection is given simply by 

P 1ðz; DÞ ¼ 2p P ðr; DÞr dr: ð8
z

It is straightforward to show that the radial moments of 
the isotropic three dimensional density P ðr; DÞ are propor
tional to the moments of P 1ðz; DÞ. Therefore, the scaling 
behavior of the MSD values computed from both of these 
functions are characterized by the same exponent dw. In
order to estimate the MSD, one may use the relationship 

hz2 P 1ðz;DÞz2 dz ð9

2DðDÞD; ð10
2p2 q!0 oq2 

where D(D) is a diffusion-time dependent diffusion coeffi
cient [27]. 

Note that a comparison of Eq. (8) with Eq. (5) implies 
that P 1ð0; DÞ is proportional to Ær-1æ. Therefore, it follows 
from Eq. (6) that if one assumes the three-dimensional 
probability density to be of the form in Eq. (4), then the 
z = 0 value of the projected propagator obeys the scaling 
behavior P 1ð0; DÞ / D-1=dw . In fact, inserting Eq. (4) into 
Eq. (8) would imply the following scaling relation for the 
projected probability density: ( )

1 z
P 1ðz; D W : ð11

D1=dw D1=dw

Therefore, the scaling behavior of the one-dimensional 
projection of the propagator is fully characterized by the 
walk dimension2if Eq. (4) holds for the three-dimensional 
propagator. 
2 The function W(f) is related to the function U(q) via the integral 

Wðf UðqÞqd f -2 dq:
f

Therefore, df—hence ds—affects the form of the function W(f), but not its 
scaling. 
In this work, we will assume a slightly different form for 
the projected probability density where we ‘‘relax’’ the scal
ing condition on P 1ð0; DÞ and write ( )

zd
f 
-1 z

P 1ðz;D W ; ð12
Dd 0 =2 D1=dws 

where ds is an effective spectral dimension, describing the 
scaling of the integral of the probabilities over an infinite 
plane that goes through the origin,3 i.e. 

P 1ðz ¼ 0;D Eðq;DÞdq; ð13

d =2s/ D- ; ð14

and d f is given by d 0f ¼ dwds =2.
The estimation of the spectral dimension, ds is also pos

sible using PFG experiments and requires the estimation of 
the RTOP values. However, since the probability density at 
the origin is not readily available from the projected prop
agator, one has to consider the three-dimensional propaga
tor, which is related to the signal attenuations via a three-
dimensional Fourier transform. In isotropic space the 
RTOP values can be computed from the MR signal atten
uation using the relationship 

RTOP ¼ 4p Eðq; DÞq2 dq: ð15
0 
3. Methods 

We have performed q-space spectroscopy experiments 
on three different samples. One of the samples was cerebral 
cortex from a normal person. The second sample was a hu
man glioblastoma multiforme tumor (or grade-4 astrocyto
ma). Finally, the third sample was a human erythrocyte 
ghost model [28] prepared as described in [29]. The exper
iments were performed using a 14.1-T Bruker Avance spec
trometer equipped with a gradient coil system that is 
capable of producing 3 T/m gradients along each of the 
three orthogonal directions. A diffusion-weighted stimu
lated echo pulse sequence was used that made it possible 
to span very long diffusion times. The spectroscopy data 
from the brain samples were acquired with TR/TE values 
of 4 s/11 ms. The echo was sampled with 2048 points. A to
tal of 129 q-values were used for each diffusion time, where 
all three gradients were applied simultaneously yielding 
gradient strengths of up to 4892.5 mT/m. This sampling 
corresponded to a q-space resolution of 2 lm. The gradient 
duration (d) was 2.4 ms, and we repeated the q-space mea
surements 12 times varying the gradient pulse separation 
3 When one assumes the three-dimensional propagator to obey the 
scaling behavior in Eq. (4), it is possible to see by comparing Eqs. (12) and 
(11) that d 0 ¼ dw; d 0 ¼ 1, and d 0w f s ¼ 2=dw. Another interesting case occurs 
when the three-dimensional propagator is separable, i.e. when it is possible 
to write P(r, t) =  P1(x, t)P1(y, t)P1(z, t). In this case, ds is just three times ds.
However, for more general forms of the propagators, these relations do 
not hold. 
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(D) between 12 and 613 ms on a logarithmic scale. A slight
ly different protocol was used to scan the erythrocyte ghost 
sample since the signal attenuated more rapidly with 
increasing gradient strengths. TR was set to 5 s, the maxi
mum gradient strength used was 4194 mT/m and d was 
2 ms, giving rise to a q-space resolution of 2.8 lm. The q-
axis was sampled on 65 points. All other parameters were 
identical to the acquisitions performed on the brain 
samples. 

