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ABSTRACT
Fiber tract trajectories in coherently organized brain white mat
ter pathways were computed from in vivo diffusion tensor mag
netic resonance imaging (DT-MRI) data. First, a continuous 
diffusion tensor field is constructed from this discrete, noisy, 
measured DT-MRI data. Then a Frenet equation, describing the 
evolution of a fiber tract, was solved. This approach was vali
dated using synthesized, noisy DT-MRI data. Corpus callosum 
and pyramidal tract trajectories were constructed and found to 
be consistent with known anatomy. The method’s reliability, 
however, degrades where the distribution of fiber tract direc
tions is nonuniform. Moreover, background noise in diffusion-
weighted MRIs can cause a computed trajectory to hop from 
tract to tract. Still, this method can provide quantitative infor
mation with which to visualize and study connectivity and con
tinuity of neural pathways in the central and peripheral nervous 
systems in vivo, and holds promise for elucidating architectural 
features in other fibrous tissues and ordered media. Magn 
Reson Med 44:625–632, 2000. Published 2000 Wiley-Liss, Inc.†
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INTRODUCTION 
Diffusion tensor MRI (DT-MRI) (1) is the first noninvasive 
in vivo imaging modality with the potential to generate 
fiber-tract trajectories in soft fibrous tissues, such as 
nerves, muscles, ligaments, tendons, etc. (1–3). However, 
until recently this end could not be realized primarily for 
technical and mathematical reasons: First, the resolution 
and quality of diffusion-weighted images (DWIs) in vivo 
was not adequate for this demanding application. How
ever, these problems have been ameliorated with the in
troduction of faster, more powerful gradients; single-shot 
diffusion-weighted echo-planar imaging (DW-EPI) se
quences (4) with higher SNR and reduced motion artifacts 
(5); as well as schemes to reduce eddy current artifacts (6), 
and B0 distortion (7). Second, the macroscopic fiber-tract 
direction field, E1(x,y,z), is obtained from measured DT
MRI data that is discrete, coarsely sampled, noisy, and 
voxel-averaged (8). Just as in hydrodynamics, it is difficult 
to construct fluid streamlines accurately from discrete, 
noisy, velocity field data (9); here it is difficult to follow a 
white matter fiber trajectory using discrete, noisy, direc
tion field data. A methodology capable of generating a 
continuous, smooth representation of the measured DT
MRI data first had to be developed in order to ensure the 
reliability and robustness of DT-MRI fiber tractography. 

This mathematical framework is described in (10). Finally, 
a framework for following individual fiber tracts had to be 
developed, the underpinnings of which can be found in 
earlier works (3,8,11). 

More recently, several groups have proposed tractogra
phy methods and have reported success in following fiber 
tracts, and even individual fascicles, over distances on a 
gross anatomical length scale (12–15). We do not attempt 
to compare and contrast our method or results with theirs. 
First, there are many new biologically relevant findings 
presented here and methodological issues raised in this 
work, so that including additional material would make 
this article unnecessarily long. Second, the steps involved 
in implementing some of these more recent tract-following 
schemes have, to date, only been outlined schematically, 
making it difficult to reproduce them, and thus to compare 
their findings fairly with ours. 

The aims of this article are to 1) propose and describe a 
methodology to calculate continuous fiber-tract trajecto
ries from discrete measured diffusion tensor MRI data; 2) 
present a general framework for testing the fidelity and 
robustness of this (and of other) fiber tract following 
schemes; 3) demonstrate that our method follows fiber 
tracts in the brain using in vivo DT-MRI data; 4) elucidate 
artifacts and inherent limitations of fiber tract following 
schemes that employ DT-MRI data; and 5) describe poten
tial applications of DT-MRI fiber tractography. 

THEORY 
Evolution of Fiber Tract Trajectories 

Previously, we proposed that a white matter fiber tract 
trajectory could be represented as a 3D space curve (3,8 
11), i.e., a vector, r(s), parameterized by the arc length, s, of 
the trajectory. 

The Frenet equation describing the evolution of r(s) is 
(16): 

dr(s) 
= t(s) [1]

ds 

where t(s) is the unit tangent vector to r(s) at s. These 
vectors are depicted in Fig. 1. 

We also claimed that the normalized eigenvector, E1, 
associated with the largest eigenvalue of the diffusion ten
sor, D, A1, lies parallel to the local fiber tract direction (1,2) 
in coherently organized white matter. To within accept
able experimental error, several groups have confirmed 
this to be true in the heart (17,18). 

A key idea in our fiber tract following algorithm is to 
equate the tangent vector, t(s), and the unit eigenvector, E1, 
calculated at position r(s):

t(s) = E1(r(s)). [2] 
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FIG. 1. Representation of a white matter fiber trajectory as a space 
curve, r(s). The local tangent vector, t(s1), is identified with the 
eigenvector, E1(r(s1)), associated with the largest eigenvalue of the 
diffusion tensor, D at position r(s1). 

Therefore, combining Eqs. [1] and [2] we obtain: 

dr(s) 
= E1(r(s)). [3]

ds 

This system of three implicit (vector) differential equa
tions is solved for the fiber tract trajectory subject to an 
initial condition: 

r(0) = r0 [4] 

which specifies a starting point on the fiber tract. 

METHODOLOGY 

The system of differential equations above, Eqs. [3] and [4], 
are implicit and forced. We could not find a general, ana
lytical solution for r(s). Instead, numerical methods were 
employed. 

Euler’s Method 

We use Euler’s method (19) to see how such a solution 
might proceed. It is graphically outlined in Fig. 1. We 
choose a point on r(s), r(s0), and evaluate the diffusion 
tensor there, D(r(s0)) (here we use the continuous repre
sentation of the tensor field at that point, as described 
elsewhere in the text). Then we approximate the position 
of a nearby point on r(s), r(s1), by using a Taylor series 
expansion of r(s) about r(s0): r(s1) = r(s0) + r’(s0) (s1 - s0) +
…. Since the slope of r(s0) at s0, r’(s0), is assumed to be 
parallel to E1(r(s0)), we can always find some small number 
a (with 0 < lal � 1) such that r’(s0) (s1 - s0) � a E 1(r(s0)). 
Once a is chosen, we can write: 

.  [5]  r(s1)  r(s0)  aε 1(r(s0))

Thus, we can estimate r(s1) from the values of r(s0) and 
E1(r(s0)). This procedure can now be repeated starting at 
the new point, r(s1) …, and can be iterated to predict the 
location of discrete points along the fiber trajectory, r(s).

Runge-Kutta Method 

While Euler’s method is easy to explain and to implement, 
it is accurate only to 1st-order, and thus is susceptible to 
large accumulated errors and to numerical instabilities 
(19). Since our continuous representation of the diffusion 
tensor, D(x) can furnish estimates of 2nd and higher de
rivatives of E1(x), it is prudent to use this information in a 
more robust and accurate numerical method to integrate 
these trajectories. 

The 2nd-order or adaptive 4th-order Runge-Kutta meth
ods are preferred to Euler’s method to solve the system of 
differential equations above. One advantage of Runge-
Kutta is that its estimates of higher derivatives of r(s) are 
more reliable. Another is that it is possible to employ 
adaptive step sizing to control the amount of error intro
duced in each integration step. Finally, a 4th-order Runge-
Kutta scheme, described in Numerical Recipes (19), has 
been implemented as a callable subroutine within IDL 
(Research Systems, Boulder, CO), making it relatively easy 
to program. 

Other Considerations in Fiber Tracking 

One of the problems still to address is to assign the direc
tion of the tangent vector in Eq. [2] consistently (20). This 
is complicated by the fact that the sign of E1 is indetermi
nate, i.e., it can be positive or negative. Once the direction 
of the path of integration (i.e., the direction of the tangent 
to the curve) is first determined, E1 should be chosen to 
point along the integration path consistently. This is done 
to avoid making erratic forward and backward steps as the 
path integration proceeds. To choose the tangent vector for 
the present step, we take the dot product between the 
eigenvector obtained in the previous step and the one 
calculated in the present step. If the result is positive (i.e., 
they point in the same direction) we preserve the sign of 
the new eigenvector; if the result is negative (i.e., they 
point in opposite directions), we swap its sign. 

Not only must we choose the sign of E1 consistently, but 
its direction as well. In each iteration above, we sort the 
eigenvalues of D(x) according to their magnitude, associ
ating the largest eigenvalue with E1. However, background 
noise in DWIs can cause these eigenvalues to be misclas
sified (21), which consequently leads one to misclassify 
their corresponding eigenvectors (20). While at high SNR 
in coherent white matter tracts missorting eigenvalues is a 
relatively rare event, it occurs more frequently in less 
coherently organized white matter regions and at low SNR 
(22). If it occurs, E1 no longer points along the true direc
tion of the fiber (20), causing the trajectory suddenly to 
veer off course. To mitigate this problem, we check the 
coherence of fiber directions along the computed fiber tract 
and determine whether the local curvature (described be
low) between successive integration steps is large. If so, we 
stop the program, and report an error. 

To help monitor the tract-following process, we also 
calculate intrinsic parameters of the trajectory, r(s), that 
characterize its torsional and bending motion within the 
imaging volume. The curvature, K(s), describes the propen
sity of r(s) to bend, while the torsion, T(s), describes its 
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propensity to twist about the fiber axis. Both quantities can 
be readily calculated from the fiber tract trajectory, and its 
higher derivatives (23): 

l )
I r

dl c :(s) 
dt(s lr:(s)l)I

K(s) = = and
ds ds 

r:(s) · (r"(s) X r"(s))
T(s) = 2 for K(s) * 0. [6]

K(s)

The curvature and torsion can also be used as MRI stains 
that elucidate novel intrinsic geometric features of the 
fiber trajectory (3). 

We stop following fibers for four reasons: 1) the tract 
reaches the boundary of the imaging volume; 2) the tract 
reaches a region with low diffusion anisotropy (lattice 
index < 0.1); 3) the radius of curvature of the tract is 
smaller than approximately two voxels; and 4) the eigen
vector that is the most collinear is not the same as the 
eigenvector associated with the largest eigenvalue. 

Algorithms to Approximate or Interpolate a Tensor Field 

We recently developed a mathematical framework and 
methodology to obtain a continuous representation of 
E1(x), which is necessary to integrate the differential equa
tions above. We do this by first generating a continuous 
approximation of D(x), and then calculating E1(x) from it. 
The underpinnings of this approach have been described 
elsewhere (10,24). There are two types of continuous rep
resentations of tensor field data that we use in this study: 
approximation and interpolation (10). Approximation in
volves finding a set of B-spline functions that smoothly 
“fits” the noisy discrete experimental data in a least-
squared sense, just as linear regression fits a line to a set of 
discrete noisy data points. We use approximation in our 
tract-following scheme to obtain a noise-reduced, 
smoothed, continuous representation of the experimental 
diffusion tensor field data, from which a smooth represen
tation of the fiber direction field can be obtained. Interpo
lation involves finding a continuous representation, using 
an appropriate set of B-spline functions that are con
strained to pass through all of the measured noisy, discrete 
tensor data. We see below that using smoothed approxi
mated data rather than noisy interpolated data results in 
improved performance of our tract-tracing scheme. 

Diffusion Tensor Field Templates 

To test the fidelity and robustness of the fiber-following 
algorithm, we synthesized a family of analytical 3D D(x) 
maps whose fiber tract direction fields possess character
istics or patterns seen in vivo, or exhibit peculiar mathe
matical features or pathologies. The former include uni
form (white matter) fiber tracts in isotropic (gray matter) 
domains, or fiber tracts that circulate, cross or “kiss,” 
merge or branch, bulge or neck, terminate or kink. The 
latter include, fiber tract trajectories that oscillate period
ically or variably (e.g., “chirp”). These tensor fields are 
synthesized from piecewise-continuous functions and 

