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Abstract 

A unifying theoretical and algorithmic framework for diffusion tensor estimation is presented. Theoretical connections among the 
least squares (LS) methods, (linear least squares (LLS), weighted linear least squares (WLLS), nonlinear least squares (NLS) and their 
constrained counterparts), are established through their respective objective functions, and higher order derivatives of these objective 
functions, i.e., Hessian matrices. These theoretical connections provide new insights in designing efficient algorithms for NLS and con­
strained NLS (CNLS) estimation. Here, we propose novel algorithms of full Newton-type for the NLS and CNLS estimations, which are 
evaluated with Monte Carlo simulations and compared with the commonly used Levenberg–Marquardt method. The proposed methods 
have a lower percent of relative error in estimating the trace and lower reduced v2 value than those of the Levenberg–Marquardt method. 
These results also demonstrate that the accuracy of an estimate, particularly in a nonlinear estimation problem, is greatly affected by the 
Hessian matrix. In other words, the accuracy of a nonlinear estimation is algorithm-dependent. Further, this study shows that the noise 
variance in diffusion weighted signals is orientation dependent when signal-to-noise ratio (SNR) is low (65). A new experimental design 
is, therefore, proposed to properly account for the directional dependence in diffusion weighted signal variance. 
Published by Elsevier Inc. 
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1. Introduction

Diffusion tensor imaging (DTI) is a novel noninvasive 
technique capable of providing important information 
about biological structures in the brain [1–4]. This tech­
nique depends upon accurate and precise estimation of 
the diffusion tensor. The mathematical framework for dif­
fusion tensor estimation is both elegant and simple [1,4]. 
Its simplicity is due in part to the fact that the model is 
transformably linear [5]. However, the diffusion tensor in 
its original form as derived from first principles is a nonlin­
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ear model. Recent DTI studies have used several different 
models—from linear to nonlinear, and from unconstrained 
to constrained [4,6–12]. 

In general, the methods of estimation in DTI can be 
classified as linear least squares (LLS), weighted linear least 
squares (WLLS), nonlinear least squares (NLS) and their 
corresponding constrained counterparts, which will be 
denoted as CLLS, CWLLS and CNLS, respectively [4,6– 
12]. The constraint employed in the CLLS, CWLLS, and 
CNLS estimations is generally the positive definite con­
straint [11,12], i.e., the requirement that every eigenvalue 
of the diffusion tensor estimate be positive. The statistical 
comparison among different methods of diffusion tensor 
estimation, both unconstrained and constrained, has 
been studied in [12]. In the present study, we present a 
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theoretical and algorithmic framework for methods of esti­
mation in DTI by investigating the properties of various 
least squares objective functions. 

There are several numerical methods for solving the 
NLS problem in DTI. Yet, the Levenberg–Marquardt’s 
(LM) approach has been the method of choice, perhaps, 
due to its simple implementation. This simplicity is due in 
part to its approximation to the Hessian matrix of the 
NLS objective function. Another approach is Newton’s 
method (or full Newton-type method) where the complete 
Hessian matrix is required in the estimation process. It is 
well known that Newton’s method is more robust than 
the LM method and can speed up convergence in NLS 
problems [13,14], but the complete Hessian matrix is often 
not available or known for a given problem. Fortunately, a 
previous account has shown that this is not the case in DTI 
[15]. In this study, we will show that the Hessian matrices 
for various methods of estimation in DTI have simple 
and compact forms. 

We first review the basic estimation problem in DTI and 
discuss various least squares approaches for solving the 
problem. We then establish theoretical connections among 
the LLS, WLLS and NLS methods and among their con­
strained counterparts. We also derive all the Hessian matri­
ces for the methods of estimation discussed in this paper. 
We propose an efficient strategy, which will be called Mod­
ified Full Newton’s method (MFN), for solving both the 
NLS and CNLS problem. This strategy entails using the 
WLLS solution as the initial guess, adjusting the LM 
parameter, and incorporating the full Hessian matrix of 
the NLS objective function. A similar strategy is also 
adapted for solving the CNLS problem in DTI. 

The performance of the proposed method is compared 
with the LM method using Monte Carlo simulations. The 
robustness and accuracy of the MFN method is assessed 
with respect to the LM method in terms of percent relative 
error in the estimated trace and reduced v2  value. The sim­
ulations are also used to assess the validity of the assump­
tion of constant noise variance in a single voxel. The 
analysis and the results of this study provide new insights 
in constructing more appropriate experimental designs in 
which the direction-dependent noise variance is taken into 
account in the diffusion tensor estimation. 

2. Materials and methods

2.1. Review of DTI estimation 

In a DT-MRI experiment, the measured signal in a sin­
gle voxel has the following form [1,4,16]: 

s ¼ S0 expð-bg TDgÞ;	 ð1
where measured signal, s, depends on the diffusion encod­
ing gradient vector, g, of unit length, the diffusion weight, 
b, the reference signal, S0, and the diffusion tensor, D. 
The symbol ‘‘T’’ denotes the matrix or vector transpose. 
Given m P 7 sampled signals based on at least six noncol­
linear gradient directions and at least one sampled refer­
ence signal, the diffusion tensor estimate can be found by 
minimizing different objective functions. To facilitate our 
theoretical investigation, the objective functions for the 
LLS, WLLS and NLS problems are defined as follows: !2 m 7 mX X X1	 1
fLLS ðc yi - W ijcj F i

2; ð2
2	 2

i¼1 j¼1 

1	 Xm X 2 
7 Xm

2	 1
fWLLS ðc xi yi W ijc x2 2

j i F i ; ð3Þ
2	 2

i¼1 j¼1 i¼1 

and 

2 
1 m 7X X

fNLSðc si - exp W ijcj2 
i¼1 j¼1 X X1 m

2 1 m

ðsi - ŝiðcÞÞ ri
2: ð4

2	 2
i¼1	 i¼1 

The various symbols shown above are defined as: 

i = 1,. . ., m,  
si = the measured diffusion weighted signal with noise, 

ŝiðcÞ ¼
P

exp 7 
j¼1W ijcj the diffusion weighted 

function at c, 
xi = the weights for the WLLS objective function, 

F i y 7¼
P

i - j¼1W ijcj 

is the error term for the LLS objective function, 
riðcÞ ¼ si - ŝiðc
is the error term for the NLS objective function, 
yi = ln(si), 

W

-b1g2 
1x -b1g2 

1y -b 2 
1g1z -2b1g1xg1y -2b1g1y g1z -2b1g1xg1z

. . . . .. . ..  . .. . . . 
-b 2 2 2

mgmx -bmgmy -bmgmz -2bmgmxgmy -2bmgmy gmz -2bmgmxgmz

is a m · 7 design matrix, and 
c = [ln(S0), Dxx, Dyy, Dzz, Dxy, Dyz, Dxz]

T is the param­
eter vector. 

In general, the diffusion tensor is assumed to be symmet­
ric positive definite—in other words the eigenvalues of the 
diffusion tensor have to be real and positive. By definition 
of the design matrix, W, the diffusion tensor estimate is 
guaranteed to be symmetric but not positive definite. The 
positive definite condition requires more elaborate con­
straints on the diffusion tensor parameter vector, 
[Dxx,· · ·,Dxz]

T. A typical approach is to apply the Cholesky 
parametrization to D [17,11,12]. The Cholesky parametri­
zation states that if U is an upper triangular matrix with 
nonzero diagonal elements 

q2 q5 qB 7 

U ¼ 0 q3 q6 ð5
0 0 q4 

and  TD = U U then D will be a symmetric positive definite 
matrix. Consequently, the parameter vector, c, may be 
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written as a vector-valued function of q = [q1, q2, q3, q4, q5, 
q6, q7]T so that: 

cðqÞ ¼ ½q q ; 2 
1; 

2 
2 q3 þ q2 ; q2 

5 4 þ q2 þ q2 
6 7; q2q5; q3q6

þ q5q7; q
T

2q7] ð6

Rewriting Eqs. (2)–(4) in terms of q, we have, !X 2m 1 X7 

fCLLS ðcðq yi - W ijcjðqÞ ; ð7Þ
2 

i¼1 j¼1 

X X 2m1 7 

f ðcðq x2
CWLLS i y -

2 i W ijcjðqÞ ð8Þ
i¼1 j¼1 

and " #
1 X X 2 m 7 

fCNLS ðcðq si - exp W ijcjðq ; ð9Þ
2 

i¼1 j¼1 

respectively, for the constrained estimations. Note that the 
CLLS and the CWLLS objective functions are no longer lin­
ear with respect to the new variables q. The naming conven­
tion adopted here for the constrained LLS and WLLS 
methods is for convenience rather than technical correctness. 

2.1.1. Theoretical connections among the least squares 
methods: zeroth order 

Without loss of generality, we will focus on the uncon­
strained methods of estimation in this section. The goal 
of this section is to establish connections among the LLS, 
WLLS and NLS objective functions via the error terms 
defined above, and to understand the assumptions needed 
to arrive at the LLS and WLLS objective functions from 
the NLS objective function. It can be shown that Eq. (4) 
can be written as: 

1 Xm

fNLS ðc s2 2 
i ð1- exp½-F i]Þ

2 
i¼1 

1 Xm 

s2 2 
î ðexp½þF i] - 1Þ : ð10Þ

2 
i¼1 

The derivation of Eq. (10) is shown in Appendix A. Eq. 
(10) exhibits a certain symmetry when the error term, Fi, 
is small. Assuming |Fi|« 1, we take the first order Taylor 
expansion of exp [-Fi] @ 1 - Fi and of exp [+Fi] @ 1 +  Fi, 
so Eq. (10) can be approximated as

Xm1 Xm

f ðc s2 2 1
F ŝ2F 2 

WLLS 
2 i i i i ; ð11

2 
i¼1 i¼1 

which gives us two formulae analogous to the WLLS objec­
tive function in Eq. (3). Eq. (11) indicates that the weights, 
si and ŝi, are equally appropriate when the error Fi is small. 
Therefore, the observed diffusion weighted signals can be 
used as weights for the WLLS method. The use of diffusion 
weighted signals as the weights for the WLLS objective 
function has been previously proposed on different theoret­
ical grounds by Salvador et al. [10] and by Basser et al. [4]. 
If we assume si’s in Eq. (11) are approximately equal to 
some constant, C, then the WLLS objective function can be 
reduced to the LLS objective function by setting the con­
stant to unity. Therefore, 

1 Xm 

f F 2 
LLSðcÞ ¼

2 i : ð12Þ
i¼1 

The restrictive and physically implausible assumption 
needed to arrive at Eq. (12) from Eq. (11) clearly shows 
the inadequacy of the LLS method. 

2.1.2. The theoretical connections among the least squares 
methods: higher order 

In this section, we will present a higher order expres­
sion of the objective function for all the methods of esti­
mation discussed above. Explicit expressions for the
Hessian matrix, the Jacobian matrix, and the gradient 
vector for the NLS method will be presented first but 
the derivations of these expressions will be provided in 
Appendix B. Expressions for the Hessian matrix and 
the gradient vector of the NLS objective function have 
simple connections to those of the WLLS and LLS 
objective functions based on the analysis presented in 
Section 2.1. In the NLS method, the Hessian matrix, 
the transpose of the Jacobian matrix, and the gradient 
vector can be written as: 

2fNLS ðcÞ ¼WT ^ðS2 ^- RSÞW; ð13

T T 
J c ^ð Þ ¼ -ðSWÞ ; ð14

and 

rf ^ T 
NLSðcÞ ¼ -ðSWÞ rðcÞ; ð15

respectively; where the Hessian matrix is defined as 
22 o½r f f

NLSðcÞ] NLS c

ij =
ð

ociocj
and the matrix, S, is a diagonal 

matrix whose nonzero elements are the measured diffusion 
weighted signals: 

s1

. 
S . ð16Þ.

sm

Similarly, R and Ŝ are diagonal matrices whose nonzero 
elements are the diffusion weighted functions and the error 
terms evaluated at c, respectively: 1

ŝ1ðc r1ðcC
^ . S ¼ . C .

 A; R .. .

ŝmðc rmðc
ð17

We shall derive the same higher order information for 
the WLLS and LLS methods from the NLS Hessian matrix 
as follows: 

(I) 2f T ^2 ^
NLSðcÞ ¼W ðS - RSÞW; 

(II) 2fNLSðcÞ ffiWTŜ2W if R ffi 0; 
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(III) 2fNLSðcÞ ffiWTS2W if S ^ffi S, similar to the 
assumption used in Eq. (11); 

(IV)	 2fNLSðcÞ ffiWTW if S @ I, similar to the assump-
tion used in Eq. (12). 

In deriving (II) from (I), we have assumed that the error
 
matrix, R, is close to zero. If we further assume that S ^ffi S, 
then we have the Hessian matrix for the WLLS method as 
is shown in (III). Pushing a step further by assuming S @ I, 
we then arrive at the Hessian matrix of the LLS method, 
which is in (IV). 

For completeness, the Hessian matrices and the gradient 
vectors for the WLLS and LLS methods are: 

2fWLLS ðcÞ ¼WTS2W; and	 ð18

2fLLS ðcÞ ¼WTW;	 ð19

f Tr WLLS ðcÞ ¼ -ðSWÞ Sðy -WcÞ;	 ð20Þ
rfLLS ðcÞ ¼ -WTðy -WcÞ:	 ð21Þ

Despite the additional information required to specify 
the CNLS objective function, its Jacobian, Hessian, and 
gradient vector are remarkably similar to its unconstrained 
counterparts; these higher order structures are listed below: Xm 

2f T ^ðq ^
CNLS Þ ¼ Jq ðcÞWTðS2 - RSÞWJq riŝiPi ð22Þ

i¼1 

rf T Tq ^
CNLS ð Þ ¼ -Jq ðcÞW Sr	 ð23

where ocJ i
qðcÞ]ij oqj
½ ,

1 0 0 0 0 0 0 

0 2q2 0 0 0 0 0 

0 0 2q3 0 2q5 0 0 

Jqðc 0 0 0 2q4 0 2q6 2q7 ð24

0 q5 0 0 q2 0 0 

0 0 q6 0 q7 q3 q5 

0 q7 0 0 0 0 q2	 

and 

0 0 0 0 0 0 0 

0 2W i2 0 0 W i5 0 W i7 

0 0 2W i3 0 0 W i6 0 

Pi ¼ ð-1 0 0 0 2W i4 0 0 0 : 

0 W i5 0 0 2W i3 0 W i6 

0 0 W i6 0 0 2W i4 0 

0 W i7 0 0 W i6 0 2W i4 

ð25

The derivations of the above equations are provided in 
Appendix C. 

If the NLS estimate is positive definite then this estimate 
is equivalent to the CNLS estimate. This result can be 
obtained by replacing the map c (q) with the identity map 
so that the Jacobian matrix Jq (c) in Eqs. (22)–(24) reduces 
to the identity matrix. Therefore, the gradient vector and 
the Hessian matrix of the CNLS method reduce to that 
of the NLS method. The reduction from the CNLS method 
to the CWLLS and CLLS methods can be analogously 
established.
 
2.2. The modified full Newton’s method 

In this section, we present the basic idea of modified full 
Newton’s (MFN) method; the specific algorithm is in 
Appendix D in a format that allows for ready implementa­
tion of the NLS and CNLS methods. Before presenting the 
algorithm, we would like to give a brief introduction to the 
LM and the proposed methods in the context of modified 
full Newton’s method of function minimization. 

Define the least squares objective function, 

1 Xm

r 2 1
f ðc iðcÞ r Tr;	 ð26Þ

2 2
i¼1 

where T
rðcÞ ¼ ½r1ðc rmðcÞ] . The equation to be solved 

in the kth iteration in MFN method can be written as 
[13,14]: 

Hðck Þdk ¼ -rf ðck Þ;	 ð27

where dk is known as the search step vector, H (ck) is the 
generalized Hessian matrix and $f (ck) is the gradient 
vector. The gradient vector is written as: 

rf ðcÞ ¼ JTðcÞrðcÞ;	 ð28

where J(c) is known as the Jacobian matrix with
[J (c)]ij = ori(c)/ocj. 

It is interesting to note that the key difference in various 
approaches of function minimization lies in the expression 
of the generalized Hessian matrix. For example, the gener-
alized Hessian matrix for the MFN, Gauss Newton’s, New­
ton’s, and LM methods can be written as: XN

H ð Þ = JTð ÞJð r ð Þr2
MFN c c c i c riðcÞ þ kI; ð29

i¼1 

HGN ðcÞ = r2f ðcÞ ¼ JTðcÞJðcÞ;	 ð30XN 

H ð Þ = r2
N c f ðcÞ ¼ JTðcÞJð rið 2c cÞr riðcÞ; ð31

i¼1 

and

H T
LM ðcÞ = J ðcÞJðcÞ þ kI; ð32

respectively; where I is the identity matrix and k is the 
Levenberg–Marquardt parameter, which is always
assumed to be a nonnegative real number. 

In the MFN algorithm, we take Eq. (29) as our gen­
eralized Hessian matrix. In addition to that, the param­
eter k will be set to zero initially and will remain so 
during the iterative process until a higher objective func­
tion value is encountered. This is done so that a full 
Newton step can be taken at the first iteration since 
the WLLS estimate can be used as a reasonable initial 
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guess. For completeness, the algorithm for the MFN 
method is shown in Appendix D. 

2.3. Methods of comparison and numerical simulations 

Monte Carlo simulations similar to those of Pierpaoli 
and Basser [18] were carried out to analyze the MFN and 
the LM methods by comparing the percent relative error 
in estimating the trace, where the percent of relative error 
of an estimate ŵ of a known parameter is defined as 

 ŵj -w 
 j xw 100%. Further, we used the reduced v 2, v2

m , value 
as another measure to gauge the accuracy and the good­
ness-of-fit among these methods [19]. 

Since the theoretical variance for a given simulation is 
known a priori, comparing the normalized histograms of 
the v2 

m estimates to the theoretical distribution provides 
an excellent measure for goodness of fit. Briefly, let ĉ be 
the NLS (or CNLS) estimate of the objective function fNLS 

(or fCNLS), then 2f NLS ðĉ
m or ĉ

m is an unbiased vari­

ance estimate of the DW signals where m = m - p = m - 7 
is the number of degrees of freedom; m is the number of 
sampled signals; and p the number of parameters. We shall 

denote 2f NLS ðĉ
m or f 2  CNLS ðĉ

m as r2 
DW. The v2 

m value can be com-

puted by dividing the variance estimate with the known 

variance, that is, 
r2 

DW

r2 
Rician 

, where r2
Rician is the known variance 

of the noise based on the Rician probability density 

[20,21]. Intuitively,
r2 

 DW �
r2
 

Rician
 

1 indicates a good estimate of 

r2

DW. 

To facilitate the comparison between the normalized 
histogram and the theoretical density curve, we will need 
the reduced v 2 probability density. We provide here an out­
line of this derivation. Let the v2 

m probability density be gv2
m 
, 
Fig. 1. Reduced v2  probability density curves w
and the Chi-square v 2 probability density be gv2 . Then, the 
v 2 density can be written as [19] 

2 -m=2 

g ðm=2Þ-1 -x=2
v2ðxÞ ¼ x e : ð33

Cðm
2
Þ

The v2 
m probability density can be obtained by making a lin­

ear transformation on the random variable, x, so that the 
new random variable, y, can be written as y = x/m: 

gv2
m 
ðxÞ ¼ mgv2ðmxÞ: ð34

The expected value and variance of a random variable with 
v2 

m density are: 

Ev2 ½x] ¼ 1 and  Var 2 ½x] ¼ 2=m: ð35
m vm

The plot of the v2 
m density with different numbers of degrees 

of freedom is shown in Fig. 1. 
The magnitude MR image is derived from the complex 

signals and is used for diffusion tensor estimation; there­
fore, noise characteristics of the magnitude MR signal will 
affect the accuracy of the tensor estimate. It is well known 
that noise in MR magnitude signals follows the Rician dis-
tribution [20–22]. Therefore, the theoretical variance used 
to generate Gaussian noise r2

Gaussian for each of the real 
and complex components will have to be transformed 
appropriately with respect to Rician density when the noise 
variance in the magnitude image is of interest. Provided 
here is an exact formula taken from Koay and Basser 
[22] for expressing the variance in magnitude MR signal 
in terms of the variance of the Gaussian noise in the two 
quadrature channels and a correction factor, n. This 
correction factor is written in terms of SNR in order to 
facilitate simulation studies. Let h = SNR, the noise 
variance in magnitude MR signal can be expressed as [22]: 

r 2 ¼ nðhÞr 2 
Rician Gaussian ; ð36Þ
ith different numbers of degrees of freedom. 
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where 

h2 p 2
n h2 ðh 2þ - e - =2 ð2þ h2ÞI0ðh2 =4Þ þ h2I1ðh2 =4Þ

8 
ð37

and I0 and I1 are the modified Bessel functions of order 
zero and one, respectively. 

Two different simulations are carried out in this work. 
The first simulation focuses on the distributional properties 
of the v2 

m estimate and of the trace estimate as obtained by 
various nonlinear LS algorithms. In this type of computa­
tionally expensive simulation, we have to be selective in the 
choice of physiologically relevant tensors in order to reduce 
computation cost and, more importantly, to make the sim­
ulation results concise and representative. Therefore, we 
have chosen two specific tensors for this simulation: two 
cylindrically symmetric tensors with the same trace value 
of 2.190 · 10 -3 mm2/s, but different FA values of 0.5398 
and 0.8643. Other relevant simulation parameters are listed 
here, diffusion weight ( 2b = 1000 s/mm ), the reference sig­
nal (S0 = 1000 a.u.) and the parameter vectors c, 
([ln(1000) s/mm2, 1.236 · 10 -3, 4.765 · 10 -3, 4.765 · 10 -3, 
0, 0, 0]T mm2/s and [ln(1000) s/mm2, 1.758 · 10 -3, 
2.158 · 10 -3, 2.158 · 10 -3, 0, 0, 0]T mm2/s). 

The second simulation is based on simulated human 
brain tensor data. Its goal is to complement the first simu­
lation by accounting for a wide range of tensor shapes. In 
this simulation, we focus on the human brain map of the 
mean value of the relative error in estimated trace. The 
clinical DT-MRI human brain images were acquired from 
a healthy volunteer using a high angular scheme [27,28]. All 
images were co-registered [23] and robust tensor estimation 
[7] was used to eliminate ‘‘outliers’’ from the data. The 
computed tensors, combined with the relevant parameters 
mentioned above, were then used to create the simulated 
diffusion weighted signals and one non-diffusion weighted 
signal using the single diffusion tensor model of Basser 
[4]. Gaussian noise was added in quadrature [18] so as to 
simulate images with a signal-to-noise ratio (in the non-dif­
fusion weighted image) of 5 in each pixel. This particular 
approach allows us to investigate the response of anatom­
ically specific tensors in the brain under the same simula­
tion conditions, which would otherwise be quite difficult 
experimentally. In this way, we are able to identify regions 
in the brain where the constrained methods are likely to be 
useful, i.e., in regions where negative eigenvalues are more 
prevalent. 

We shall adopt the following convention on the 
algorithms mentioned above when discussing the 
results: NLS-LM (NLS estimation using the LM 
method), NLS-MFN (NLS estimation using the MFN 
method), CNLS-LM (CNLS estimation using the LM 
method) and, CNLS-MFN (CNLS estimation using 
the MFN method). Finally, the LM method used in 
this study was taken from a routine in JMSL of Visual 
Numerics® called NonlinLeastSquare which is based on 
MINPACK routine LMDIF by Moré et al. [24]. The 
MFN routine for the NLS and CNLS methods was 
developed in-house using the Java programming lan­
guage together with the QR decomposition routine 
from JAMA [25]. 

3. Results and discussion

The results on the distributional properties of the v2 
m 

estimate and of the trace estimate are summarized in 
Figs. 2 and 3. The results on the average value of the 
relative error in estimating the trace in the simulated 
human brain map are shown in Fig. 4. Fig. 5 

Figs. 

shows 
the difference in these average values among various 
methods considered in this paper. The results of 
2 and 3 are computed from a collection of 50,000 simu­
lated tensors. In Figs. 4 and 5, the results on each pixel 
are computed from a collection of 10,000 simulated ten­
sors. The histograms of the v2 

m estimate and of the trace 
estimate are plotted in Figs. 2 and 3, respectively. Each 
histogram in the panel is computed using different meth­
ods, i.e. the NLS-LM, the NLS-MFN, the CNLS-LM or 
the CNLS-MFN method. 

Figs. 

In Fig. 2, the results of the v2 
m estimate associated with 

the first tensor with medium FA of 0.539 at SNR = 5 
and SNR = 15 are shown in panels A and B, respective­
ly. Similarly, the results associated with the second tensor 
with FA = 0.864 at SNR = 5 and SNR = 15 are shown 
in panels 2C and D, respectively. In each panel, the the­
oretical distribution is shown in gray. It is interesting to 
note that the v2 

m histogram of the NLS-MFN method is 
shifted to the left of the theoretical distribution in 
2A and C, which implies that the v2 

m estimated by the 
NLS-MFN method is, in general, lower than the known 
distribution! Low v2 

m values do not necessarily indicate a 
better fit, but rather a problematic estimate of the vari­
ance, i.e., r2 

Rician . This anomaly of having a lower v2 
m val-

ue than expected might not have been noticed without 
the Newton-type method of optimization, i.e., the 
MFN method. More importantly, this anomaly suggests 
that the signal variance is orientation dependent, that 
is, the variance depends on the gradient direction. There­
fore, a new experimental design capable of obtaining 
multiple replicates in each gradient direction is needed. 
This new experimental design would allow estimation 
of the mean signal and signal variance on each gradient 
direction, the analytically exact correction scheme pro­
posed by Koay and Basser [22] can be used to estimate 
diffusion weighted signals that are Gaussian distributed. 
This approach reduces considerably the effects of the 
noise floor. This research topic is currently under inves­
tigation. Note that the pathologies of the rectified noise 
floor on tensor-derived quantities have been investigated 
by Jones and Basser [9]. 

The results in Fig. 3 are arranged similarly to those in 
Fig. 2. It is interesting to note here that a systematic shift 
in the distributions of the trace estimate as computed by 
the LM method, i.e., NLS-LM and CNLS-LM, can be seen 
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Fig. 2. Histogram of reduced v2  values for two different SNR levels and FA values calculated from 500,000 simulated tensors: (A) SNR = 5, FA = 0.539, 
(B) SNR = 15, FA = 0.539, (C) SNR = 5, FA = 0.864, and (D) SNR = 15, FA = 0.864. Note that the theoretical reduced v2  curve in (B) and in (D) is 
superimposed on that of MFN. 
quite easily at SNR = 5. The quantitative information on 
these shifts is tabulated in Table 1 as the percent of relative 
error in estimating the trace. The results in Table 1 can be 
summarized as follows: (I) in NLS estimation, the MFN 
method has a lower relative error in estimating the trace 
than the LM method, (II) in CNLS estimation, the MFN 
method is also better than the LM method, and (III) the 
CNLS-MFN method has lower relative error in estimating 
the trace than other methods considered in this paper. 

The results on the simulated human brain data are 
shown in Figs. 4 and 5. Fig. 4 is the whole brain map of 
the average value of the relative error in estimating trace. 
The results show that the CNLS-MFN method has the 
lowest relative error among the methods considered here. 
The images shown in Figs. 4 and 5 indicate that the 
MFN method has lower relative error in estimating trace 
than the LM method in almost every region of the brain 
except in the ventricles and in the sulci where the results 
between the methods are comparable. Further, the differ­
ence between the NLS and the CNLS estimations by the 
same method of optimization, the LM method or the 
MFN method, can also be discerned, particularly, in the 
genu of the internal capsule and in the Corpus callosum, 
Figs. 5B and D. An obvious feature of Figs. 5B and D is 
that the figures closely resemble the FA map! This shows 
that the constrained methods are most relevant in the white 
matter regions. 

Analysis of the algorithms presented here is an interest­
ing area of study and is under investigation. A detailed dis­
cussion of this topic is beyond the scope of this paper. It 
suffices to say that the computation time per estimation 
for the methods discussed in this paper was approximately 
1 ± 0.5 ms on a Dell Precision 670 with dual Intel Xeon 
3.5-GHz processors. 



122 C.G. Koay et al. / Journal of Magnetic Resonance 182 (2006) 115–125 

Fig. 3. Histogram of estimated trace values for two different SNR levels and FA values: (A) SNR = 5, FA = 0.539, (B) SNR = 15, FA = 0.539, (C) 
SNR = 5, FA = 0.864, and (D) SNR = 15, FA = 0.864. 

Fig. 4. The average value of the percent relative error in estimating trace by the (A) NLS-LM, (B) CNLS-LM, (C) NLS-MFN, and (D) CNLS-MFN 
methods based on simulated human brain data with SNR = 5, b = 1000 s/mm2 and a 23 gradient direction set. These images show that the MFN method 
has lower relative error in estimating trace than does the LM method in almost every region of the brain except in the ventricles and sulci. Interestingly, the 
difference between the NLS and the CNLS estimations by the same method of optimization, the LM method or the MFN method, can readily be discerned 
in the genu of the internal capsule and in the Corpus callosum (B and D); these regions are known to have high FA values. 
4. Conclusion	 

The Hessian matrices for various least squares problems 
are explicitly derived. Simulation results indicate that the 
accuracy of a diffusion tensor estimate can be substantially 
improved by explicitly including the Hessian matrix in the 
least squares estimation algorithm. The proposed con-
strained nonlinear least squares estimation based on the 
modified full Newton’s method has lower relative error in 
estimating the trace than other methods discussed in this 
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Fig. 5. The difference in the average percent of relative error in estimating trace between (A) NLS-LM and NLS-MFN, (B) CNLS-LM and CNLS-MFN, 
(C) NLS-LM and CNLS-LM, and (D) NLS-MFN and CNLS-MFN. These images again show that the MFN method has lower relative error in 
estimating trace than does the LM method. The differences between the NLS and the CNLS estimations by the same method of optimization is more 
readily discernible in (C and D) and, as commented on Fig. 4, these differences are most distinct in the genu of the internal capsule and in the Corpus 
callosum. It is interesting to note the similarity in features between these images (C and D) and a typical FA map. 