4. Results 

We have employed several methods to estimate the scal
ing exponents dw and ds from excised tissue samples. Since, 
the MSD is proportional to the derivative of the logarithm 
of the signal at the origin of q-space (see Eq. (10)), the sim
plest method to estimate MSD is to compute a two point 
difference of log E(q,D) near the origin. Then a double log
arithmic plot of MSD vs. D is expected to be a straight line 
with slope 2/dw. However, it is important to do this in a 
consistent and acceptable manner for all time points, other
wise a bias from the nonlinearity of log E(q,D) as a function 
of q 2 will be introduced. In this work, we present results ob
tained using several methods. In the first estimation, we 
chose one of the points to be the q = 0 data point, whereas 
the second data point was taken to be the one correspond
ing to a fixed q-value of 3.905 mm -1. Fig. 1 shows the fits 
obtained using this constant-q method. We have also com
puted the MSD values by fixing the b-value of the second 
data point to 1000 s/mm2. When data was not available 
at these locations, a cubic spline interpolation was used. 

Note that dw values can also be estimated from the aver
age propagators computed from the Fourier transform giv
en in Eq. (7) together with the integration in Eq. (9). The 
accuracy of the integral may be improved by using interpo
lated data in the displacement domain [30], which can be 
achieved by extrapolating the data points in q-space. Such 
an extrapolation scheme is obtained using a functional fit 
as described in the Appendix A. 

A final estimation method aimed to minimize the effect 
of bias due to noise. This approach was based on the obser-
Fig. 1. Dependence of the mean squared displacements on diffusion time. 
The Æ 2z æ values in this plot were computed using the constant-q method. 
vation that the entire data set can be visualized on a D–q 
plane. For small values of q, one expects a quadratic 
dependence of log E(q,D) on  q. Therefore, the contours of 
the signal values on the D–q plane, near the D-axis are 
described by setting 2q Æz 2æ value to a constant. Since Æz 2 æ 
is expected to obey Eq. (1), an equivalent expression is 
q2D2=dw constant. Taking the logarithm of both sides 
yields 

dw 

log q C - 1 
log D; ð16

where C is a constant. Therefore, dw can be estimated from 
the slope of the constant-E contours in the small-q region 
of the D–q plane. Fig. 2 depicts this method on the data 
set collected from the tumor sample. In this figure, the 
grayscale background shows the entire data set, where a 
histogram equalization was performed to increase the con
trast. The curves depict the iso-attenuation contours com
puted using the ‘‘CONTOUR’’ routine of IDL (Research 
Systems Inc., Boulder, Colorado). As expected, these 
curves are linear near the D-axis on the D–q plane. The first 
few points in the low-q regime of 12 different contours were 
used in fitting a line, and the mean value of the 12 slopes 
was reported as the dw value. 

