Comparative MR Imaging Study of Brain Maturation in Kittens with T1, T2, and the Trace of the Diffusion Tensor

PURPOSE: To assess the time-course of the relaxation times and the orientationally averaged water diffusion coefficient \(D_{\text{av}} \) in postnatal brain development.

MATERIALS AND METHODS: Multisection maps of T1, T2, and the trace of the diffusion tensor (\(\text{Trace}(D) = 3 \times D_{\text{av}} \)) were obtained in four kittens at eight time points.

RESULTS: In the adult, \(D_{\text{av}} \) was about 700 \(\mu \text{m}^2/\text{sec} \) in both white and gray matter. In the newborn, \(D_{\text{av}} \) was 1,100–1,350 \(\mu \text{m}^2/\text{sec} \) in white matter and 1,000 \(\mu \text{m}^2/\text{sec} \) in gray matter. For all anatomic regions and time points, the correlation between \(D_{\text{av}} \) and \(1/T2 \) was high (\(R^2 = 0.87, P < .001 \)). T1 showed a lower correlation with \(D_{\text{av}} \) and a higher sensitivity to myelinization than did T2.

CONCLUSION: Although \(D_{\text{av}} \) shows dramatic changes in the maturing brain, the high correlation between \(D_{\text{av}} \) and T2 indicates that little additional information can be obtained by measuring this diffusion parameter during normal brain development. This contrasts with previous findings in brain ischemia, where \(D_{\text{av}} \) and T2 appear to be uncorrelated. After including the authors’ data and published iontophoretic measurements in a simple model of diffusion in tissues, the authors suggest that the underlying mechanisms of \(D_{\text{av}} \) reduction in brain maturation and ischemia are different. \(D_{\text{av}} \) changes during development are mainly affected by events occurring in the cellular compartment, while changes in extracellular volume fraction and tortuosity, which are thought to determine the reduction in \(D_{\text{av}} \) during ischemia, are probably of secondary importance.

T1-weighted and T2-weighted magnetic resonance (MR) images are widely used for the clinical monitoring of brain development. The usefulness of conventional MR imaging is reliant on its superb depiction of gross brain anatomy and on its ability to aid in discrimination between white matter (WM) and gray matter (GM) at different stages of brain maturation (1). In addition to the magnetic relaxation properties of tissues, MR imaging methods can also be used to measure molecular diffusion (2). The ability of diffusion MR imaging to depict brain ischemia very early after onset, when conventional MR imaging findings would still be normal (3), has fueled expectations that diffusion MR imaging could also provide additional clinically relevant information about other pathologic and physiologic conditions, including brain development.

Previous diffusion MR imaging studies (4–6) of brain development have demonstrated that the apparent diffusion coefficient of water molecules decreases during brain maturation. Some authors (4,5) have also suggested that diffusion-weighted MR images are more sensitive than T1-weighted images for the detection of the onset of myelination. When investigating anisotropic tissues such as WM, however, both diffusion-weighted images and apparent-diffusion-coefficient maps not only reflect intrinsic properties of the tissue but also are affected by the subject’s orientation in the magnet. For this reason, diffusion-weighted images and apparent diffusion coefficient maps are difficult to interpret and cannot be used for the quantitative characterization of water diffusion in WM (7). Scalar quantities derived from the diffusion tensor, such as the trace of the diffusion tensor

Index terms:
Animals
Brain, growth and development,
10.91, 10.99
Brain, MR, 10.121411, 10.121413,
10.121416
Magnetic resonance imaging, 10.121416
Radiology 1999; 210:133–142

Abbreviations:
GM = gray matter
ROI = region of interest
Trace(D) = trace of the diffusion tensor
WM = white matter

Author contributions:
Guarantors of integrity of entire study,
C.B., A.S.B., C.P.; study concepts and
design, C.B.; definition of intellectual
content, C.B., A.S.B., C.P.; literature re­
search, C.B.; experimental studies, C.B.,
A.S.B., C.P.; data acquisition, C.B.;
data analysis, C.B., A.S.B., C.P.; statistical
analysis, C.B.; manuscript preparation,
editing, and review, C.B., A.S.B., C.P.

