
Mechanics of Materials 41 (2009) 951–953
Contents lists available at ScienceDirect

Mechanics of Materials

journal homepage: www.elsevier .com/locate /mechmat
On the six-dimensional orthogonal tensor representation of the rotation
in three dimensions: A simplified approach

Cheng Guan Koay
Section on Tissue Biophysics and Biomimetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development,
National Institutes of Health, Bldg 13, Rm 3W16, 13 South Drive, MSC 5772, Bethesda, MD 20892-5772, USA
a r t i c l e i n f o
Article history:
Received 1 September 2008
Received in revised form 12 December 2008
0167-6636/$ - see front matter Published by Elsevie
doi:10.1016/j.mechmat.2008.12.006

E-mail address: guankoac@mail.nih.gov
a b s t r a c t

The six-dimensional orthogonal tensor representation of the rotation about an axis in three
dimensions was first proposed by Mehrabadi et al. [Mehrabadi, M.M., Cowin, S.C., Jaric, J.,
1995. Six-dimensional orthogonal tensor representation of the rotation about an axis in
three dimensions. International Journal of Solids and Structures 32 (3–4), 439–449]. In this
brief note, a simple and coherent approach is presented to construct the six-dimensional
orthogonal tensor representation of the rotation of any parametrization in three dimen-
sions and to prove its orthogonality.

Published by Elsevier Ltd.
1. Introduction

The essence of the Euler’s theorem regarding the repre-
sentation of a 3 � 3 rotation (orthogonal) matrix, Q, gener-
ated from a rotation about an axis along a unit vector,
p � [p1, p2, p3]T (the superscript T denotes matrix or vector
transposition), with an angle, h, is encapsulated in the fol-
lowing expression, see Mehrabadi et al. (1995) and refer-
ences therein:

Q ¼ I þ sinðhÞP þ ð1� cosðhÞÞP2 ¼ expðhPÞ; ð1Þ

where P is a skew-symmetric matrix made up of the com-
ponents of the unit vector, p,

P ¼

0 �p3 p2

p3 0 �p1

�p2 p1 0

0
BB@

1
CCA: ð2Þ

In their extension of the Euler’s theorem to the
six-dimensional matrix case, Mehrabadi et al. (1995) relied
upon the matrix exponential of a 6 � 6 skew-symmetric
matrix to establish the orthogonality of the six-dimen-
sional matrix analogue of the rotation matrix, Q, which
was denoted by Q̂ in Mehrabadi et al. (1995).
r Ltd.
In this brief note, a simple construction of the six-
dimensional matrix analogue of the rotation matrix Q
and the proof of its orthogonality are presented.
2. Methods

Let us define Q to be a 3 � 3 orthogonal matrix, i.e.,
QQT = QTQ = I, given by

Q �
Q11 Q12 Q 13

Q21 Q22 Q 23

Q31 Q32 Q 33

0
B@

1
CA; ð3Þ

D to be a 3 � 3 nonsingular symmetric matrix given by

D �
Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

0
B@

1
CA; ð4Þ

and K to be another 3 � 3 nonsingular symmetric matrix
given by

K ¼
k1 k4 k6

k4 k2 k5

k6 k5 k3

0
B@

1
CA: ð5Þ

Then, the effect of rotating D by Q through a similarity
transformation, which results in K, can be given simply as:
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K ¼ Q T DQ : ð6Þ

We should note that the off-diagonal elements of K are
generally nonzero except when each column vector of Q
is an eigenvector of D.
H ¼

Q 2
11 Q 2

21 Q 2
31

ffiffiffi
2
p

Q11Q 21

ffiffiffi
2
p

Q 21Q 31

ffiffiffi
2
p

Q 11Q 31

Q 2
12 Q 2

22 Q 2
32

ffiffiffi
2
p

Q12Q 22

ffiffiffi
2
p

Q 22Q 32

ffiffiffi
2
p

Q 12Q 32

Q 2
13 Q 2

23 Q 2
33

ffiffiffi
2
p

Q13Q 23

ffiffiffi
2
p

Q 23Q 33

ffiffiffi
2
p

Q 13Q 33ffiffiffi
2
p

Q 11Q 12

ffiffiffi
2
p

Q 21Q 22

ffiffiffi
2
p

Q31Q32 Q 11Q 22 þ Q21Q 12 Q21Q32 þ Q 31Q 22 Q 11Q 32 þ Q 31Q 12ffiffiffi
2
p

Q 12Q 13

ffiffiffi
2
p

Q 22Q 23

ffiffiffi
2
p

Q32Q33 Q 12Q 23 þ Q22Q 13 Q22Q33 þ Q 32Q 23 Q 12Q 33 þ Q 32Q 13ffiffiffi
2
p

Q 11Q 13

ffiffiffi
2
p

Q 21Q 23

ffiffiffi
2
p

Q31Q33 Q 11Q 23 þ Q21Q 13 Q21Q33 þ Q 31Q 23 Q 11Q 33 þ Q 31Q 13

0
BBBBBBBBB@

1
CCCCCCCCCA

: ð11Þ
Eq. (6) can be vectorized using the following convention:

~k �

k1

k2

k3

k4

k5

k6

0
BBBBBBBB@

1
CCCCCCCCA
¼ ~H~d ¼ ~H

Dxx

Dyy

Dzz

Dxy

Dyz

Dxz

0
BBBBBBBB@

1
CCCCCCCCA
; ð7Þ

where ~H is a six-dimensional matrix made up of the ele-
ments of Q. This convention, however, does not preserve
the Euclidean vector norm and the Frobenius matrix norm.
R � H�1 ¼