then discretely sampled as described in Ref. 8. To assess 
noise immunity of the fiber tract-following method, Monte 
Carlo simulations of DT-MRI experiments were performed 
using these tensor field patterns. In each voxel, Rician RF 
noise (25,26) was added to an ideal NMR signal that is 
calculated from the prescribed diffusion tensor there, and 
from the gradient sequence, as described previously (21). 
This procedure results in noisy diffusion-weighted MRIs 
(DWIs) (21) from which we estimate a discrete, noisy dif
fusion tensor field using methods described previously 
(27–29). In this way we can vary the SNR systematically to 
study the effect of background noise on the variability of 
the fiber direction field itself, and to assess the ability of 
the fiber tractography scheme to follow fibers faithfully. To 
assess the reliability and reproducibility of this tract-fol
lowing method, we construct noisy realizations of a uni
form anisotropic diffusion tensor field within a straight 
white matter fiber tract. A straight, synthetically generated 
fiber tract, 128 voxels long and 5 voxels in diameter, was 
constructed for this purpose. We launch trajectories from a 
particular point along the tract and follow them until they 
intersect the fiber boundary, at which point we deem that 
the tract-following method fails. 

DT-MRI Methods 

Healthy volunteers were scanned using a 1.5 T GE Signa 
Horizon EchoSpeed equipped with a 2.2 G/cm gradient set, 
according to an approved NIH clinical protocol. A set of 
DWIs were acquired in six isotropically distributed direc
tions, using an interleaved, spin-echo, echo-planar sequence, 
employing navigator echo correction, as described in (30). 
DWI parameters were as follows: FOV = 22 cm, TE = 78 ms, 
TR > 5 sec with cardiac gating, voxel size = 3.5 X 1.75 X 
1.75 mm, data matrix = 128 X 128. The strength of diffusion 
weighting as measured by Trace(b) (where b is the b-matrix 
(27–29,31) calculated for each DWI) was varied from approx
imately 0 to 1000 s/mm2. 

An effective diffusion tensor was calculated in each 
voxel according to (27,29,31). Maps of useful MR param
eters calculated from the diffusion tensor, such as 
Trace(D), diffusion anisotropy measures (such as the rela
tive anisotropy (RA), the fractional anisotropy (FA) (32) 
and the lattice index (21)), diffusion ellipsoid images, etc. 
(1,2) all provide information to evaluate fiber tract archi
tecture in the brain (22). 

RESULTS 
Synthetic Data 

To identify possible artifacts and/or limitations of the 
tract-following method, we constructed continuous tensor 
fields described above. Figure 2 shows a synthetically 
generated fiber map whose primary eigenvectors are cir
cumferentially orientated. The object is constructed 
within a 128 X 128 X 1 imaging volume. Trajectories are 
computed in each ring using the Euler method with a 0.1 
voxel step size. In each case, starting at a particular point 
on a ring, we attempt to follow a fiber tract for 20 revolu
tions. Tract-following is most accurate in the ring with the 
largest diameter, or smallest radius of curvature, but de
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grades as ring diameter decreases, as evidenced by the 
increasing width of the trajectories. In the innermost ring, 
following was terminated after only 17 revolutions when 
the trajectory intersected the perimeter of the ring. 

FIG. 2. Fiber tract trajectories, r(s), calculated from a synthetic 
diffusion tensor field consisting of concentric rings in which the 
primary eigenvector, E1(r(s)), is oriented circumferentially. Fiber tract 
trajectories, depicted in different colors, are launched from a single 
point in the middle of each ring, and followed for 20 revolutions. 
Accuracy degrades as the radius of curvature decreases. 

Generally, we find that the Euler method can be used to 
follow fiber tracts provided that the step size is chosen to 
be significantly smaller than the minimum radius of cur
vature along the entire length of the tract. Operationally, 
the step size can be decreased until the fiber trajectory 
becomes stable and reproducible. In this application, it is 
usually sufficient to choose a < (0.05 X L), where L is a 
voxel dimension. Still, an adaptive Runge-Kutta or Gear’s 
method is preferred to Euler’s method for reasons given 
above. 

To identify possible artifacts introduced by interpo
lating or approximating discrete noisy tensor data, we 
sampled continuous tensor fields at discrete points, add
ing Rician noise in the manner described in the Methods 
section. We then obtained an interpolated or approxi
mated continuous tensor field representation of the sam
pled data from the noisy DWIs. Figure 3a shows trajec
tories obtained by interpolating the noisy data; Fig. 3b 
shows trajectories obtained by approximating the noisy 
data. The SNR of both simulations is the same, 10; and 
A1 : A2 : A3 = 2 : 1 : 1.  

FIG. 3. Following straight fiber tracts. Simulated fiber tract trajec
tories, r(s), are calculated from 50 different noise realizations of 
synthetic diffusion tensor fields (SNR = 10; A1:A2:A3 = 2:1:1). Tracts 
are launched from a single point within a bundle of straight fibers. 
Tract following is less accurate and robust when using interpolated 
(top) rather than approximated (bottom) diffusion tensor data. 

The performance of the tract-following algorithm is 
poorer when using interpolated noisy data rather than 
smoothed approximated data at the same SNR. Similar 
results were found in other synthetic datasets and at all 
other SNRs tested. Most of the trajectories using interpo
lated data failed to traverse the entire length of the fiber. 

Tensor fields were constructed to identify possible arti
facts introduced when fibers kiss, cross, merge, branch, 

bulge, or neck. Two such fields are represented in Fig. 
4a,b. Crossing fibers are depicted in Fig. 4a, while “kiss
ing” fibers are depicted in Fig. 4b. In Figure 4a trajectories 
were released from a small ROI and allowed to follow 
fibers in both directions. Again, the diffusion tensor field 
was approximated using the methods described above 
with a scale factor of 0.75. Here, fibers released on one 
branch are reflected at the plane of symmetry. However, as 
SNR decreases one can also observe fibers occasionally 
crossing the plane of symmetry, as in Fig. 4b. In Fig. 4b 
trajectories were released from a small ROI in the left ring. 
In some cases, the fiber trajectory crosses from the left to 
the right ring. The tensor approximation scheme, which 
tries to establish continuity of the tensor field, including at 
singularities, chooses solutions that tend to keep fibers 
separated. 

FIG. 4. Artifacts in fiber following due to singularities in the diffusion 
tensor field. a,b: Crossing and “kissing” fibers tracts, respectively. a 
shows a bias against fibers crossing the plane of symmetry 
(SNR=20; A1:A2:A3 = 3:1:1). b shows that occasionally noise can 
cause trajectories to jump from one tract to another near a singu
larity (SNR=20; A1:A2:A3 = 2:1:1). 

Human Brain Data 

Figure 5 shows fiber tract trajectories, r(s), computed from 
in vivo human DT-MRI data by launching trajectories from 
an ROI located at the center of the splenium of the corpus 
callosum on a single slice. Tracts are followed in both 
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directions. Figure 5a shows a projection of these computed 
trajectories onto a T2-weighted amplitude image of the 
brain at the level of the selected ROI. Figure 5b shows a 3D 
rendering of the computed trajectories with T2-weighted 
amplitude images displayed at slices below the ROI. Fiber 
trajectories within the body of the corpus callosum are 
consistent with the known anatomy of this structure. Fiber 
trajectories continuing beyond the external margins of the 
lateral ventricles appear to follow anatomically defined 
tracts (external capsule and pathways projecting to the 
occipital lobe); however, establishing if the apparent con
tinuity of callosal fibers into these tracts is a true anatom
ical feature requires validation by histological techniques. 

FIG. 5. Fiber tract trajectories, r(s), computed in 
the corpus callosum using in vivo human DT-MRI 
data. Trajectories were “launched” from a ROI lo
cated at the center of the splenium of the corpus 
callosum at its intersection with the interhemi
spheric plane. a: A projection of these computed 
trajectories onto a T2-weighted amplitude image of 
the brain at the level of the ROI. b: 3D rendering of 
the computed trajectories superimposed on a T2
weighted amplitude images of the brain at a level 
below the ROI. 