1 From the Neuroimaging Branch, Na­
tional Institutes of Neurological Disor­
ders and Stroke, National Institutes of
Health, Bldg 10, Rm 4N252, 10 Center
Dr, Bethesda, MD 20892-2289. Received
February 23, 1998; revision requested
April 15; final revision received August
4; accepted August 11. Address reprint
requests to C.P.

© RSNA, 1999
neously, and their respiratory frequency was monitored with a plethysmograph positioned around the chest. Older animals were intubated and mechanically ventilated to maintain expiratory carbon dioxide pressure at 38–40 mm Hg.

MR Imaging

We performed all MR imaging with a 2-T MR animal system (Omega; GE NMR Instruments, Fremont, Calif) equipped with self-shielded gradient coils capable of producing a maximum gradient strength of 40 mT/m. We used two home-built quadrature “birdcage” radio-frequency coils. One coil, used for kittens younger than 2 months, had an inner diameter of 39 mm. The other coil, used for kittens older than 2 months and for the adult cats, had an inner diameter of 62 mm.

Each MR imaging session consisted of three series: a set of 31 diffusion-weighted images for calculating the diffusion tensor, a four-echo Carr-Purcell-Meiboom-Gill sequence for calculating T2 maps, and five inversion-recovery spin-echo images for calculating T1 maps.

At each time point and for all techniques, we obtained eight coronal sections of the brain with the same section thickness, intersection gap, in-plane resolution, and field of view. These parameters, however, were set to different values that were dependent on the coil used and the age of the kitten. Section thickness was 1.2–2.0 mm, the intersection gap was 5.0–6.0 mm, and the field of view was 50–60 mm. The in-plane resolution was 128 × 128 at all time points. Given these parameters, the voxel size ranged from 0.18 mm³ in newborns and young kittens to 0.44 mm³ in older kittens and adult cats.

Diffusion-weighted MR imaging.—We acquired diffusion-weighted images with an interleaved echo-planar imaging sequence (15) that included a navigator echo for correction of motion artifacts. In addition to a non-diffusion-weighted image, we obtained images with five diffusion gradient strengths in six directions (11), which yielded values for the trace of the diffusion tensor D in each voxel according to the method of Basser et al (8,17) and generated maps of trace(D) for each section by summing the three eigenvalues of D in each voxel.

T2 mapping.—We measured T2 by using a multiecho, multisession Carr-Purcell-Meiboom-Gill sequence similar to the one described by Mulkern et al (18), with the acquisition of eight sections with four echoes per section (repetition time = 5,000 msec, echo times = 50, 100, 150, 200 msec). We were unable to acquire more than four echoes per section due to hardware limitations. T2 was computed on a pixel-by-pixel basis from best-fit values of the slope of the log of the signal intensity versus echo time. In determining the best fit, we weighted each point by the square of its magnitude (see Bevington [19]).

T1 mapping.—We measured T1 by using a series of complex inversion-recovery images (repetition time = 5,000 msec, echo time = 19 msec, inversion times = 200, 400, 800, 1600, 15,000 msec, where the inversion time = infinite corresponds to an image acquired with no inversion pulse). We removed the polar ambiguity by using the image obtained with an inversion time of infinite as a reference. We then computed T1 from the slope of log[signal in the reference image — signal in image obtained with inversion time T1)] versus the inversion time. This method involves only a linear least-squares fit and is therefore quite robust.

Phantom Study

It is well known that the acquisition of accurate measurements of T2 with a multisession imaging sequence may be problematic (20). To verify the accuracy of the T2 values measured with our imaging sequence, we prepared eight gelatin phantoms with different concentrations of dysprosium chloride (Sigma, St Louis, Mo), adjusted to provide a T2 in the range of 25–175 msec. Accurate T2 values for the phantom were obtained with a spectroscopic 32-echo Carr-Purcell-Meiboom-Gill sequence performed with the same MR imaging unit used for the animal study. The same phantoms were then imaged with the imaging sequence used for the animal study, and the T2 values were measured in regions of interest (ROIs) drawn on the computer-generated T2 maps. We computed the percent error of the imaging-measured T2 by using the spectroscopically-measured T2 as a reference.
ROI Analysis

We drew anatomic ROIs on the T1, T2, and Trace(D) maps by using the manual tracking system provided in IDL (ITERATIVE DATA LANGUAGE; Research Systems, Boulder, Colo). Five anatomic structures were selected: cortical GM, the caudate nucleus, the internal capsule, the corpus callosum, and subcortical WM. For each anatomic structure except the corpus callosum, we measured multiple ROIs positioned on both cerebral hemispheres and on at least two sections. To avoid partial volume averaging from adjacent cerebrospinal fluid, a single ROI was drawn in the corpus callosum on the section that contained its thickest portion. The reported mean value of each parameter in each anatomic structure is the average of all measurements obtained in multiple ROIs, weighted by the number of voxels in each ROI.

