Fiber orientation mapping in an anisotropic medium with NMR diffusion spectroscopy

Peter J. Basser, Denis Lebihan

*Biomedical Engineering and Instrumentation Program, and
†Diagnostic Radiology Department, Warren G. Magnuson Clinical Center, NIH, Bethesda, MD 20892 USA

Purpose: The diagonal and off-diagonal components of the apparent self-diffusion tensor, \(D \), are used to construct a diffusion ellipsoid for a voxel that depicts both orientation of tissue microstructures, such as muscle fibers, and mean diffusion distances. New weighting parameters are also suggested for structural NMR imaging.

Principles: In heterogeneous, anisotropic media, \(D \) relates the flux of spin-labeled protons to their concentration gradient. Since \(D \) is symmetric and positive-definite, its three mutually orthogonal eigenvectors, \(e_1, e_2, \) and \(e_3 \), define the principal axes and its three positive eigenvalues, \(\lambda_1, \lambda_2, \) and \(\lambda_3 \), are the diffusivities in these directions [2]. Continuum models of diffusion in heterogeneous media [3] suggest that the principal axes of \(D \) coincide with those of the grain or fiber and the principal diffusivities of \(D \) are related to the structure, geometry, and diffusivity of the various microscopic compartments within the heterogeneous medium.

The diffusion ellipsoid: In heterogeneous, anisotropic media [3], the macroscopic effective self-diffusion tensor, \(D \), appears in the conditional probability density function, which is the probability that a particle at \(x \) at time \(t \) was at \(x_0 \) at \(t = 0 \):

\[
\frac{x(x_0,t)}{\sqrt{\mid D \mid (4\pi t^3)}} = \frac{1}{\sqrt{\mid D \mid (4\pi t^3)}} \exp\left(\frac{-(x-x_0)^T D^{-1} (x-x_0)}{4t}\right),
\]

setting the quadratic form to 1/2, i.e.,

\[
\frac{(x-x_0)^T D^{-1} (x-x_0)}{2t} = 1,
\]

defines a diffusion ellipsoid whose principal axes constitute the local "fiber" frame of reference, and whose \(j^{th} \) major axis is the mean distance a spin-labeled proton diffuses in the \(j^{th} \) principal direction, \(\sqrt{\lambda_j t} \), during the diffusion time, \(t \).

The scalar invariants: Three scalar invariants of \(D \), \(\lambda_1, \lambda_2, \) and \(\lambda_3 \), are:

\[
\begin{align*}
1 &= \lambda_1 + \lambda_2 + \lambda_3 = \text{Tr} D \\
2 &= \lambda_1 \lambda_2 + \lambda_3 \lambda_1 + \lambda_2 \lambda_3 \\
3 &= \lambda_1 \lambda_2 \lambda_3 = |D|.
\end{align*}
\]

They have the desirable properties of being independent of the coordinate system in which \(D \) is measured, and insensitive to the scheme by which \(\lambda_j \) are numbered, making them (or functions of them), ideal weighting factors in structural NMR imaging.

Data analysis: Diffusion ellipsoids for pork loin are constructed from two apparent self-diffusion tensors, \(D^{01} \) and \(D^{41} \), estimated from spin-echo experiments [1]:

In Fig 1a, the grain of the sample was nearly aligned with the magnet's x axis. Eigenvalues (principal diffusivities) of \(D^{01} \) are \(\lambda_1 = (1.0406 \pm 0.0007) \times 10^{-5}, \lambda_2 = (0.944 \pm 0.001) \times 10^{-5}, \lambda_3 = (0.8532 \pm 0.0006) \times 10^{-5} \) (cm²/sec).

In Fig. 1b, the same sample is rotated approximately 41° in the z-x plane. Eigenvalues of \(D^{41} \) are \(\lambda_1 = (1.0119 \pm 0.0003) \times 10^{-5}, \lambda_2 = (0.9343 \pm 0.0006) \times 10^{-5}, \lambda_3 = (0.8767 \pm 0.0018) \times 10^{-5} \) (cm²/sec).

Discussion: The eigenvectors that define the fiber frame follow the sample when it is rotated. This is represented by the tipping of the polar axis. The scalar invariants of \(D \) differ by no more than 1% in both cases because they are intrinsic to \(D \), independent of the sample's orientation in the magnet. Both ellipsoids are nearly spherical, presumably because the diffusion time, \(\Delta = 22.5 \) ms, corresponding to a mean diffusion distance of 4.7 µm, is too short for the majority of spin-labeled protons to encounter diffusional barriers.

Although a single voxel was used in this study, these principles can be generalized to multiple voxels. One could envision 3-D fiber maps [4] or diffusion ellipsoids displayed in each voxel, connected like link sausages that follow fiber tracts.

Conclusion: Constructing the diffusion ellipsoid requires knowledge of all diagonal and off-diagonal elements of \(D \). Inherently, \(D \) contains unique directional, structural and anatomical information within a voxel that scalars such as \(T_1 \) or \(T_2 \) do not - information that is embodied in the diffusion ellipsoid and scalar invariants.

References: