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Abstract 
We investigate the heterogeneity of electrical conductivity as a new mechanism 
to stimulate excitable tissues via applied electric fields. In particular, we show 
that stimulation of axons crossing internal boundaries can occur at boundaries 
where the electric conductivity of the volume conductor changes abruptly. The 
effectiveness of this and other stimulation mechanisms was compared by means 
of models and computer simulations in the context of transcranial magnetic 
stimulation. While, for a given stimulation intensity, the largest membrane 
depolarization occurred where an axon terminates or bends sharply in a high 
electric field region, a slightly smaller membrane depolarization, still sufficient 
to generate action potentials, also occurred at an internal boundary where the 
conductivity jumped from 0.143 S m−1 to 0.333 S m−1, simulating a white-
matter-grey-matter interface. Tissue heterogeneity can also give rise to local 
electric field gradients that are considerably stronger and more focal than those 
impressed by the stimulation coil and that can affect the membrane potential, 
albeit to a lesser extent than the two mechanisms mentioned above. Tissue 
heterogeneity may play an important role in electric and magnetic ‘far-field’ 
stimulation. 

_____ 

1. Introduction

Neural stimulation using low frequency electric fields may be achieved through a variety of 
mechanisms. For long, straight, uniform unmyelinated fibres, the passive response of the axon 
to an applied electric field, EE, can be modelled in terms of the cable equation (Basser and 
Roth 1991, Roth and Basser 1990) 
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where V 1  Vm Vr= −  is the deviation of the transmembrane potential Vm from its resting value 
Vr , Ex is the component of the total electric field in the direction of the axon, and τ and λ are the 
membrane time and space constants, respectively. If, in the steady state, V 1 also varies slowly3 

3 By ‘slowly’ we mean that V1(x) varies over spatial wavelengths much greater than the membrane’s space constant. 

with x then the first two terms on the left are negligible and − 2 ∂Eλ x 
∂x  provides an estimate 

of the change in membrane potential caused by the stimulus. Thus, the membrane is most 
strongly depolarized where −λ2 ∂Ex

∂x
is the largest, i.e. where the electric field is decreasing 

most rapidly, and therefore this is where an action potential is likely to be initiated. This term 
is usually referred to as the activating function. Here it has been written in terms of the electric 
field so that it applies to both electric and magnetic stimulation. In magnetic stimulation the 
electric field is generated by electromagnetic induction and is given by E AE = − ∂ E −∇φ

∂t
, where 

AE and φ represent the magnetic vector potential and the electric scalar potential, respectively, 
(Roth et al 1991a). For electric stimulation, the activating function can be written as 2 2 ∂ φ 

λ 2 ∂x

(Rattay 1986). 
In general, however, axons may terminate, follow curved paths, branch, or change 

diameter. In these cases, membrane polarization can take place even in the absence of an 
electric field gradient (Tranchina and Nicholson 1986, Reilly 1989). For a straight fibre of 
finite length L » λ in a uniform electric field, a significant polarization occurs only in the 
vicinity of the termination, with a maximum magnitude λEx at the termination point (Roth 
1994). The polarity of the change in membrane potential depends on whether the electric 
field is directed into (hyperpolarization) or out of (depolarization) the axon membrane at the 
termination. For curved fibres with sharp bends, the membrane polarization at the bend is 
proportional to λEx and a membrane polarization proportional to λE¯

x is also predicted for 
sudden changes in the axon diameter, where λ̄ is a function of the space constants on either 
side of the discontinuity in diameter (Roth 1994). Stimulation at terminations and bends is 
likely to be particularly relevant in the brain (Nagarajan et al 1993, Maccabee et al 1993). 

In this paper we investigate the possibility that tissue heterogeneity may also affect 
significantly the transmembrane potential of excitable cells, even when they are subjected 
to an applied electric field whose amplitude may be uniform on the scale of the membrane 
space constant. Indeed, tissue heterogeneity can introduce large local changes in the spatial 
distribution of both the electric field and the electric field gradient, due to charge accumulating 
at the boundaries separating tissues with different electrical conductivities. Charge builds up 
at tissue boundaries whenever the normal component of the applied electric field is not zero 
and gives rise to a secondary electric field that ensures the continuity of the normal component 
of the current density. 