Statistical Analysis

We examined the degrees of correlation between 1/T1 and 1/T2, Trace(D) and 1/T1, and Trace(D) and 1/T2. We also computed correlation coefficients for the entire data set and for each anatomic ROI. Two parameters were considered to be significantly correlated if the regression coefficient was different from zero with a P value of less than .01. Two anatomic ROIs were considered to be different if the 95% CI of the slope and/or the intercept of their respective regression lines did not overlap.

RESULTS

In general, the lengthy MR procedure was well tolerated, even by the newborn kittens. It should be noted, however, that the younger animals were not mechanically ventilated; therefore, any prolonged apnea in those animals was potentially life-threatening. When a prolonged apnea occurred, we immediately removed the animal from the magnet; in some cases, we did not have enough time to repeat the examination. Of the 32 studies planned (four kittens imaged at eight time points), we were unable to obtain data in one diffusion tensor study, five T1 studies, and eight T2 studies. The first study after birth and the study at the 3rd week were completed for all parameters in only two animals. Studies at all other time points were completed in at least three animals. No new animals were added to those initially planned, because, for the purpose of testing the correlation between parameters, the statistical robustness of our data set proved to be high despite the missing data. All correlations tested had a high level of significance for the regression coefficient (P < .001), much higher than the level that would be set for statistical significance (ie, P < .01).

Maps of T1, T2, and Trace(D) at four distinctive time points during development and at approximately the same anatomic level in a representative animal are shown in Figure 1. Corresponding anatomic maps of an adult cat are also shown. The time courses of the average values and the SDs of these parameters in various anatomic ROIs are shown in Figure 2. At birth, the orientationally averaged water diffusion coefficient (D_ave = Trace(D)/3) was higher than that in the adult in all brain regions (in newborns, D_ave was 1,000–1,350 µm²/sec and, in adults, 600–750 µm²/sec) but was markedly lower than that in free solution (3,000 µm²/sec at 37°C [2]).

The T1, T2, and Trace(D) maps were similar in the newborn brain. For all three parameters, the highest values were in the subcortical WM, followed by those in the corpus callosum and the internal capsule, with the lowest values in GM. T2 and Trace(D) show similar and chronologically parallel changes during development. The difference between WM and GM decreases markedly during the postnatal period and virtually disappears after the 5th week of life. The timing of this process varies in different WM regions, however. At 2 weeks, for example, on both T2 and Trace(D) maps, the subcortical WM is still brighter than GM, while the internal capsule is already isointense with GM. In the adult brain, all WM structures have essentially identical values for T2 and Trace(D) (Figs 1, 2). Initially, T1 shows an evolution similar to that of T2 and Trace(D), but the isointense phase in WM-to-GM contrast is followed by a further reduction of T1 in WM. This causes an inversion of WM-to-GM contrast (T1 of WM becomes shorter than T1 of GM), which is complete in all anatomic regions by the end of the 2nd month of life.

We first tested for correlations between parameters by using the entire data set, including data from all animals at all time points and all ROIs, in a single regression analysis (Fig 3). We found statistically significant correlations between Trace(D) and 1/T2 (R² = 0.87), 1/T1 and 1/T2 (R² = 0.79), and Trace(D) and 1/T1 (R² = 0.76). We repeated the tests for each individual ROI and found significant correlations between all parameters in all ROIs. For each correlation, we also determined whether the slope and intercept of the regression lines were significantly different in different ROIs. For the regression of Trace(D) versus 1/T2, there were no significant differences between ROIs, with the exception of the ROI in subcortical WM, for which both the slope and the intercept were significantly different from those of the other ROIs. For the regressions of Trace(D) versus 1/T1 and 1/T2 versus 1/T2, all WM ROIs differed significantly from the GM ROIs.

Phantom Study

The percent error of the imaging-measured T2 versus the spectroscopically measured T2 in the phantoms was less than 5% for the entire range of T2 values measured in the animal’s brain. We are confident, therefore, that our in vivo brain T2 measurements were accurate and reliable.

DISCUSSION

The main goals of this study were (a) to measure the orientationally averaged water diffusivity (Trace(D)/3) in the developing brain and (b) to assess whether this diffusion parameter can provide information that is not obtainable with conventional, relaxometry-based MR imaging. We found that Trace(D) dramatically changed in the maturing brain; however, the high degree of correlation between Trace(D) and the relaxation rates 1/T1 and 1/T2 suggests that little additional information can be obtained by measuring this diffusion parameter during normal brain development. Moreover, although T1-weighted images and T2-weighted images are thought to provide somewhat independent information in the clinical assessment of brain development, we found that the T1 and T2 relaxation rates were also highly correlated. We first discuss our relaxation and diffusion data in relation to data from the literature; then we propose possible physical explanations for our findings; finally, we describe clinically relevant aspects of our study.

Relaxation Measurements

To our knowledge, there have been no previous studies of the time course of changes in relaxation times during brain maturation in cats and few quantitative studies in other animal models (21) and
Figure 1. Changes in brain tissues during development as depicted on the maps of T1 (top), the long component of T2 (middle), and Trace(D) (bottom). Anatomically corresponding coronal sections acquired in the same representative kitten and in an adult cat are shown. Five relevant time points have been selected. The time courses of Trace(D) and T2 show clear similarities. In both cases, the highest values are observed in the newborn brain, where WM appears brighter than GM. During development, Trace(D) and T2 decrease in a parallel manner with a progressive reduction of the WM-to-GM contrast. In the adult brain, both Trace(D) and T2 have similar values in WM and GM. The time course of T1 partly resembles that of T2 and Trace(D) for the first 5 weeks, but, after the 5th week, there is a clearly visible inversion in the contrast between WM (arrows) and GM.

in humans (22–25). Our results contradict most of these previous results in two important aspects.

First, we found that both T1 and T2 were significantly longer in WM than in GM in the newborn brains, whereas previous investigators (22,24) found no T1 and T2 differences between subcortical WM and GM. Second, in the aforementioned studies (22–25), large differences between WM T2 and GM T2 in the adult brain were reported, but we found T2 to be almost the same in all mature brain tissues. It is unlikely that these discrepancies are related to interspecies differences, because both the general pattern of postnatal brain maturation and the structural and chemical features of the adult brain are similar in all mammals (12), although at birth the brain may be slightly more immature in cats than in humans. We attribute these discrepancies to the fact that most quantitative studies on brain maturation were performed in the early days of MR imaging and may have been affected by technical limitations (26). In particular, they were performed at very low field strength (0.15–0.35 T), and T2 was calculated from only two echoes. The accuracy of our T2 measurements is supported by the good agreement between the imaging-measured T2 and the spectroscopically-measured T2 in the phantoms. Our finding that mature WM and GM have similar T2 values is also in agreement with accurate relaxometry studies (27,28) of the human brain in healthy adults.

Overall, our data indicate that T1 and T2 are similarly affected by the changes occurring in the maturing brain, with the exception of a much higher sensitivity of T1 to myelinization. The different sensitivity of T1 and T2 to myelinization can be explained in terms of the different effects of myelin-associated water on T1 and T2. It has been shown (29) that T2 in WM has two distinct components: a long T2 component (about 70–90 msec at 1.5 T), which has been attributed to axonal and extracellular water, and a short T2
Clinical Implications of Relaxation Findings

We mentioned that, to our knowledge, there are no reliable measurements of T1 and, in particular, T2 in the developing human brain. There are, however, several advantages that would originate from knowledge of the time course of relaxation parameters in the developing brain.

First, the acquisition of "weighted" (eg, T1-weighted, T2-weighted) images instead of T1 and T2 maps for diagnostic purposes implies that one must rely on the evaluation of differences in contrast between brain regions rather than on a quantitative comparison with normative values for the population. Our data show that large changes in the relaxation properties tend to occur simultaneously in various brain regions and in different brain tissues. For this reason, if we are interested in staging brain maturation, the acquisition of weighted images is intrinsically less sensitive than the acquisition of relaxation parameters, because substantial changes in relaxation parameters may be accompanied by only minor changes in image contrast.

Second, the analysis of relaxation parameters would facilitate a more specific understanding of the biophysical determinants of the MR signal than would inspection of image contrast on weighted images. For example, we found that T1 and the long component of T2 provide similar information on brain maturation, with the exception of a clearly different sensitivity to myelination.

Third, better knowledge of the behavior of the relaxation parameters in the developing brain could help in the design of more specific and efficient weighted imaging protocols. For example, a standard approach to monitoring myelination in pediatric neuroradiology is to rely on T1-weighted images during the first 6 months of life and on T2-weighted images thereafter. Changes in the contrast between GM and WM on T1-weighted images have been attributed to the effect of increased myelin, whereas changes on T2-weighted images have been attributed to secondary maturation processes of myelin, such as tightening of the myelin spiral around the axon. Our results suggest that the WM-to-GM contrast changes observed on long repetition time and long echo time T2-weighted images obtained at the latest stage of brain development are not dependent on changes in the long T2 component. As shown in Figure 4, notable changes in contrast on T2-weighted images occur when no additional changes can be appreciated on the maps of the long T2 component.

When the long T2 component as a source of these contrast changes is excluded, three other factors remain to be considered: proton density of the long T2 component, proton density of the short T2 component, and the short T2 component itself. Although further work is necessary to identify which of these factors is primarily responsible, our data suggest that images acquired with a long repetition time and a relatively short echo time (25–30 msec) should provide the same information on myelination progression as that provided by long echo time, long repetition time images, with the advantage of a better signal-to-noise ratio.

Measurements of the Trace of the Diffusion Tensor

To our knowledge, this is the first study in which changes in orientationally averaged water diffusivity were measured in different anatomic regions during the entire course of postnatal brain development. Because previous studies of brain maturation used diffusion-weighted images (31,32) or apparent-diffusion-coefficient measurements in one (6) or two (4,5) directions, the results of those studies are not directly comparable with our results. Moreover, none of the authors of these previous studies reported data on GM, and the variability of apparent-diffusion-coefficient values in WM is generally high, probably because of differences in the relative directions of the fibers and the applied diffusion gradients, which were controlled for in our study.
Our finding that Trace(D) was significantly higher in the immature brain than in the adult brain in all anatomic regions is in agreement with and extends the results of Sakuma et al (4), Toft et al (6), and Neil et al (33). In addition, we found that Trace(D) in the newborn is statistically different in different anatomic regions, which is in agreement with previous findings (34) of reported differences in D_{oav} between GM and subcortical WM in newborn piglets. Our data show that these regional differences are progressively less noticeable during maturation and disappear almost completely in the adult brain.

We found a high degree of correlation between Trace(D) and 1/T2 during development. Moreover, the regression lines of Trace(D) versus 1/T2 in different ROIs were virtually superimposed, with no significant differences in either slope or intercept. This result is important because it signifies that in all brain regions and at all time points D_{oav} and T2 respond similarly to the various physicochemical and histologic changes that occur during tissue maturation.

The situation is markedly different in brain ischemia and stroke, where 1/T2 and Trace(D) are not strongly correlated. In fact, in brain ischemia, as well as in the early stage of an infarct, there is a rapid decrease in D_{oav} (35–37), with no detectable changes on either T2-weighted images (3) or T2 maps (38). Moreover, when vasogenic edema develops at a later stage, water diffusivity in the infarcted tissue remains low, while T2-weighted signal intensity increases. Finally, during chronic infarct progression, cellular lysis causes a dramatic reelevation of the diffusion coefficient but does not markedly affect the T2-weighted imaging results (39).

An understanding of the causes of the different behavior of diffusion and relaxation parameters in ischemia and development, as well as the unequivocal determination of a relationship between our diffusion results and specific structural or chemical features of the developing brain, is not simple. The MR imaging–measured water diffusivity is indeed a composite measure that reflects the contribution of multiple and heterogeneous microscopic tissue compartments. Recent analytic studies (40) and numeric simulations (41,42) of simplified models, however, have been helpful in elucidating the relative contribution of some important factors, such as the geometry, size, and intrinsic water diffusivity of the cellular and extracellular compartments. In the case of ischemia, for instance, most studies suggest that the decreased water diffusivity as measured with MR imaging is essentially related to an increased tortuosity and diminished volume fraction of the “fast-diffusivity” extracellular compartment.

To better clarify the microstructural determinants of our results, we analyzed our data by using the model recently proposed by Latour et al (40), which is applicable given our limit of long diffusion time and weak diffusion pulses. If we assume that the concentration of water is the same in both extracellular and intracellular compartments, then this model consists of an equation that relates the MR imaging–measured D_{oav} to the extracellular diffusion D_{ext}, the volume fraction of the extracellular space α, and the effective diffusion of the cellular compartment $D_{effcell}$. Because our MR measurement was insufficient to determine all the parameters of the model, we integrated our MR imaging data with data from iontophoretic measurements (43–45), which provide selective information on the diffusion properties of the extracellular space. Unfortunately, iontophoretic measurements are available only in rats; therefore, for the sake of this discussion, we shall assume that feline brain development is sufficiently similar to that of rats. A detailed description of our approach is presented in the Appendix; here we present only the conclusion of our analysis.

Our diffusion MR imaging experiments show that between birth and adulthood, D_{oav} in GM decreases from 1,000 to 700 μm2/sec—a 30% decrease, which is of the same magnitude as that observed after ischemia (46). By using the values of α and D_{oav} obtained from the iontophoretic measurements of Lehmenkuhler et al (44), we calculated that $D_{effcell}$ changed from 650 μm2/sec at birth to 420 μm2/sec in adulthood, a decrease of about 35%. We used the same method to analyze the results in models of ischemia. By combining the iontophoretic data of Vorisek and Sykova (47) with diffusion MR imaging measurements of ischemia in cats (46), we found that $D_{effcell}$ does not decrease after ischemia and shows a modest change from 380 μm2/sec in the nonischemic brain to 440 μm2/sec during ischemia.
We cannot expect the numeric values in the preceding paragraph to be accurate because the MR imaging and iontophoretic diffusion data were obtained in different species. In qualitative terms, however, the results of this analysis suggest that changes in Trace(D) during ischemia are primarily caused by changes in the diffusion properties of the extracellular space, whereas the changes during development are primarily caused by changes in the effective diffusivity of the cellular compartment.

We identify two main biologic events that could contribute to modifications in the diffusivity of the cellular compartment and consequently affect Trace(D) during development: (a) an increased concentration of macromolecules (48) and (b) a greater membrane surface-to-cell volume ratio caused by the proliferation of processes and organelles (49). Another possible factor would be a change in cell membrane permeability; however, this is difficult to assess experimentally, and we are not aware of any studies in which this possibility was investigated during brain development.

The results of our analysis also may explain why the T2 changes parallel the Trace(D) changes in development but not in ischemia. T2 relaxation is caused by fluctuations of the local magnetic field (50). These fluctuations are caused by the relative motion of the spins and the sources of local fields represented by unpaired electrons and other magnetic nuclei. Changes in the viscosity of the medium, which determine the variation in the rate of relative motion, as well as changes in the chemical composition of the medium, which affect the concentration of sources of the local field, are expected to affect T2. Of interest, the same cellular events that we suggested may cause the changes in Trace(D) during development, such as increased concentration of macromolecules and membranes, also modify the chemical composition and viscosity of the tissue, which could theoretically affect T2. In addition, experimental works (51) have shown that membranes and macromolecules shorten T2.

During acute ischemia, however, there are no such changes in tissue composition. In essence, no "new material" is created that could shorten T2; there is a change in water compartmentalization only. The resultant increased tortuosity of the extracellular compartment has a marked effect on water diffusivity but does not substantially affect T2, because it acts over large distances as compared with the nearest-neighbor distances that dominate T2 relaxation.

In conclusion, we believe that a complete understanding of the mechanisms of water diffusion and relaxation in tissues necessitates additional theoretic and experimental work. However, the results of our analysis provide a plausible explanation of how our findings are related to different tissue microstructural changes that occur in development and ischemia and suggest that the determinants of the reduced Trace(D) in development may differ profoundly from those in ischemia.
Clinical Implications of Diffusion Findings

If confirmed with studies in healthy human subjects, our finding of a surprising similarity in the information provided by the long T2 component and Trace(D) could discourage the use of diffusion MR sequences to assess brain development. We believe, however, that this conclusion is erroneous at this time for two reasons.