Table 1 
Percent of relative error in estimating the trace 

SNR 5 (%) SNR 15 (%)
 

_____ Medium FA High FA Medium FA High FA
 

NLS-MFN 10.76 14.10 1.10 1.49 
NLS-LM 29.22 33.39 4.21 5.44 
CNLS-MFN 8.70 7.24 1.08 1.31 
CNLS-LM 23.82 20.10 4.19 5.21 
paper. The proposed method not only provides a more 
accurate tensor estimate but also a more accurate Hessian 
matrix. The importance of the Hessian matrix can be 
gleaned from recent works by Chang et al. [29], Carew 
et al. [30] and Koay et al. [31], where the inverse of the Hes­
sian matrix is used for computing the variance–covariance 
matrix of the estimated DTI parameters. Therefore, the 
proposed framework will be very useful in testing optimal 
experimental designs in DTI as well as in fiber tractography 
where the variability in the major eigenvector can be accu­
rately quantified. 
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Appendix A 

The derivation of Eq. (11) from Eq. (10) is shown 
below: 

2 
1 Xm X7 

fNLS ðc si - exp W ijcj2 
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1 X 1 X 2 m 7 
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i 1- exp W ijcj 2 sii¼1 j¼1
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ŝ2 
i si exp - W ijcj 2 

i¼1 j¼1 Xm 1 
s2 2 
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Appendix B 

In this appendix, we will derive the gradient vector, the 
Jacobian matrix and the Hessian matrix of the NLS objec-
tive function. Given the NLS objective function 

X 2 
1 Xm 7 

fNLS ðc si - exp W ijcj ; 
2 

i¼1 j¼1 

the derivative of fNLS (c) with respect to cl is 

ofNLSðc Xm X7 oc m 

r s W j 
X

ið- î ij ¼ - riŝiW 
o o

ilcl i¼1 j¼1 
cl i¼1 Xm

¼ - W Tli ̂siri:
i¼1 

In matrix notation, the gradient vector has the following 
form: 2 3

ofNLS ðc6 oc1 76 . 7 ¼ -WT^rfNLS ðc 6 . 7 Sr ¼ JT r; 4 . 5
ofNLS ðc

oc7 

where the transpose of the Jacobian matrix is T ^J ¼ -WTS.
 
The second order derivative of the NLS objective func­

tion will be established as follows: 
ð Xo 2f m
NLS c o ¼ ½rið-ŝ ÞW 

o o o
i il]ck cl i¼1 

ck Xm  
ŝ2

i W ilW ik þ rið-ŝiÞW ilW ik 

i¼1 Xm 

W T 
  

 ŝ2 
ki i - riŝi W il: 

i¼1

In matrix notation, the full Hessian matrix is 

2f ^2 ^
NLSðcÞ ¼WTðS - RSÞW: 
Appendix C 

In this appendix, we derive the gradient vector and the 
Hessian matrix of the constrained nonlinear least squares 
method. 

Xm 1 X7 
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by change of variables. In matrix 

notation, the gradient vector is 
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In matrix notation, we have 

Xm
2f ^
 ^
JT
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Appendix D 

In this appendix, we provide the MFN algorithm for 
both the NLS and CNLS estimations. In the CNLS estima­
tion, the initial guess has to be modified slightly before 
being used in the MFN algorithm. 
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MFN algorithm: 
At the initial iteration, let c0 be the solution to the 

WLLS problem, k = 0, and flag = true. When the Hessian 
and the gradient vector have to be evaluated at new c the 
flag will be set true. 

Then at the kth iteration, 

1. if(flag == true) Evaluate HMFN(ck) and $f(ck) 
2. Solve (HMFN(ck) +  kI) dk = -$f(ck) for dk 

3. If (f(ck + dk) <  f(ck)) {
 
}E

} 
k = 0.1 · k
 
Accept dk by setting ck+1 = ck + dk
 

flag = true
 
lse {
 
if (k= = 0), set k = 0.0001
 
else k = 10.0 · k
 
Reject dk by setting ck+1 = ck
 

flag = false

4. Repeat	 these steps, (1, 2 and 3), until 0 6 - T dk

rf ðckþ1 < e1 and jf ðckþ1Þ - f ðckÞj < e2 where e1 

and e2 are small positive numbers. 

As mentioned in the text, a slight modification is needed for 
the CNLS method because the initial guess is taken from 
the WLLS method rather than the CWLLS method. There­
fore, the parameter vector, q, for the CNLS method has to 
be obtained from the modified Cholesky factor [26] derived 
from the diffusion tensor estimate of c. The modified 
Cholesky factorization is one of the approaches to make 
a non positive definite symmetric matrix sufficiently posi­
tive definite [13,26]. 
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