Q 2
11 Q 2

12 Q2
13

ffiffiffi
2
p

Q 11Q 12

ffiffiffi
2
p

Q 12Q 13

ffiffiffi
2
p

Q 11Q 13

Q 2
21 Q 2

22 Q2
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ffiffiffi
2
p

Q 21Q 22
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Q 22Q 23

ffiffiffi
2
p

Q 21Q 23

Q 2
31 Q 2

32 Q2
33

ffiffiffi
2
p

Q 31Q 32
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2
p

Q 32Q 33

ffiffiffi
2
p

Q 31Q 33ffiffiffi
2
p

Q 11Q 21

ffiffiffi
2
p

Q12Q22

ffiffiffi
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p

Q 13Q 22 Q11Q22 þ Q 12Q 21 Q 12Q 23 þ Q 13Q 22 Q 11Q 23 þ Q 13Q 21ffiffiffi
2
p

Q 21Q 31

ffiffiffi
2
p

Q22Q32

ffiffiffi
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p

Q 23Q 33 Q21Q32 þ Q 22Q 31 Q 22Q 33 þ Q 23Q 32 Q 21Q 33 þ Q 23Q 31ffiffiffi
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p

Q 11Q 31

ffiffiffi
2
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Q12Q32

ffiffiffi
2
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Q 13Q 33 Q11Q32 þ Q 12Q 31 Q 12Q 33 þ Q 13Q 32 Q 11Q 33 þ Q 13Q 31

0
BBBBBBBBB@

1
CCCCCCCCCA

: ð14Þ
In other words, the Euclidean vector norm and the Frobe-
nius matrix norm do not coincide under this convention,
i.e.,

~kT � ~k–TrðKTKÞ; ð8Þ

where Tr(�) denotes the matrix trace operation.
Fortunately, the Euclidean vector norm and the Frobe-

nius matrix norm can be easily made to coincide under a
slightly different but important convention of vectoriza-
tion due to Mehrabadi and Cowin (1990) and Rychlewski
(1984) (hereafter Mehrabahdi–Cowin–Rychlewski conven-
tion or MCR convention for short) i.e.:

k �

k1

k2

k3ffiffiffi
2
p

k4ffiffiffi
2
p

k5ffiffiffi
2
p

k6

0
BBBBBBBB@

1
CCCCCCCCA

and d ¼

Dxx

Dyy

Dzzffiffiffi
2
p

Dxyffiffiffi
2
p

Dyzffiffiffi
2
p

Dxz

0
BBBBBBBBB@

1
CCCCCCCCCA

: ð9Þ
Under the MCR convention, Eq. (7) can be rearranged as:

k ¼ Hd; ð10Þ

where the six-dimensional matrix, H, can be expressed as:
To show that H is orthogonal, i.e., H�1 = HT, the key step
is to realize that H�1 can be easily constructed by rearrang-
ing Eq. (6), namely:

D ¼ QKQ T : ð12Þ

Vectorizing Eq. (12) using the MCR convention again,
we have

d ¼ Rk; ð13Þ

where the six-dimensional matrix, R, which is the inverse
of H, is given by:
Based on Eqs. (11) and (14), it is clear that H�1 = HT.
For most applications, Eq. (11) can be constructed sim-

ply and directly from the components of Q, regardless of
the parametrization of Q; that is, Q may be represented as
in Eq. (1) or may be expressed in terms of the Euler angles.

3. Discussion

The goal of this work is to convey the simplicity of the
idea, of the construction and of the proof of the six-dimen-
sional orthogonal tensor representation of the rotation in
three dimensions to interested readers. In brief, the orthog-
onality of the six-dimensional orthogonal tensor represen-
tation of the rotation is a direct consequence of the
invariance of a rotation-based similarity-transformed ten-
sor in two different norms—the Euclidean norm and the
Frobenius norm. It should be clear that the construction
can be easily extended to orthogonal matrices in higher
dimensions using a higher dimensional generalization of
the MCR convention.

In practice, it may be more convenient to construct the
six-dimensional orthogonal tensor representation of the
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rotation in three dimensions directly from the elements of
the three-dimensional rotation matrix regardless of the
parametrization used to represent the rotation matrix. In
other cases, the matrix exponential formalism as presented
in Mehrabadi et al. (1995) may be of value, e.g., Balendran
and Nemat-Nasser (1995).

The relevance of the MCR convention and of the six-
dimensional orthogonal tensor representation of the rota-
tion in three dimensions can be gleaned from recent publica-
tions ranging from elasticity to imaging (Basser and Pajevic,
2007; Moakher, 2006; Moakher and Norris, 2006). Specifi-
cally, we note that the analysis of optimal experimental de-
signs and the propagation of errors (Koay et al., 2007, 2008)
through the nonlinear least squares objective function (Koay
et al., 2006) in diffusion tensor imaging (Basser et al., 1994)
will be greatly facilitated under the MCR convention.

We should note that the similarity transformation
through an orthogonal matrix used in the construction of
the six-dimensional orthogonal tensor representation is a
well known technique for transforming tensors or for diag-
onalizing tensors. This technique is very useful in many
areas of research, e.g., Golub and Van Loan (1996) and Koay
et al. (2006). Finally, we hope this brief note prepares inter-
ested readers to appreciate the simplicity of the idea and
the construction behind the six-dimensional orthogonal
tensor representation of the rotation in three dimensions
as well as the elegance of the matrix exponential formal-
ism of Mehrabadi et al. (1995).
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