First, we have no assurance that analogous findings would be confirmed in pathologic conditions. Brain ischemia and stroke are clear examples of diseases where average diffusivity and T2 behave differently. Because almost no pediatric diseases have been investigated with quantitative diffusion MR imaging, we should first obtain sufficient diffusion data on pathologic conditions before concluding that the average water diffusivity provides no additional useful information in pediatric radiology.

Second, Trace(D) is not the only parameter that we can compute in a quantitative study of water diffusion in tissues. Other diffusion parameters such as diffusion anisotropy and the principal direction of diffusion may be informative even if Trace(D) is not. In the normal adult brain, it has already been demonstrated (11) that diffusion anisotropy provides anatomic and structural data that are unavailable from conventional MR imaging. Moreover, results of preliminary studies (52) indicate that in brain development, diffusion anisotropy and relaxation times show different behaviors in both WM and GM regions.

Practical applications: Various physical parameters that could potentially provide different information on the structure, chemical composition, and metabolic state of the brain can be measured with MR imaging. Our quantitative assessment of T1, T2, and Trace(D) during normal brain development has been useful for the determination of the extent to which different parameters provide independent information, as well as for the attempt to understand the biologic correlates of such changes. We believe that a quantitative approach would be particularly advantageous in pediatric neuroradiology because, in the developing brain, the intrinsic limitation of no internal reference that can be considered to be invariant. We also believe that the increased availability of fast MR imaging sequences will greatly simplify the task of performing similar studies in the clinical setting.

APPENDIX

The Latour effective medium theory describes the diffusivity of small molecules in a system consisting of a suspension of spherical cells. The theory leads to the following equation:

\[
\frac{D_{\text{eff}} - D_{1}}{D_{\text{int}} + (1 - \alpha) D_{1}} = \frac{1}{3} \alpha, \tag{A1}
\]

where \(\alpha\) is the volume fraction of the suspension occupied by the external medium; \(D_{\text{eff}}\) is the effective diffusivity in the system as a whole and characterizes the diffusion properties of the system on a size scale that is large compared with the size of the cells and the separation between them; \(D_{\text{int}}\) is the diffusivity in the external medium and is the expected result of a diffusivity measurement in a cell-free system; \(\alpha\) is the fractional concentration of the suspending molecules in the external medium; \(\alpha\) is the fractional concentration of the suspending molecules inside the cells; \(c_{\text{eff}}\) is the average concentration of the suspending molecules in the system as a whole and is related to the other parameters by

\[
c_{\text{eff}} = \alpha c_{\text{ext}} + (1 - \alpha) c_{\text{int}}; \tag{A2}
\]

and \(D_{1}\) is the effective diffusivity in the cellular compartment, including the cell membrane. \(D_{1}\) is defined by

\[
D_{1} = \frac{k a D_{\text{int}}}{k a + D_{\text{int}} c_{\text{int}}}, \tag{A3}
\]

where \(k\) is the permeability of the membrane that separates the cells from the external medium, \(a\) is the radius of the cells, and \(D_{\text{int}}\) is the diffusivity of the intracellular medium.

If we model neurons as spherical cells suspended in an extracellular medium, Equations (A1)-(A3) can describe both ion tracer measurements and MR diffusion measurements. We first apply the equations to ion tracer experiments. Analysis of data from ion tracer measurements yields values for three parameters: the volume fraction \(\alpha\), the tortuosity \(\lambda\), and the nonspecific uptake \(k\) (see reference 43). The tortuosity \(\lambda\) is related to \(D_{\text{eff}}\), the measured diffusivity of the tracer in the brain, by

\[
D_{\text{eff}} = \frac{D_{0}}{\lambda^2}, \tag{A4}
\]

where \(D_{0}\) is the diffusivity of the tracer in the calibration solution. The ion tracer experiments actually measure \(D_{\text{eff}}\), but the result quoted is \(D_{0}\) as defined by Equation (A4). Note that \(\lambda\) depends on the viscosity of the extracellular medium, as well as on the geometry of the extracellular space. We can use Equation (A1) to relate \(D_{\text{int}}\) to \(D_{0}\) and therefore separate out the effect of the viscosity of the medium from the effect of geometry. If the nonspecific uptake is sufficiently small, \(c_{\text{int}}\) is 0 and Equation (A1) reduces to

\[
\frac{D_{\text{eff}}}{D_{\text{ext}}} = \sqrt{\alpha}. \tag{A5}
\]