Figure 6a also shows a 3D rendering of computed trajec
tories from human DT-MRI data. In this figure we map long 
projection pathways by launching trajectories from ROIs 
positioned in the internal capsule at the level of the globus 
pallidum, in the pyramidal tract at the level of the cerebral 
peduncles and the pons, and in the ascending sensory 
fibers (lemniscus medialis) at the level of the pons. Tracts 
are followed in both directions. Only regions within the 
imaging volume for which the lattice anisotropy index is 
greater than 0.3 are used. This is to ensure that fiber tracts 
are launched from regions of coherently organized white 
matter. Figure 6b shows a projection of these computed 
trajectories. This figure is obtained from the previous one 

by counting the number of fibers passing through each voxel 
and assigning an intensity to each voxel which is propor
tional to this number. This distribution is then projected onto 
the plane of view in a manner similar to the way a maximum 
intensity projection (MIP) image would be produced. The 
pathways highlighted in this figure are consistent with the 
known gross anatomy of the long projection pathways. Inter
estingly, motor fiber trajectories originating from the ROI in 
the cerebral peduncle usually continue superiorly up to the 
cortex, while sensory fiber trajectories from the ROI in the 
lemniscus medialis do not. This is consistent with the notion 
that sensory fibers project to the thalamus, while motor fibers 
of the pyramidal tract descend uninterrupted from the cortex 
to the brainstem and the spine. 

FIG. 6. 3D rendering of computed trajectories of 
long projection pathways using in vivo human DT
MRI data. Trajectories are launched from ROIs in 
the internal capsule at the level of the globus pal
lidum, in the pyramidal tract at the level of the 
cerebral peduncles and the pons, and in the as
cending sensory fibers (lemniscus medialis) at the 
level of the pons. Tracts are followed in both di
rections. a: Surface shaded rendering of these 
pathways. b: A fiber tract density map of these 
computed trajectories in which the image intensity 
is proportional to the number of fibers passing 
through each voxel. This distribution is then pro
jected onto the plane of view, as in a MIP image. 

Figure 7 shows a 3D rendering of computed trajectories 
within the corpus callosum. This figure is obtained by 
launching trajectories from a multislice ROI located in the 
body of the corpus callosum in the proximity of the mid-
line. We require that the lattice anisotropy index of all 
voxels within the ROI is greater than 0.6 to ensure that 
fiber tracts are being launched from regions of coherently 
organized white matter with no partial volume contami
nation from CSF. Tracts are also followed in both direc
tions. The majority of fiber trajectories from the corpus 
callosum continue upward toward the cingular cortex. 
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Interestingly, the cingulum can be clearly seen as a rela
tively thin bundle running anteroposteriorly above the 
corpus callosum (arrows in Fig. 7a). Considering that the 
ROI from which the trajectories originate does not include 
any portion of the cingulum, its inclusion implies that the 
tractography algorithm had found a connection between 
the callosal and cingular fibers. Whether this is an impor
tant anatomical finding or just an artifact requires further 
study. 

FIG. 7. 3D rendering of computed trajectories 
within the corpus callosum. Trajectories are 
launched in both directions from a multislice ROI 
located in the body of the corpus callosum in the 
proximity of the midline. The majority of fiber tra
jectories continue upward toward the cingular cor
tex. The cingulum is the thin bundle running an
teroposteriorly above the corpus callosum (see ar
rows in figure showing posterior view). 

DISCUSSION 
Obstacles to DT-MRI Tractography 

There are several obstacles to elucidating fiber tract trajec
tories quantitatively. First, there is presently no “gold stan
dard” for in vivo fiber tractography (33). In fact, DT-MRI is 
the only method of which we are aware that permits the 
calculation and visualization of fiber tract trajectories in 
optically turbid tissue in vivo (and was developed, in part, 
to address this unmet need). In vitro validation of fiber 
tract direction fields obtained by DT-MRI has been at
tempted histologically (17,18). Of course, sample registra
tion, dissection, freezing, dehydration, fixation, microtom
ing, thawing, etc., each can alter tissue microstructure and 
microanatomy and introduce geometric distortion in the 
histological sample. Therefore, great care is required to 
compare fiber directions in living tissue and a fixed spec
imen prepared from it. Thus, the diffusion tensor field 
templates take on greater importance in helping us to 
validate fiber-tracking methods that use DT-MRI data. 