Charge accumulation at the tissue–air boundary during magnetic stimulation has already 
been shown to reduce the normal component of the current density in the volume conductor 
to zero (Tofts 1990, Branston and Tofts 1991, Roth  et al 1991b, Heller and van Hulsteyn 
1992) and its effect is taken into account in most studies. However, few studies have sought 
to quantify the effect of internal boundaries on the electric field distribution. Some authors 
have investigated experimentally the effect of a soft tissue–bone interface on the magnetic 
stimulation of peripheral nerves (e.g., Maccabee et al (1991), Schmid et al (1992)), while 
others have modelled numerically the effect of interfaces between different soft tissues (e.g., 
Kobayashi et al (1997), Liu and Ueno (2000), Miranda et al (2003)). 

Another consequence of tissue heterogeneity, hitherto unexplored, is its local effect on the 
membrane potential of an axon that crosses an internal boundary, such as a white-matter-grey
matter interface. The accumulation of charge at the boundary gives rise to a discontinuity in 
the normal component of the electric field, whose magnitude is given by 1En  2 φ= ∇ , where 
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φ is the electric potential due to the surface charge accumulated on the boundary. The electric 
field at the interface is depressed in the high conductivity region by ∇φ and is boosted in the 
low conductivity region by the same amount. The amplitude of this discontinuity is related to 
the normal component of the total electric field at the boundary, EE , by    

σ1 − σ2 
1En = 2 EE · En, (2)

σ1 + σ2

where σ1(σ2) is the electrical conductivity of the tissue anterior (posterior) to the interface, as 
determined by the direction of the electric field (Miranda et al 2003). If the jump in the normal 
component of the electric field is modelled as a Heaviside step function of height 1En then 
the derivative of the electric field along the direction of the axon (x) is a Dirac delta function, 
1Exδ(x), and the cable equation for a long, straight unmyelinated axon can be written as 

2 ∂
2V 1 ∂V  1 2λ − τ − V 1 = λ 1Exδ(x), (3)
∂2x ∂t  

where 1Ex = 1En cos(θ), θ being the angle between the interface normal and the axon’s 
axis. The steady-state solution for this equation is 

λ1Ex − |x|
λV 1(x) = −  e (4)

2 
assuming again that L » λ. See Plonsey and Barr (2000, p 186) for the solution to a similar 
problem. At the location of the electric field jump, x = 0, the change in membrane potential 
is given by λ1Ex/2. 

In this paper we examine the relative importance of the above-mentioned neural 
stimulation mechanisms by comparing the magnitude of the changes in membrane potential 
due to the electric field, λEx , to the electric field gradient, 2 ∂Eλ x 

∂x  , and to the electric field 
discontinuity, λ1Ex/2, in different situations. In all cases the electric field is induced by a 
magnetic stimulator with a figure 8 coil. 

2. Methods 

2.1. The axonal length constant 

Some knowledge of the axonal length constant, λ, is required to compare the changes in 
membrane potential caused by the different stimulation mechanisms. For myelinated axons 
the length constant will have different values in the myelinated sections and in the nodes of 
Ranvier. Basser (1993) derived a macroscopic cable equation for a composite myelinated 
axon and calculated the macroscopic (or equivalent) length constant to be 2.08 mm for an 
axon of 14 µm in outer diameter. This result is in broad agreement with Hursh’s cat data 
showing the internodal distance to be about 1 mm for 10 µm outer diameter axons (Hursh 
1939), combined with the notion that λ should be similar to or greater than the internodal 
distance. In the human motor cortex, the largest cells are the pyramidal Betz cells in layer V, 
which have axons with outer diameters in the range of 10–20 µm (Lassek 1940, 1942). Since 
the axons with larger diameters are those with lower stimulation thresholds (Basser and Roth 
1991, Fang and Mortimer 1991), we have assumed an axon outer diameter of 10 µm and taken 
λ = 2 mm in our calculations. 

2.2. The stimulation coil 

The coil used in these calculations replicates Magstim’s 70 mm double coil, as described 
by Thielscher and Kammer (2002). It has two circular wings with nine turns each, whose 
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radii are given by ri = 26.5 + 2.125i mm, i = 0 to 8, with a 90 mm separation between 
the wing centres. In the first two calculations, the maximum rate of change of the current 
was set to 67 A µs−1. This corresponds to the average motor threshold for a monophasic 
impulse using this coil with the Magstim 200 stimulator to induce a posterior–anterior current 
in the brain (Thielscher and Kammer 2002, Kammer et al 2001). In the third calculation, the 
stimulus intensity was specified by setting the stimulator’s capacitor voltage to 1000 V, which 
corresponds to a maximum current rate of change of 61.2 A µs−1. Values of the electric field, 
the electric field gradient and the change in membrane potential at other stimulus intensities 
can be obtained by linearly scaling the values presented here. 

2.3. The volume conductor model 

A spherical head model with a radius of 92 mm (Rush and Driscoll 1969) was used in the 
first two calculations. In this model, the surface of the sphere corresponds to the scalp and the 
spherical surface with a radius of 80 mm corresponds to the surface of the brain. The sphere is 
centred on the origin of the coordinate system. The coil is positioned in the plane z = 102 mm, 
tangential to the sphere. The line passing through the centre of both wings is aligned parallel 
to the x-axis; under the centre of the coil the induced electric field points along the y-axis. 

In the third calculation, the volume conductor was a rectangular hexahedron with 
dimensions (x, y, z) = 40 × 60 × 17.5 cm3 divided in half with different electrical 
conductivities. The large dimensions of the hexahedron ensured that charge accumulation 
on its outer boundaries had a negligible effect on the electric field in the vicinity of the internal 
interface. One half (y = −30 to 0 cm) had an electrical conductivity of 0.143 S m−1, the  
other half (y = 0 to 30 cm) had an electrical conductivity of 0.333 S m−1. These values are 
representative of the conductivities of white matter and grey matter, respectively, (Haueisen 
et al 1997). The coil was placed 5 mm above and parallel to the conducting media with its 
centre directly above the centre of the internal boundary. The orientation of the coil and the 
direction of current flow in its windings were such that the electric field induced under the 
centre of the coil pointed along the positive y-axis, perpendicular to the internal boundary. A 
6 cm line segment representing the axon was placed parallel to the y-axis, 3.0 cm below the 
coil’s centre. The direction of the applied electric field was chosen so as to depolarize the 
axon end in the higher conductivity region. 

2.4. Calculations in the homogeneous spherical head model 

For the homogeneous spherical head model the total induced electric field, EE = − ∂ E − ∇φA ,
∂t

was calculated using Eaton’s formulae (Eaton 1992) implemented in Mathematica (Wolfram 
Research, Inc., http://www.wolfram.com). The Cartesian components of the electric field 
were computed on a grid of 11 × 11 points lying on a spherical surface of radius 77 mm, 
which corresponds approximately to 3 mm below the cortical surface (Roth et al 1991b). The 
points were separated by an arc length of exactly 1 cm along the y-direction and by 1 cm or 
slightly less along the x-direction. 

The components of the electric field gradient tensor are ∂Ex ∂Ex ∂Ex 


∇ EE = 

       

∂x  
∂Ey 

∂x  
∂Ez 

∂y 
∂Ey 

∂y 
∂Ez 

∂z  
∂Ey 

∂z  
∂Ez 

       

. (5) 

∂x  ∂y ∂z  
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5607 Tissue heterogeneity as a mechanism for localized neural stimulation 

They were estimated at a given point in the grid by computing the electric field components at 
six neighbouring points displaced by ±1 mm along each axis. For a given direction specified 
by a vector nE, the magnitude of the net electric field gradient along that direction is given by 
nT ( E)n.E ∇ E E Note, only the symmetric part of the tensor, ∇ ∇  ( EE + ( E)E T )/2, contributes to this
projection. We will refer to this scalar quantity as the directional derivative of the electric 
field. The orientation that maximizes the magnitude of directional derivative is given by the 
eigenvector associated with the largest eigenvalue of the symmetric part of the electric field 
gradient tensor. The electric field calculations were also performed using the finite element 
method (see below) to cross validate the results. 

2.5. Calculations in the heterogeneous spherical head model 

For the heterogeneous spherical head model, a cylindrical inclusion was placed below the coil 
centre with its axis parallel to the y-axis, in the plane z = 72 mm. The base of the cylinder 
mimics a vertical wall in a sulcus and the cylinder axis is 20 mm below the scalp. The length 
of the cylinder extended from y = −5 mm to  y = +5 mm, with a radius of 5 mm. The electric 
conductivities of the sphere and the cylinder were taken to be 0.333 S m−1 (approximately that 
of grey matter (Haueisen et al 1997)) and 1.79 S m−1 (that of cerebrospinal fluid (Baumann 
et al 1997)), respectively. In this configuration (see the inset in figure 4) and near the centre 
of the cylinder bases, only the component of the electric field parallel to the cylinder axis, 
Ey , is significantly affected by the heterogeneity. In order to estimate ∂Ey

∂y
just outside the 

centre of the cylinder base, a second degree polynomial was fitted to the electric field data in 
the homogeneous sphere (dashed curve in figure 4) and an exponential curve was fitted to the 
difference in the electric field introduced by the inclusion. The sum of the two fitted curves 
was then differentiated to obtain the slope of the solid curve in figure 4. The electric field 
distribution was calculated using a commercial finite element package (Comsol 3.2b with the 
electromagnetics module, http://www.comsol.com/) and a frequency of 5 kHz was chosen for 
the time-harmonic analysis. 

2.6. Calculations involving the electric field discontinuity 

The change in membrane potential where the axon crosses a boundary separating tissues 
with different electrical conductivity values is given by λ1Ex/2 for unmyelinated axons. 
This effect, however, may be significantly different for myelinated axons, since the electric 
field varies rapidly with distance from the boundary and it may not be appropriate to use 
homogenized values for λ and τ in (3). Thus, in order to assess the effect of the electric 
field discontinuity on the membrane potential of a myelinated axon more faithfully, a model 
of the axon was implemented in which the axon is described as a sequence of compartments. 
In this model, a single compartment representing a node of Ranvier separates series of ten 
compartments representing the myelinated sections, of length L, from each other. For each 
point of the discretized axon, the compartmental cable equation is (Nagarajan et al 1993) 

  
dV (n)  

Cm + Iionic,n − Ga(V (n + 1) − 2V (n)  + V (n  − 1))
dt 

(n+1)L nL 

= − Ga (EE · Es) ds − (EE · Es) ds , (6) 
nL (n−1)L 

where Cm is the membrane capacitance, V (n)  is the transmembrane potential at the nth point 
of the discretized axon, Iionic,n is the membrane ionic current at the nth point, Ga is the axial 
conductance and EE · Es is the projection of the applied electric field along the axon. The 

http://www.comsol.com/
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expression for the electric field, EE , must include both the magnetic vector potential term and 
the gradient of the external electric potential (Nagarajan and Durand 1996). In (6), the value of 
the membrane capacitance as well as the expression for the membrane ionic current depend on 
whether the point corresponds to a myelinated section or to a node of Ranvier. For myelinated 
sections, the membrane is described by a passive model consisting of a parallel RC circuit 
(Basser 2004). The membrane in each node of Ranvier is described by an active nonlinear 
model based on data from the rabbit’s myelinated axon (Warman et al 1992). In the first 
and last points of the discretized axon, sealed end boundary conditions were implemented 
(Nagarajan et al 1993). The resulting set of equations was solved using the Picard iterative 
procedure (Mascagni and Sherman 1998). The numerical computations were performed using 
Matlab (Matlab 7.0, The MathWorks, http://www.mathworks.com/). 

The electric field calculations were performed using a finite element package, as described 
in the previous subsection. Two hundred electric field values, equally spaced along the axon, 
were exported to a file. Interpolation of these values was achieved by fitting a combination of 
fifth-order polynomials and Heaviside functions to the exported data. 

In this calculation the stimulus waveform must be taken into account so the Magstim 
200 (Jalinous 1991) was modelled as a series RLC circuit (L = 16.35 µH, C = 185 µF, R = 
0.05 Q) until the time rate of change of the current in the coil, di/dt , reaches the first minimum. 
After that, the circuit was modelled as a series LR circuit (L = 16.35 µH, R = 0.088 Q). 
The resulting di/dt waveform was monophasic, with characteristics similar to those of the 
pulse generated by the Magstim 200 stimulator with the 70 mm double round coil (rise time = 
82.1 µs, ratio of negative to positive peak amplitudes of di/dt curve = 0.25). 

2.7. Quasistatic approximation 

In all calculations, the contribution of the induced electric field to the total magnetic field 
was not taken into account. It is known to be negligible because of the low frequencies 
involved in trancranial magnetic stimulation (TMS), <5 kHz, and the low conductivity of 
brain tissues, about 1 S m−1 (Eaton 1992, Roth  et al 1991a). In the results, electromagnetic 
wave propagation effects were found to be absent, in agreement with the wavelength associated 
with the TMS stimulus being several orders of magnitude larger than the dimensions of the 
model. The relative permittivity of all tissues was 104: as expected from the high conductivity 
to permittivity ratio and the low frequencies involved, the tissues responded as if they were 
purely resistive. 

3. Results

The magnitude and direction of the electric field induced in a homogeneous spherical volume 
conductor are shown in figure 1. The electric field strength is greatest under the centre of the 
coil where it reaches 88.1 V m−1 for a current rate of change of 67 A µs−1, 15 mm below the 
scalp. The corresponding value of λE is 176 mV for λ = 2 mm. 

The electric field’s directional derivative at one of the grid points is best visualized by 
plotting its magnitude as a function of angle, as shown in figure 2. This plot corresponds to one 
of the two grid points where the directional derivative has its largest value, and is located 2 cm 
behind the coil centre, measured on the surface of the 77 mm radius sphere. The most negative 
value of the directional derivative occurs in the yz plane, along a direction 222◦ anticlockwise 
from the y-axis (lower left lobe in figure 2). It amounts to −1896 V m−2, which corresponds 
to a value of 7.6 mV for the activation function. The ratio of the activating function to the 
λE term is 4.3%, and is independent of the rate of change of the current. A second set of 

http://www.mathworks.com/
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Figure 1. Plot of the electric field vector on a grid of 11 × 11 points on a spherical surface of 
radius 77 mm, 15 mm below the scalp surface and 25 mm below the coil. The arrows are tangential 
to the spherical surface. 

smaller lobes (+1276 V m−2) points along the x-axis, in and out of the paper. The smallest 
lobes point perpendicularly to the first two sets and are not visible from this viewpoint. The 
spatial variation of the directional derivative on the 77 mm radius sphere is shown in figure 3, 
in the xz plane (a) and in the yz plane (b). 

Figure 2. Polar plot showing the magnitude of the directional derivative of the electric field as 
a function of angle, at the second grid point behind the coil centre. The top right lobe points 
approximately towards the centre of the coil. 

As for the heterogeneous model, the position of the high conductivity cylinder relative to 
the scalp and the coil is shown in the inset of figure 4. The plot shows the variation of the 
component of the electric field parallel to the cylinder axis, Ey , as a function of position along 
that axis, both for a homogeneous sphere (dashed curve) and with the cylindrical inclusion 
(solid curve). The other components of the electric field are negligible. At the boundary, 
outside the inclusion, the estimated values for Ey and ∂Ey 

∂y are 99.5 V m−1 and 6051 V m−2,

respectively. Assuming that λ = 2 mm, the corresponding values of λEy and 2 ∂E
λ y 

∂y are 199 mV 
and 24.2 mV, respectively. The ratio of the activating function to the λE term is 12.2%. 
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Figure 4. Plot of the component of the electric field parallel to the cylinder axis, Ey , as a function 
of position along that axis for a homogeneous sphere (dashed curve) and a heterogeneous sphere 
(solid curve). Inset: position of high conductivity cylindrical inclusion, showing the segment of 
the cylinder axis along which data are plotted, 30 mm below the plane of the coil. 