The dw values estimated using these methods are pre
sented in Table 1. Constant-q, constant-b, integration, 
and integration from extrapolated data methods all yielded 
fits with correlation coefficients above 0.999. The increased 
standard deviations indicate that the quality of the fits for 
the constant-E method was a bit poorer. However, for all 
three samples, the mean value obtained using this method 
was consistent with those obtained from the other 
approaches. The scaling laws in the healthy and tumor hu
man tissue samples clearly indicated subdiffusive behavior, 
and the scaling of the characteristic length was faster in the 
tumor tissue. For the erythrocyte ghost sample, dw values 
obtained using different schemes varied around the value 
Fig. 2. Iso-attenuation curves on a logq vs. logD plane overlaid on an 
‘‘image’’ of the entire data set from the tumor sample. The curves depict 
the constant values of the MR signal and are used in the estimation of dw 

(see Eq. (16)). 
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Table 1 
dw, ds, and ds values estimated from three samples using various methods 

  Estimation method Gray-matter Tumor Erythrocyte ghost 

dw Constant-q 2.371 ± 0.014 2.189 ± 0.029 2.036 ± 0.005 
dw Constant-b 2.353 ± 0.013 2.188 ± 0.031 1.939 ± 0.017 
dw Constant-E 2.376 ± 0.285 2.217 ± 0.369 2.021 ± 0.061 
dw Integration 2.374 ± 0.014 2.183 ± 0.031 1.948 ± 0.033 
dw Integration with extrapolation 2.394 ± 0.015 2.195 ± 0.028 2.038 ± 0.005 
dw Fitting Eq. (17) 2.353 ± 0.041 2.183 ± 0.030 2.008 ± 0.013 
ds Integration 3.166 ± .210 1.909 ± .091 4.852 ± .233 
ds Integration with extrapolation 3.408 ± .283 2.140 ± .144 4.879 ± .269 
ds Integration 0.991 ± .008 1.018 ± .009 1.312 ± .036 
ds Integration with extrapolation 1.018 ± .010 1.105 ± .012 1.353 ± .039 

Fig. 3. Signal attenuation values with increasing diffusion times. The solid 
lines indicate the curves obtained by fitting Eq. (17). 
of 2.0. Most likely, diffusion process in this sample was 
nonfractal. This is an expected result as the water mole
cules encounter only the cellular membranes that restrict 
the water molecular motion at only one length scale. 

Another alternative to the dw estimation is to fit a curve 
to the signal values directly. This method may be preferable 
since it may allow one to incorporate the effects of the finite 
pulse width. There are a number of attempts in the litera
ture to relate the MR echo intensity to the scaling exponent 
dw [31–35]. Among these, in Ref. [34], the following rela
tionship for PFG experiments was provided that takes 
the finite pulse width into account4: 

4p2c2G2a
Eðq; D exp -

3ðjþ 1Þðjþ 2Þ
1 j 2 1 j 2X ðD þ dÞ þ ðD - dÞ þ - Djþ2 - djþ2 ; ð17
2 2 

where a is a generalized diffusion coefficient and j = 2/dw. 
We have applied a Levenberg–Marquardt fitting procedure 
to the data values at q = 3.905 mm -1. The fitting was very 
sensitive to the initial values of the parameters to be esti
mated. However, when the initial values are chosen to be 
close to the values obtained from other techniques, the esti
mates of dw from the fits were consistent with the other esti
mates (see Table 1). Fig. 3 shows these fits. 

The ds values were estimated from the slope of the lines 
fitted to the RTOP values plotted as a function of D on a 
double logarithmic plot. The computation of the RTOP 
values involved the evaluation of the integral in Eq. (15) 
using a five-point Newton–Cotes formula. In order to re
duce the effect of the finite window size in q-space, the fit
ting was repeated for the RTOP values obtained from the 
extrapolated data (see Appendix A). The same scheme 
was applied to estimate the ds values where the integral 
in Eq. (13) was computed using the same Newton–Cotes 
procedure. Fig. 4 shows the fits obtained for both ds and 
ds estimations when extrapolation was not performed. 
Higher quality fits were obtained in the estimation of ds 