All of the usual artifacts and problems in DWI experi
ments can adversely affect fiber tracking in predictable 
ways. Misregistration of DWIs caused by eddy currents, 
ghosting due to motion artifacts, and signal loss due to 
susceptibility variations could all affect the computed tra
jectories. However, many of these problems can be miti
gated using well-established correction schemes. The use 
of isotropic voxels is recommended to ensure that the 
accuracy of the tractography scheme is independent of 
fiber direction. 

The diffusion tensor used to measure the fiber tract 
direction is a voxel-averaged quantity. In voxels contain
ing anisotropic fibrous tissues having a uniform fiber di
rection, the eigenvector associated with the largest eigen
value of the effective diffusion tensor provides an unbi
ased estimate of the microscopic fiber field direction 
vector (34). However, if there is a nonuniform distribution 
of fiber directions then the NMR signal we measure de
pends in a complicated way on structure and architecture 
of the tissue (22). Then the eigenvector associated with the 
largest eigenvalue of the effective diffusion tensor only 
corresponds to a consensus average fiber direction within 
the voxel. There, “powder averaging” of the microscopic 
D-field occurs (21,22). If the voxel contains curved fiber 
tracts, then using smaller voxels can ameliorate this prob
lem. If the voxel contains two or more distinct populations 
of interdigitating fibers, then reducing voxel size does not 
remedy the problem (21). This problem becomes even 
more severe at singularities in the microscopic direction 
field (3,8,35), for example, where fiber tracts cross or 
“kiss,” or branch or merge. As we have shown above, 
within singular regions fiber tract trajectories calculated 
from the original or smoothed direction field may fail to 
follow the true fiber tract trajectory. While recently pro
posed novel methods of Bossart et al. (36) and Tuch et al. 
(37) identify two nonexchanging populations of water 
molecules that diffuse anisotropically within a voxel, they 
still do not address how such fibers are connected within 
a singular region. Do they kiss, cross, or is their pattern 
some combination of both? A future challenge is to cir
cumvent powder-averaging effects by employing addi
tional a priori anatomical information about the distribu
tion of fiber tract directions and structural information 
about tissue composition within these voxels, so one can 
reconstruct white matter fiber tract trajectories in complex 
structures such as the ventral internal capsule, the optic 
chiasm, the pyramidal tract, and in other white matter 
structures where the fiber direction field may not be uni
form. 
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Moreover, at points where there are discontinuities in 
r(s), or in its derivatives (such as where there are transec
tions, or at points where the fiber tract is kink), tractogra
phy methods that “regularize” (13) the fiber trajectory may 
artifactually introduce fiber continuity there. This would 
apply particularly to schemes that introduce “memory” or 
which model the tract as having some inherent “bending 
stiffness.” Generally, our ability to observe wiggles, gaps, 
or discontinuities in fiber tracts depends on a number of 
variables, such as the radius of the fiber, the width of the 
gap, the voxel size, the scale of the smoothing window, the 
background noise level, and the algorithm used. If we 
choose our smoothing window to be too large, it is possible 
to smooth over a transected fiber so it will appear contin
uous. 

Other artifacts may be introduced when smoothing a 
noisy diffusion tensor field. Generating a continuous ap
proximation to the tensor field can introduce phantom 
connections between tracts which do not exist anatomi
cally. In an attempt to make the field continuous within 
white matter regions, distinct fiber tracts that may be sep
arated from each other by a voxel or two may be bridged or 
merged. In this way, “blebs” on different neighboring 
tracts can coalesce to form an artifactual connection or 
nexus, which can cause the computed trajectory to “jump” 
tracts. The larger the smoothing window chosen for the 
tensor approximation, the greater the likelihood of this 
problem occurring. 