Figure 3. Polar plots of the electric field’s directional derivative at 11 points on a spherical surface 
of radius 77 mm (a) along the x-axis and (b) along the y-axis. The polar plot in figure 2 is the 
fourth from the left in (b). 
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The axial component of the induced electric field along a straight axon that crosses an 
interface between two tissues with different conductivities is shown in figure 5. The  value  
of the electric field jump at the interface, 1Ey , is 79.5 V m−1 (solid curve) and the value 
of the electric field Ey in the homogeneous medium at the same position is 100.4 V m−1 

(dashed curve), in good agreement with (2). The electric field strength at the right axon end is 
52.4 V m−1. 

Figure 5. Plot of the axial component of the electric field along a straight axon as it passes at right 
angles through an interface between tissues whose conductivity values are 0.143 S m−1 to the left 
and 0.333 S m−1 to the right (solid curve) and for a homogeneous medium (dashed curve). The 
straight line shows the positions of the nodes of Ranvier on a 6 cm long axon, which is placed 
30 mm below the plane of the coil. 

The effect of this electric field distribution on the transmembrane potential is shown 
in figure 6. Action potentials are generated at the electric field discontinuity and at the 
axon end that undergoes depolarization (right end), but not at the axon end that undergoes 

Figure 6. Contour plot of the membrane potential, V1, as a function of position and time showing 
the generation and propagation of action potentials. An action potential is initiated at the middle of 
the axon by the electric field discontinuity and at the right end of the axon by the electric field. The 
left end of the axon is hyperpolarized at t = 0. As the two action potentials collide, propagation 
ceases. 
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hyperpolarization (left end). With time the action potentials propagate away from the point of 
origin. As they collide, on the right half of the axon, propagation ceases due to the refractory 
state in which the portion of the membrane ahead has been left. The contours in the rising 
edge of the action potential are so close together that they appear as an almost solid black 
strip. The value of λ1Ey/2 is 79.5 mV, the value of λEy at the depolarised axon end is 
104.8 mV and their ratio is 0.76. 

Figure 7 shows the rise in membrane potential as a function of stimulation intensity, 
expressed as the rate of change of current in the coil (A µs−1), at the two points where 
stimulation occurs. The curve corresponding to the axon end rises faster than that for the 
electric field discontinuity, indicating that the threshold for stimulation is lower at the axon 
end (43.0 A µs−1) than at the discontinuity (53.6 A µs−1). The ratio of these thresholds 
is 0.80. 

Figure 7. Subthreshold change in membrane potential V1 as a function of stimulus intensity di/dt . 
The change is greatest at the axon end (dashed line) meaning that the threshold for stimulation is 
still lower there than at the electric field discontinuity (solid line). 

4. Discussion 

The calculations of the electric field and the electric field gradient induced in a homogeneous 
sphere show that the electric field and its directional derivative have their largest amplitudes at 
different locations and along different directions. Even when these differences are taken into 
account the activation function has a considerably smaller maximum value than λE. This  is  
not unexpected since if we take the electric field derivative to be approximately given by the 
maximum electric field divided by the radius, R, of the coil then the ratio of the gradient to 
the electric field terms is approximately λ/R (Roth 1994). If λ = 2 mm and R = 50 mm, this 
ratio is 4%. 

In this paper we have introduced the idea of calculating the electric field gradient tensor and 
its projection along a specific direction. The results shown in figures 2 and 3 reveal the highly 
anisotropic nature of the directional derivative of the induced electric field, whose angular 
dependence is far from intuitive. They suggest that if a figure 8 coil is placed tangentially on 
the scalp with the induced electric field under the coil centre perpendicular to a cortical sulcus 
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then the directional derivative will be most negative along pyramidal cells that lie on the lip 
of the sulcus, halfway between the sulcus and the gyrus, perpendicular to the cortical surface. 
The axons of the pyramidal cells on the lip bend gently as they extend into the white matter so 
the electric field gradient mechanism may be the dominant mechanism for their stimulation, 
but this is only likely to occur at high stimulus intensities. In the situation shown in figure 2, 
the gradient component that is usually considered, ∂Ey 

∂y , is 2.5 times smaller than the maximum 
directional derivative. Thus, in peripheral nerve stimulation or other cases where the electric 
field gradient may be the principal stimulation mechanism, calculations of the directional 
derivative using appropriate models for the volume conductor may be useful to optimize the 
experimental protocol. 