with correlation coefficients greater than 0.99. Although 
4 Note that as d=D 0, this relationship reduces to E(q,D) = exp(-2p 2

q 2Æz 2 æ), which is consistent with Eq. (10). 
the correlation coefficients were still larger than 0.97 for 
the RTOP fits, a visual examination of the points and the 
fitted lines suggests that the deviations from the expected 
power-law behavior might be due to systematic factors— 
most notably in the erythrocyte ghost sample. It is typical 
for real life systems to exhibit a power-law behavior only 
for a limited range of length or time scales [12] or obey dif
ferent power-laws at different scales [36]. This may contrib
ute to a reduction in the quality of fits as well as the 
deviation of the estimated ds value from its ‘‘normal’’ value 
of 3 in the erythrocyte ghost sample. The ds and ds values 
obtained from these fits are included in Table 1. The esti
mated ds values provided sharper contrast between differ
ent samples, which may be in part due to the factors 
described above. 

Using Eq. (7), one dimensional projections of the aver
age probabilities were computed. The reconstructed propa
gators are shown on the left column of Fig. 5. Note that the 
speculated scaling behavior of the average propagators in 
Eq. (12) implies that when the Pðz; DÞDds=2 =zd 0 -1

f values 
(for positive z) are plotted as a function of z=D1=dw all aver
age propagators should collapse onto the same curve. This 
‘collapse’ of the probability density values is clearly ob
served as shown on the right column of Fig. 5. However, 
a slight divergence in the curves corresponding to long dif
fusion times was observed towards the right of the figures. 
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a 

b 

Fig. 4. Diffusion time dependence of the return-to-origin probabilities (a) 
and the probability of the particles to end up on the xy-plane (b). The 
slopes of the fitted lines are related to ds and d s, respectively. 
Note that only every other time point was included in these 
plots for the sake of clarity. 

5. Discussion 

In this work, we demonstrated that a simple model 
describing anomalous diffusion in disordered media can 
be employed with success to characterize the diffusion-time 
dependence of the MR signal attenuation curves obtained 
from excised biological tissue. Because it is determined by 
the signal at low q-values, the scaling exponent dw is sensi
tive to the large displacement and short time regimes of dif
fusion. In the context of fractals, it represents the fractal 
dimension for the trajectories followed by randomly mov
ing particles. On the contrary, the exponent ds is influenced 
by the long time return-to-origin-probabilities. When ran
dom motion is assumed to be taking place in a fractal 
space, it quantifies the scaling behavior of the number of 
visited sites by the random walker [37]. These estimated 
scaling exponents have great potential as new features that 
may be sensitive to microscopic alterations of the tissue 
resulting from development, aging and various pathologies. 
Our experiments on three different tissue samples demon
strated such a difference. Note, however, that the extent 
of the study was limited making it difficult to make mean
ingful inferences about how the tissue state was reflected on 
the scaling exponents and this was not the intended goal of 
the study. Rather, the important point in this pilot study is 
that the proposed methodology did characterize the time 
evolution of the average propagators well as reflected in 
the quality of the fits, the consistency of several estimation 
methods, and the collapse of the average propagators onto 
single master curves. These findings demonstrate the ade
quacy and the potential utility of the approach. 

Note that potential obstacles to the success of the pres
ent study included the finite diffusion gradient pulse dura
tion, d, i.e. violating the narrow pulse approximation, 
and associating the diffusion time with the diffusion pulse 
separation D. These issues did not appear to create a signif
icant deviation from the expected scaling behavior, which 
is valid in the d « D regime. Another issue that one should 
be aware of is the assumption about the isotropy of the 
propagator. Although, from a practical point of view, the 
method can be applied to one-dimensional q-space data 
from anisotropic structures as well, the employed model 
is valid essentially for isotropic structures. It is likely that 
in anisotropic samples, the estimates of the scaling expo
nents will depend on the gradient direction. Particularly, 
one would expect the spectral dimension to have a more 
significant dependence on the gradient orientation since it 
is affected by the signal values at high q-values. 

