A novel MRI phantom to study interstitial fluid transport in the glymphatic system

M.E. Komlosh a,b, D. Benjamini b,⁎, N.W. Williamson a, F. Horkay a, E.B. Hutchinson b,c, P.J. Basser a

a Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
b The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
⁎ National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA

A B S T R A C T

The glymphatic system is a recently discovered transport system, mediated by cerebral spinal fluid (CSF), that clears metabolic and cellular waste products in the brain. This system's function in the brain is analogous to that of the lymphatic system in the rest of the mammalian body. It is hypothesized that CSF clears harmful chemicals from the brain by flowing through interstitial spaces in the brain during sleep. While there is growing recognition of the critical role the glymphatic system plays in maintaining normal brain health and in explaining pathology, there are few noninvasive imaging methods that measure and characterize the efficacy of glymphatic transport in vivo. In this study we designed, constructed, and tested a glymphatic transport magnetic resonance imaging (MRI) flow phantom, which combines regions that mimic CSF-filled ventricles and brain interstitial space. We tested high- and low-q space diffusion MRI and diffusion tensor imaging (DTI) acquisitions to determine if they could detect, measure, and map interstitial glymphatic flows. The results suggest that, under certain flow conditions, diffusion-weighted MRI can detect the enhanced mixing that occurs during glymphatic clearance.

1. Introduction

The glymphatic system was recently identified [1,2] as the primary drainage system of the vertebrate brain. The glymphatic system's cleansing function in the brain is analogous to that of the lymphatic system in the rest of the mammalian body; the glymphatic system clears the brain by disposing of molecular and other waste products from the parenchyma. According to the proposed mechanism (Fig. 1 a.), arterial pulsation [3,4]—assisted to a lesser degree by respiration, slow vasomotion, and a cerebrospinal fluid (CSF) pressure gradient [4,5]—conducts the CSF from the subarachnoid space into para-arterial spaces. The CSF then permeates the parenchyma by transiting through pores created by aquaporin 4 (AQP4) channels on the end feet of glial cells and then migrating into the interstitial fluid (ISF) spaces. Advection of ISF also pushes debris and waste products into the paravenous space; from there the waste eventually drains into the lymphatic system. A contributor to glymphatic waste removal is the increase of the extracellular space fraction in the parenchyma during the sleep cycle [6]; this activity allows more CSF to enter this compartment and wash away the toxic metabolites and debris that accumulate there during the wake cycle.

A well-functioning glymphatic system is required to maintain a healthy vertebrate brain. It has been shown that in an aging brain, the activity of the glymphatic system is dramatically reduced [7]; this reduction correlates with the increased risk of developing neurodegenerative diseases. Indeed, in many neurodegenerative diseases, such as Alzheimer's [8] and Parkinson's diseases [9], toxic protein debris accumulates in the parenchyma. Another major risk factor in developing brain pathologies is traumatic brain injury (TBI) [10,11]. Brains studied postmortem that have sustained a single or repetitive sports injuries—mild or severe—or moderate to severe blast or battle injuries, show an accumulation of tau proteins, a marker for TBI. Clearly, understanding the glymphatic system's transport mechanisms is crucial for understanding sequelae of TBI and other neurodegenerative diseases and possibly detecting and diagnosing transport anomalies shortly after they happen.

Aspects of the glymphatic system that have not been well studied, particularly in humans, are reliable estimates of the velocity and volume flow rates associated with CSF migration through the parenchyma. This dearth of data has hampered the development of realistic theoretical and computational models of glymphatic clearance and has made it challenging to determine whether imaging methods, such as magnetic resonance imaging (MRI) velocimetry, could be used to assess glymphatic clearance. Molecular tracer studies, combined with histology and mathematical models of porous flow in rat brain [12–15], have been extrapolated to predict a range of CSF flow rates in human tissue of 0.13 to 0.39 ml/min [16].

Diffusion-weighted MRI (DW-MRI) methods [17–19], which are sensitive to net water displacements, are a prime candidate for detecting CSF flow through the parenchyma. In this type of experiment, a pair of pulsed-field gradients, the first to encode and the second to...
refocus the magnetization, separated by diffusion sensitizing time (Δ), is used. By Fourier transforming the signal profile resulting from stepping up the gradient strength, the propagator, \(P(R, Δ) \), is measured from the signal, \(E(q, Δ) \) [20],

\[
E(q, Δ) = \int P(R, Δ) e^{i2πqR} dR,
\]

where \(q = γgδ/2π \), \(γ \) is the magnetogyrscopic ratio, \(g \) is the gradient amplitude, and \(δ \) is the gradient pulse duration. The propagator is the water displacement probability density function, which indicates the likelihood for particles to undergo net displacement. \(R \). From the low-\(q \) values echo attenuation, the diffusion coefficient (which under convective flow becomes the dispersion coefficient due to the water advection) can be calculated.

All evidence for glymphatic flow so far has been based on \(in vivo \) and \(ex vivo \) tissues (e.g., [21]). Estimating the flow rates through the parenchyma in such studies has been difficult due to the complexity of the tissue, which consists of neurons and glia cells. Using MRI to study glymphatic flow is particularly difficult because the parenchyma dimension (with a depth of approximately 200 μm) is smaller than the \(in vivo \) MRI voxel resolution. In order to study the flow characteristics of the glymphatic system and the feasibility of measuring glymphatic flow and transport in tissue, it is prudent to study a simplified but fully characterized phantom first, as has been done in other MR applications [22-26]. In this study, we report the design, development, and testing of a novel MRI phantom that possesses salient features of brain parenchyma. We tested high- and low-\(q \) space diffusion MRI as well as diffusion tensor imaging (DTI) acquisitions to determine if they could detect, measure, and map interstitial glymphatic flows.

2. Materials and methods

An MRI phantom used to model glymphatic flows was prepared as follows: polystyrene microspheres with a 10.03 ± 0.09 μm diameter (Duke Standards, 4000 Series Monosized particles, Thermo Scientific) were packed in water in a 5-mm inner diameter Tricon 5/100 Column (GE Healthcare), creating a randomly packed bed (representing brain parenchyma) with a water zone above (representing a CSF-filled para-arterial space) (Fig. 1b). The bead diameter was chosen to represent a characteristic length scale in the parenchyma. The porosity (ϕ) of the loosely packed beads was determined to be ~0.44, which agrees with the literature [27]. The column was placed inside a Bruker 7 T vertical wide-bore magnet with an AVANCE III spectrometer equipped with a micro2.5 gradient set and three-axis GREAT 60 amplifiers resulting in a nominal gradient strength of 24.92 mT m\(^{-1}\) A\(^{-1}\).

A peristaltic pump (Pharmacia Biotec) circulated water from the top of the column through the bead pack (Fig. 2). Three mean flow rates were chosen: 0.041, 0.44, and 0.88 ml/min. These flow rates are, respectively, significantly lower than the estimated value for glymphatic clearance, close to the value reported for the convective flow of the glymphatic system, and double the reported value. For our phantom geometry, these flow rates correspond, respectively, to the mean velocities of 35, 371, and 747 μm/s in the bulk flow. The flow rate in the bead layer, \(ϕ \), was estimated to be \(ϕ_{\text{sub}}/ϕ \) [28], which resulted in velocities of 79, 843, 1698 μm/s, respectively. The velocities of the bead pack correspond to the Péclet number, which is the ratio between the mass transport via convection and diffusion (\(Pe = ϕ (d/D_0) \)), of 0.31, 3.31, and 6.67, where \(d = 10 \) μm (bead diameter) and \(D_0 = 2000 \) μm\(^2\)/s. It is worth noting that only the last two flow rates, which resulted in \(Pe > 1 \), are expected to show dispersive behavior.

A DWI echo-planar imaging (EPI) sequence was applied with the following parameters: echo time (TE)/repetition time (TR) = 59/3000 ms, 8 segments, two 2-mm axial slices (one for the bulk layer and the other for the bead pack) with spatial resolution = 125 × 125 μm\(^2\); diffusion sensitizing gradients were applied in the directions parallel (z-direction) and perpendicular (x-direction) to the flow, with a gradient pulse duration of \(δ = 3 \) ms, separation of \(Δ = 50 \) ms, and 41 \(q \)-values from 0 to 53.6 mm\(^{-1}\). Flow propagators were calculated by applying a fast Fourier transformation (FFT) to the resulting real and imaginary data using MATLAB (The MathWorks, Natick, MA). The apparent diffusion coefficients (ADC) or dispersion coefficients, \(D_x \) and \(D_z \), were calculated from the low-\(q \) data (\(G_{\text{max}} = 160 \) mT m\(^{-1}\), \(q_{\text{max}} = 20.44 \) mm\(^{-1}\)).

Because our aim was to test the phantom with methods routinely used \(in vivo \), DTI data for the reported biological flow rate (0.44 ml/min) were acquired by using the MRI acquisition parameters as above.
with two diffusion acquisition protocols: (1) $\Delta = 50$ ms, $\delta = 3$ ms, b-values = 400 and 800 s/mm2 with 21 gradient orientations. ADCs parallel ($D_{||}$) and perpendicular (D_{\perp}) to the flow direction, mean diffusivity (MD), and fractional anisotropy (FA) [19] were calculated. (2) To observe time dependency of the dispersion coefficient, two diffusion observation times, $\Delta = 25$ and 50 ms, pulse duration of $\delta = 3$ ms, and seven linearly sampled b-values in the range of 0 to 600 s/mm2 with 21 gradient orientations were used. ADCs parallel and perpendicular to the flow direction were calculated from the DWI signal attenuation data.

3. Results and discussion

We first performed a detailed analysis of the water displacement distributions by observing the full q-space propagators under different experimental conditions. This analysis was designed to establish the validity of the phantom system and the flow regime in these experiments. Fig. 3 shows the resulting propagators; the longitudinal propagator, $P(Z,\Delta)$; and the transverse propagator, $P(X,\Delta)$, at the three flow rates and without flow. Fig. 3a, and c. correspond to the bulk layer; Fig. 3b, and d. correspond to the bead layer. The theoretical mean displacements in the flow direction (R_{mean}) at the experimental observation time, $\Delta = 50$ ms, were 1.75, 18.5, and 37.3 mm for the bulk layer, and 3.95, 42.1, and 84.9 mm for the bead layer, at flow rates of 0.041, 0.44, and 0.88 ml/min, respectively. These theoretical values agree with the displacements presented in Fig. 3. The bulk layer $P(Z,\Delta)$ exhibited the expected Poiseuille velocity profile, indicated by the Gaussian propagator (Fig. 3a, dotted line), which is shifted to the right as the flow rate increases [29]. $P(X,\Delta)$ as a function of flow rate exhibited the expected water diffusion profiles for all flow rates (Fig. 3c.), namely, broadening in the bead layer (due to dispersion) and unchanged in the bulk water layer. $P(Z,\Delta)$ of the bead layer deviated from a Gaussian profile, as expected: an increasingly wider profile and bigger shift in net displacement for the two lower flow rates and an asymmetric profile for the highest flow rate. All displacement profiles from the bead layer displayed enhanced flow due to the dispersive mixing process. Note that $P(Z,\Delta)$ at the lowest flow rate (0.041 ml/min) in the bead layer exhibited a slight, albeit detectable, shift in the displacement profile, which demonstrates the sensitivity of full q-space diffusion-weighted approaches to detecting low flow rates.

Propagator measurements are particularly sensitive to detecting displacements in the low-flow regime, which low-q measurements are not expected to detect. However, measuring the propagator requires applying strong gradients to acquire the entire q-space and, in addition, dense signal sampling. These conditions are difficult to achieve in preclinical and clinical spectrometers in which both gradient strength and acquisition time are limited. It has been suggested recently that an analytical representation of the signal could be used instead of an FFT to reconstruct the propagator [29]. The analytical method was shown to be robust to partial data acquisition and demonstrated better low-flow detection sensitivity than the FFT-based method.

A more accessible alternative to measuring the propagator would be to estimate the low-q dispersion coefficient. Table 1 presents these coefficients (longitudinal and transverse) obtained from the low-q regime ($q_{\text{max}} = 20.44$ mm$^{-1}$) data; only a single gradient direction was used in each case (i.e., not a full DTI acquisition). In the no-flow case, the ADCs in the bead section indicated isotropic diffusion, and the bulk water layer diffusivity was at the expected value for free diffusion at the temperature of the experiment. With flow conditions, all of the measured coefficients were in agreement with the expected dispersion values for the calculated Péclet numbers [19]. Because the bead packing order is known, and the acquired data can be predicted, these findings serve as a calibration measure to assure our phantom can be used to study the glymphatic system using MRI. The dispersion coefficients at the lowest flow rate of 0.041 ml/min did not differ from the diffusivity without flow in both the bead and bulk layers, indicating that low-q DWI measurements are not sufficiently sensitive to detect such low flow rates. This, indeed, was also expected because the lowest flow rate ($Pe < 1$) is at the diffusion-dominated regime, which makes its detection and separation from a coherent flow very challenging. In the biologically relevant flow rate (0.44 ml/min), Dz in the bulk layer exhibited a diffusivity similar to the value detected without flow. In the bead layer, however, both Dz and Dz showed significant increases of over 145% and 62%, respectively, compared with the diffusivities obtained without flow. This finding suggests that the non-uniform velocity distribution within the interstices of the bead pack increases dispersive mixing as measured by the increase in the ADC.

Of greatest interest is the increase of dispersive mixing observed in the direction perpendicular to the direction of the main flow, i.e., transverse dispersion. When ADC is measured in tissue or in in vivo samples, the flow direction is expected to be randomly oriented within the MRI voxel resolution; thus, coherent flow would be harder to detect. The transverse ADC in the bead region gives us an insight into the expected results in the case of microscopically, randomly oriented tissue. At the highest flow rate (0.88 ml/min) both layers (bulk and bead) exhibited a significant increase in diffusivity, indicating that for high flow rates, the low-q ADC measurement can detect both the increased mean velocity of the bulk layer and the dispersive mixing in the bead layer. However, it would be prudent to say that this flow rate is not
expected in the glymphatic flow case. Note that the Dx value is similar to D0 for the bulk flow for all flow rates, indicating the observed dispersion is indeed a result of a mixing process in the bead layer.

Focusing on the most biologically relevant flow rate (0.44 ml/min), standard DTI acquisition and processing protocols were used. This approach, which is readily available in preclinical and clinical scanners, would be more feasible for detection of flow in vivo despite the limitations on the detection of low flow rates. Figs. 4 and 5 show the FA, Dxx, Dzz, and MD maps for 0 and 0.44 ml/min flow rates, along with the corresponding mean metrics calculated from a circular region of interest (ROI) at the center of the tube, along with their standard deviations.

<table>
<thead>
<tr>
<th>Flow [ml/min]</th>
<th>Beads</th>
<th>Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.29</td>
<td>1.24</td>
</tr>
<tr>
<td>0.041</td>
<td>1.36</td>
<td>1.26</td>
</tr>
<tr>
<td>0.44</td>
<td>2.09</td>
<td>3.04</td>
</tr>
<tr>
<td>0.88</td>
<td>2.78</td>
<td>9.3</td>
</tr>
</tbody>
</table>

*Coefficient was obtained from fitting the attenuation curve up to b = 270 s/mm² due to rapid signal loss. The standard deviation (SD) of this measurement was 0.30 × 10⁻³ mm²/s. SDs in all other measurements were smaller than the reported least significant digit.

Fig. 3. Displacement propagators parallel, \(P(Z,\Delta) \), and perpendicular, \(P(X,\Delta) \), to the flow direction, at three flow rates and without flow. a. and c. are the bulk layer, and b. and d. are the bead layer. Gaussian propagators are superimposed over \(P(Z,\Delta) \) (dashed line).

Fig. 4. DTI FA maps of the bulk (a,c) and bead (b,d) layers. a and b: no flow. c and d: flow rate of 0.44 ml/min. Mean FA values are reported in Table 2.
scenario in which FA and MD parameters may be more suitable candidates to focus on.