The main conclusions to be drawn from the results obtained with the heterogeneous 
model is that interfaces introduce strong local gradients compared to the homogeneous model 
(figure 4) and that the direction of the local gradient is also determined by the orientation 
of the interface, not only by the coil’s configuration. Even so, the ratio of the maximum 
values of the activation function and of λE remains small. In this particular case, ∂Ey 

∂y is the 
largest gradient component, unlike what was seen in the homogeneous case (figure 2). Again, 
these considerations may be relevant in situations where the electric field gradient is the main 
stimulation mechanism. 

The discontinuous curve in figure 4 also demonstrates the influence of charge accumulating 
on nearby interfaces on the electric field and electric field gradient at or near the interface 
of interest: the electric field halfway between the two interfaces does not approach its 
homogeneous medium value; the electric field jump at the boundaries is no longer symmetric 
about its homogeneous value; it is slightly smaller than expected for a single interface; and 
the gradients, particularly in the inner region, are slightly reduced. These effects indicate 
that when modelling stimulation in a cortical sheet it is important to represent the various 
neighbouring interfaces, particularly in sulci when magnetic stimulation is being used. 

The last set of calculations presented here confirms that an abrupt change in tissue 
conductivity can give rise to an action potential in a myelinated axon, even when the difference 
in electrical conductivities is modest and the boundary is positioned between two nodes of 
Ranvier (figure 5). In the case shown, the stimulation threshold is lower at the right axon end 
than at the discontinuity because λ1Ey/2 is smaller than λEy at that termination. The ratio of 
these two quantities (0.76) is a reasonable, but not completely accurate, predictor of the ratio 
of thresholds at these two locations (0.80). 

At a real white-matter-grey-matter interface, an infinite conductivity gradient such as 
that modelled above is unlikely but a fairly steep one may exist. In transcranial electric 
or magnetic stimulation, bulk tissue conductivity is determined by the conductivity of the 
extracellular volume (Tuch et al 2001), where ion flow is restricted mostly by the presence of 
cell membranes and myelin. Even though this volume is continuous across the boundary 
separating these two tissues, the cellular arrangement and composition in each tissue is 
different, giving rise to different bulk conductivity values. However, at the microscopic 
level a conductivity gradient may exist corresponding to a gradient in cellular arrangement 
and composition. Thus the secondary electric field produced by charge accumulation at the 
boundary may be slightly smaller than that predicted in (2). 

A comparison of the values obtained for λEx , 2 ∂Eλ x 
∂x  and λ1Ex/2 in the three conditions 

studied in this paper shows that the electric field term is the largest in all cases, indicating 
that the lowest threshold mechanism is likely to occur when axons end or bend in regions 
where the electric field has a strong component in the direction of the axon. When the axon’s 
resistance to ionic flow along the direction of the applied electric field does not change sharply, 
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the lowest threshold mechanism is the existence of an abrupt change in tissue conductivity 
along the path of the axon in the presence of a high electric field component perpendicular to 
the boundary. In general, at an internal boundary and using (2)

λ1En/2 σ1 − σ2 = . (7)
λEn σ1 + σ2 

For the values of conductivity used in figure 5, this ratio is 0.40. Because this ratio is close to 
1, the existence of an internal boundary may affect significantly the spatial distribution of the 
membrane potential, even in the presence of axon ends or bends, pulling the stimulation site 
closer to or pushing it further away from that boundary. The electric field gradient term was 
always the smallest, but it can be significantly enhanced by tissue heterogeneity. 

The magnitude of the effects of tissue heterogeneity on the electric field distribution 
depends on the angle between the applied electric field and the boundary normal. Thus, tissue 
heterogeneity may introduce an extra directional dependence to the stimulation efficacy, in 
addition to that due to the relative orientation of the applied electric field and the neuronal 
structures (Rushton 1927). 