Not remediating noise in the DWIs can also have adverse 
consequences, since it can cause one to sort eigenvectors 
incorrectly (20). As described above, this results in a sud
den 90° deviation in the computed trajectory, which 
causes the trajectory to “jump” to another tract (20). Noise 
in DT-MRI data also introduces scatter in the distribution 
of the eigenvectors (38), even when the eigenvalues are 
sorted correctly. A fiber-tracking scheme that follows 
noisy (interpolated) eigenvector data will eventually me
ander away from the true trajectory. Moreover, owing to 
noise, MRI data obtained under the same experimental 
conditions is not expected to produce identical trajecto
ries. It is troubling that noise-induced artifacts described 
above can produce anatomically plausible but erroneous 
nerve trajectories and potentially false connections. 

In our in vivo studies, we observed significant differ
ences in both the geometry (i.e., shape) and topology (i.e., 
branching pattern) of fiber tract trajectories when we per
turb their starting points slightly (i.e., on a length scale 
smaller than an individual voxel). A direct consequence is 
that one could infer an altogether different “connectivity” 
pattern and biological function of adjacent tracts. Whether 
this observation is anatomically correct is not ascertain
able at this time. 

With the many concerns raised and caveats described 
above about fiber tractography using DT-MRI data, one 
should view reports of newly discovered white matter 
fiber pathways within the brain with healthy skepticism, 
as these findings could easily be due to one of the many 
artifacts described above. In evaluating any DT-MRI fiber 
tractography study, one should be convinced that all pos
sible artifacts were considered, assessed, controlled for, 
and remedied. 

Applications of DT-MRI Tractography 

DT-MRI tractography should improve our understanding 
of brain pathology, particularly of white matter abnormal
ities occurring in closed head trauma, stroke, etc. It is also 
likely that DT-MR fiber tractography will be used to follow 
trajectories of the peripheral nervous system (PNS). There, 
branching patterns are simpler to follow than in the CNS, 
and the distances over which fiber direction and architec
tural organization are uniform are greater. Changes in di
ameter of injured nerves, and localized bulging or necking 
of fiber tracts, might also be detectable using this ap
proach. Radial displacement of a computed fiber tract 
could indicate a region of local nerve swelling or focal 
compression. A localized net displacement of a computed 
fiber tract could indicate nearby pathological tissue re
gions. 

Finally, DT-MRI fiber tractography methods could be 
applied to other fibrous tissues, such as the heart, whose 
fiber directional pattern and organization is critical in 
following its normal development and diagnosing disease. 
Tractography adds new information to what is provided by 
the computed fiber direction field (39). 

Methods to visualize fiber tracts that employ contrast 
agents, such as manganese (40), are complementary with 
DT-MRI fiber tractography and could be used in conjunc
tion with it. 

Concluding Remarks 

Here we have reduced the complex task of tracing the 
trajectory of white matter fiber tracts in vivo to solving a 
system of ordinary differential equations that employ mea
sured DT-MRI data. The primary applications of DT-MRI 
fiber tractography are in establishing 1) whether and how 
different regions of the brain that perform critical process
ing tasks are connected via large fiber pathways (8,35), and 
2) whether a white matter fiber tract is continuous (8). The 
first problem entails determining whether two points (or 
two different ROIs) can be joined by one or more fiber-tract 
trajectories. The second problem entails following a trajec
tory from one point along a fiber to its terminus. The latter 
is an initial-value problem; the former is a two-point 
boundary value problem. 

Coherently oriented white matter tracts, such as the 
corpus callosum, can be followed provided that the arti
facts brought to light above are carefully assessed and 
systematically addressed. 

DT-MRI fiber-tractography can provide unique quantita
tive and qualitative information to aid in visualizing and 
in studying fiber tract architecture in the brain and in other 
fibrous tissues. It has the potential to advance our under
standing of connectivity and continuity in the central and 
peripheral nervous system in vivo. 
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