A slightly different DTI acquisition protocol (the second protocol in the Materials and Methods section) was used to test the time dependency of the dispersion coefficient in this system as a function of the observation time, Δ. Table 3 shows that the longitudinal and transverse dispersion processes in the bulk region and transverse dispersion in the bead region do not depend on the observation time. This means that, in those cases, the fluid probed the entire heterogeneity of the system during the observation period. However, in the case of the longitudinal dispersion in the bead region we can see a clear time dependency, which is consistent with results from Khrapitchev and Callaghan [30].

Table 2
<table>
<thead>
<tr>
<th>Flow [ml/min]</th>
<th>ADC ± SD [x10^{-3} mm^2/s]</th>
<th>Beads</th>
<th>Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FA</td>
<td>Dxx</td>
<td>Dzz</td>
</tr>
<tr>
<td>0</td>
<td>0.11 ± 0.05</td>
<td>1.20 ± 0.11</td>
<td>1.20 ± 0.12</td>
</tr>
<tr>
<td>0.44</td>
<td>0.24 ± 0.05</td>
<td>1.90 ± 0.22</td>
<td>2.60 ± 0.30</td>
</tr>
</tbody>
</table>

Fig. 5. DTI ADC and MD maps of the bead (a–f) and bulk (g–l) layers. a–c. and g–i: no flow. d–f and j–l: flow rate of 0.44 ml/min. Mean values are reported in Table 2.

Table 3
ADCs parallel (Z) and perpendicular (X) to the flow direction of the phantom's bulk and bead layers for a flow rate of 0.44 ml/min at different observation times. The presented coefficients were averaged across an ROI at the center of the tube, along with their standard deviations.

<table>
<thead>
<tr>
<th>Δ [ms]</th>
<th>Dxx</th>
<th>Dzz</th>
<th>Dxx</th>
<th>Dzz</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1.92 ± 0.07</td>
<td>2.09 ± 0.10</td>
<td>1.95 ± 0.02</td>
<td>2.04 ± 0.05</td>
</tr>
<tr>
<td>50</td>
<td>1.90 ± 0.11</td>
<td>3.20 ± 0.21</td>
<td>1.94 ± 0.03</td>
<td>2.08 ± 0.07</td>
</tr>
</tbody>
</table>
They showed that observation times > 10 times the correlation time to flow one bead diameter (defined as $d/\langle \phi \rangle$) are needed for fluid dispersion to become a completely Gaussian, stochastic, and irreversible process. In our case, that would mean that the measured longitudinal dispersion coefficient would reach an asymptotic value for $\Delta > 120$ ms. Additionally, they showed that much less time is required for this limit to be reached for dispersion perpendicular to flow; this finding is in agreement with the measured apparent asymptotic transverse dispersion at $\Delta = 50$ ms. As previously mentioned, given in vivo MRI spatial resolution and the expected tissue microstructure, g LPCM flow would most likely appear as isotropic dispersion, which is mimicked by the transverse flow in the bead region. Our Dxx measurements indicated that the tissue would likely be in the dispersion asymptotic regime when g LPCM flow is measured by using a typical DTI protocol. In such a case, the dispersion process reaches a steady state, and measurement results become more reliable.

4. Conclusion

In this study we designed, constructed, and tested a g LPCM transport MRI phantom to assess the feasibility of detecting dispersive mixing behavior using DWI. The measured DTI metrics derived from water flowing at a rate of 0.44 ml/min through the bead layer all greatly increased compared to the stationary case (Tables I and 2). Both the transverse and the longitudinal dispersion coefficients were significantly affected. It should be noted that this phantom, which over-simplifies the environment of brain parenchyma, does not contain an intra-cellular region. In reality, the presence of restricted diffusion within the cells, which should be independent of the flow process, is expected to contribute to the diffusion-weighted signal. Nevertheless, the presented results indicate that DTI has the potential to detect dispersive flow within the range of CSF flow rates in human tissue.

Acknowledgements

This work was supported by funds provided by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (grant number ZIAHD000266) and the Center for Neuroregenerative Medicine (CNRM) under the auspices of the Henry M. Jackson Foundation (HJF). The authors thank Ms. Liz Salak for editing the manuscript.

References