5. Conclusions 

We have shown that the jump in the normal component of the electric field at a boundary 
causes a change in membrane polarization of amplitude λ1Ex/2 in an unmyelinated axon 
that crosses that interface at right angles. This amplitude is analogous to the one that arises at 
an axon termination, λEx , with the magnitude of the electric field jump replacing the electric 
field strength. The factor of 1/2 arises because the current injected into the intracellular space 
at the boundary splits in equal proportions to the right and to the left of the boundary. A 
similar situation occurs at a jump in the fibre radius or in intracellular conductivity, which 
gives rise to a change in the transmembrane potential of the form αEx (Roth 1994), where 
α is a constant determined by the membrane properties on both sides of the discontinuity. 
In this respect, changes in macroscopic tissue properties can produce similar effects to those 
produced by changes in cellular or intracellular properties. 

Our results support the suggestion that ‘discontinuities in the geometry of the neuronal 
structure and the presence of inhomogeneities in the volume conductor can be more important 
in characterizing excitation rather than the field gradients’ (Nagarajan et al 1993). We further 
suggest that the discontinuity in the electric field that occurs at internal boundaries across which 
the electrical conductivity changes abruptly may be a powerful mechanism for stimulating 
neurons that cross that boundary. Specifically, this work extends our notion of the ‘activating 
function’ to include the electric field discontinuity that arises from charge accumulation at 
internal boundaries. More generally, it highlights the importance of tissue heterogeneity as a 
mechanism for localized neural stimulation by applied electric fields. 

The various effects of tissue heterogeneity were illustrated here using very simple 
boundary shapes. Obviously, similar effects will also be present in more realistic models 
of the head based on MR images (e.g., Kowalski et al (2002), Holdefer et al (2006), Wolters 
et al (2006)), which are necessary to obtain more accurate descriptions of the spatial distribution 
of the electric field in the brain. Our results provide a detailed understanding of the effects of 
tissue heterogeneity that permits a well-informed interpretation of the results obtained using 
these complex head models. Additionally, the results emphasize the importance of the correct 
representation of the surfaces separating tissues with different conductivities in such models. 

Variations in electrical conductivity will similarly affect the distribution of the electric 
field produced in electrical stimulation. Just as in magnetic stimulation, the requirement 
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of current continuity in the static or quasistatic regime leads to the accumulation of charge 
at internal boundaries, causing electric field discontinuities at the boundaries and locally 
enhanced electric field gradients. Such effects may play an important role in transcranial 
direct current stimulation (tDCS). 

The realization of tissue heterogeneity as a new source of neural excitation has potentially 
important consequences to TMS in particular, and to understanding the interaction of electric 
fields and tissue, in general. First, differences in electrical conductivity among grey matter, 
white matter and cerebrospinal fluid alone could result in depolarization or hyperpolarization 
of excitable tissues at or near interfaces between them. This mechanism of activation thus 
could provide a possible explanation for the observation of ‘far-field’ stimulation of brain and 
other tissues. Thus even a time-varying magnetic field whose magnetic vector potential is 
approximately spatially uniform within the brain could cause excitation by this mechanism, 
even in the absence of axon terminations or sharp bends. So, for example, this mechanism 
could be implicated in explaining the recent finding that Echo Planar MRI of brain can effect 
a mood change in normal subjects (Rohan et al 2004). Such an apparent TMS-like effect from 
switched magnetic field gradients is not expected using a conventional ‘activating function’. 

Second, models, such as the one presented here, could be used to investigate the 
possible electric field distributions induced in tissues by far-field sources such as high-tension 
transmission lines. Moreover, the mechanism of charge build-up at interfaces between regions 
having different electrical conductivity clearly applies over a large range of length scales. For 
instance grey matter and white matter are themselves heterogeneous at a microscopic length 
scale and even at a finer sub-micron length scale of intracellular structures, such as organelles, 
vesicles, neurofilaments, etc. Charge may build up transiently across membrane boundaries or 
structures that are oriented perpendicular to the local induced electric field, leading to transport 
of ions and charged molecules. 

Finally, in cardiac tissue subject to a uniform electric field, discontinuities or strong 
gradients in the extracellular conductivity that are not accompanied by concomitant variations 
in intracellular conductivity could give rise to changes in transmembrane potential (Trayanova 
1999, appendix B). This effect could help explain the physical basis of cardiac defibrillation 
using far-field stimulating electrodes. 
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