Compared to the studies performed to estimate the frac
tal dimension [38] using the fringe field NMR methods [39], 
the method introduced here may be more practical. More
over, it is, in principle, possible to extend the approach to 
MR imaging of neural tissue and create maps of the dw and 
ds exponents and investigate the spatial variations of these 
quantities. Note that the estimation of dw is particularly 
easy since it requires only two data points near q = 0. How
ever, in order to get an accurate estimate of ds, or describe 
the temporal evolution of the reconstructed propagators, 
one has to have a reasonably dense sampling of q-space 
and cover a large enough distance along the q-axis, which 
may make the application of the method more difficult to 
achieve in clinical studies. The approach used here, when 
restricted to the estimation of dw, is realizable for a clinical 
setting since the estimation of dw requires low q-values and 
only a few number of scans. However, one should still be 
cautious since the diffusion pulse duration will probably 
be longer than presented here, which could introduce some 
bias in the estimated dw values. 

In fractal spaces, Brownian motion of particles are 
restricted in all length scales. Similarly in neural tissue, 
water motion is restricted at different length scales by mac
romolecules, cytoskeleton, cell membranes, organelles and 
myelin. It is of great importance to understand to what ex
tent these factors contribute to the anomalous behavior of 
diffusing particles. Ongoing research is trying to address 
this point. 

6. Conclusion 

A simple model that describes diffusion in random disor
dered media and fractal spaces was used to parameterize 



321 Communication / Journal of Magnetic Resonance 183 (2006) 315–323 

normal 

tumor 

ghost 

Fig. 5. On the left are the average propagators obtained by transforming the MR signal attenuations for different diffusion times. On the right are the 
same probability values plotted in a different way based on the form of the propagator as shown in Eq. (12). The propagators for each of the normal gray-
matter, glioblastoma and erythrocyte ghost samples are included (from top to bottom). Every other time point of the entire data sets is excluded for clarity. 
the diffusion-time dependence of diffusion-weighted MR 
signals. The model performed well on data obtained from 
three different biological tissues with different predicted dif
fusional characteristics. This approach has potential to be 
applied in clinical studies and may aid in monitoring the 
developmental as well as pathological changes to biological 
tissues. 
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Appendix A 

Since the q-space NMR experiments have limited cover
age in q-space, and the estimation of the spectral dimension 
requires the computation of an integral on the infinite do
main, it may be possible to improve the estimation of ds 

and d 0s by extrapolating the signal attenuation curves. 
Among various alternatives, we have achieved satisfactory 
fits by assuming a signal attenuation of the form 
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Fig. 6. The signal attenuation values for the erythrocyte ghost sample and 
the curves obtained by fitting the expression in Eq. (18). 
2 2Þa -uq -ðvq 2Þ-gEðq; D f1e þ f2e þ f3ð1þ wq : ð18

In this function the first term is a Debye relaxation expres
sion, whereas the second term is a Kohlrausch–Williams– 
Watts function [40,41]. Finally the third term is a Rigaut
type asymptotic fractal expression [42]. The fits obtained 
from the erythrocyte ghost sample are shown in Fig. 6. 
Note that the fits appear linear in the extrapolated (large
q) region, which indicates that in this regime the function 
is dominated by the third term in the above expression. 
This indicates the power-law dependence of the signal 
attenuation on the gradient strength. This is the expected 
decay of MR signal in porous media [43]. 

We have employed this fit in the computation of inte
grals as described. However, in order not to introduce 
too much bias due to the particular form of the function, 
the original data points were not replaced with those as 
would be required by the above function. Rather, the val
ues of the fitted function were used merely to extend the 
q-values beyond the acquisition range. Although there 
may be some bias due to the particular choice for the func
tion, the employed extrapolation may provide an indica
tion about the influence of the finite sampling on the 
estimated scaling exponents. 
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