By equating \(D_{\text{eff}}\) in Equation (A5) to \(D_{\text{eff}}\) in Equation (A4), we find that

\[
D_{\text{eff}} = \frac{D_{0}}{\lambda^2 \sqrt{\alpha}}, \tag{A6}
\]

To the extent that \(\lambda\) is the same for any molecule, Equation (A6) also applies to water molecules:

\[
D_{\text{eff}}^{\text{water}} = \frac{D_{0}^{\text{water}}}{\lambda^2 \sqrt{\alpha}}, \tag{A7}
\]

where the superscript "water" denotes water.

We can also apply Equation (A1) to the diffusion MR imaging measurements. In this case, \(D_{\text{eff}}\) becomes \(D_{\text{eff}}\), the MR imaging-measured diffusion constant, and \(D_{1}\) becomes \(D_{\text{eff}}\). If we assume that \(c_{\text{int}}\)

TABLE A1

<table>
<thead>
<tr>
<th>Cause of Change</th>
<th>(\alpha)</th>
<th>(\lambda)</th>
<th>(D_{\text{eff}}) (µm²/sec)</th>
<th>(D_{\text{int}}) (µm²/sec)</th>
<th>(D_{\text{eff}}) (µm²/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developmental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newborn</td>
<td>0.36⁴‡</td>
<td>1.65⁴*</td>
<td>1,000</td>
<td>1,800</td>
<td>650</td>
</tr>
<tr>
<td>Adult</td>
<td>0.20⁴*</td>
<td>1.63⁴*</td>
<td>700</td>
<td>2,500</td>
<td>420</td>
</tr>
<tr>
<td>Ischemic</td>
<td>0.23¹†</td>
<td>1.5¹†</td>
<td>730¹†</td>
<td>2,780</td>
<td>380</td>
</tr>
<tr>
<td>Normal</td>
<td>0.06¹‡</td>
<td>2.0¹‡</td>
<td>530¹‡</td>
<td>3,060</td>
<td>440</td>
</tr>
<tr>
<td>Ischemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Source, reference 44.
† Source, reference 47.
‡ Source, reference 46.
equals \(c_{\text{out}} \), we find that
\[
D_{\text{eff}} = D_{\text{ext}} \left[\frac{D_{\text{ext}}^{1/3} - D_{\text{out}}^{1/3}}{D_{\text{ext}}^{1/3} - 1} \right].
\]

From Equation (A3), we see that the effective diffusivity \(D_{\text{eff}} \) is dependent on the cell radius \(a \), membrane permeability \(\kappa \), and intracellular water diffusivity \(D_{\text{int}} \). \(D_{\text{int}} \) in turn, is itself a composite parameter; it is not the bulk diffusivity of the intracellular medium but rather is dependent on the presence and characteristics of organelles and other intracellular constituents.

In conclusion, MR imaging measurements in the long-diffusion, weak-diffusion weighting limit give no information about the values of \(D_{\text{ext}} \) and \(D_{\text{eff}} \) individually. However, if we use the values of \(\lambda \) and \(a \) from the ion tracer measurements and \(D_{\text{cell}} \) from the diffusion measurements, Equations (A7) and (A8) can be used to compute \(D_{\text{ext}} \) and \(D_{\text{eff}} \). The results for development and ischemia are given in Table A1.

Acknowledgments: The authors thank Tory Hampshire, MD, and the personnel of Building 28 at the National Institutes of Health for their assistance and suggestions in the use of the animals. The authors also thank Josef Vymazal, MD, and Jeff Bulte, MD, for providing the samples used in the T2 spectroscopic experiment. The skillful editing of Devera G. Schoenberg, MS, is also appreciated.

References
23. Masumura M. Proton relaxation time of immature brain. II. In vivo measurement of proton relaxation time (T1 and T2) in pediatric brain by MRI. Childs Nerv Syst 1987; 3:6–11.
37. Lehmenkuler A, Sykova E, Svoboda J,

