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Abstract
Medical imaging has made significant contributions to the characterization of malignant tumors. In 
many cases, however, maps from multiple modalities may be required for more complete tumor 
mapping. In this manuscript we propose an objective method for combining multiple imaging 
datasets with the goal of characterizing malignant tumors. We refer to the proposed technique as the 
percent overlap method (POM). To demonstrate the power and flexibility of the POM analysis, we 
present four patients with recurrent glioblastoma multiforme. Each patient had multiple magnetic 
resonance imaging procedures resulting in seven different parameter maps. Chemical shift imaging 
was used to provide three metabolite ratio maps (Cho:NAA, Cho:Cre, Lac:Cre). A perfusion scan 
provided regional cerebral blood volume and permeability maps. Diffusion and carbogen-based 
hypoxia mapping data were also acquired. Composite maps were formed for each patient using 
POM, then were compared to results from the ISODATA clustering technique. The POM maps of 
likely recurrent tumor regions were found to be consistent with the ISODATA clustering method. 
This manuscript presents an objective method for combining parameters from multiple physiologic 
imaging techniques into a single composite map. The accuracy of the map depends strongly on the 
sensitivity of the chosen imaging parameters to the disease process at the time of image acquisition. 
Further validation of this method may be achieved by correlation with histological data. 
 
 

I. INTRODUCTION 

Frequently, a single imaging modality is not adequate to 
uniquely differentiate normal from cancerous tissue. Numer-
ous studies have shown that the combined information from 
multiple images can yield improved discrimination of dis-
eased tissue.1–4 However, when multi-parametric studies are 
utilized, the amount of data can be overwhelming and poten­
tially lead to inappropriate and inconsistent interpretation. 
We present a method based on overlapping regions of thresh-
olded parameter maps that is a fast, easily implemented tech-
nique for combining the most useful results from multi-
parametric datasets into a single map. We refer to this 
technique as the percent overlap method (POM).

Previous studies have shown improved sensitivity from 
combining techniques compared to a single image.1–4 The 
approach of these multi-parametric studies generally was to 
use region of interest based analyses to find correlations be-
tween physiologic parameters rather than to provide the 
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single composite map proposed here. 

1053 
Recurrent tumors undergo time-dependent evolution.5 Pa-
rameter efficacy is therefore likely to change over time as 
tumors grow, mature, necrose or continue to infiltrate into
surrounding brain tissue. Glioblastoma multiformes (GBMs)
in particular are quite heterogeneous; certain areas show ag­
gressive behavior, while other regions show little evidence of 
progression. The a priori selection of the optimal parameter 
at a given time point is difficult, therefore results of multi-
parametric studies are more likely to discriminate diseased 
from normal tissue. 

The underlying assumption of POM is that the specificity 
to voxels representing recurrent disease will be increased by 
the use of multiple techniques. There is therefore the task of 
reducing the amount of information gained from multiple 
scans while retaining the most tumor-specific information. In 
the POM technique, this reduction of the dataset to a com-
posite map is performed through combining binary maps 
…/1053/9/$23.00 

made of thresholded physiologic parameters. 
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In this manuscript, we have chosen to compare the POM 
with a more conventional method of incorporating multi-
parametric datasets into a composite map, ISODATA. While 
alternate segmentation algorithms are available, including 
various applications of automated methods,6,7 ISODATA was 
chosen over other clustering approaches since it does not 
require knowledge of the number of clusters a priori.8 ISO­
DATA is an iteratively self-organizing variation of the 
K-means algorithm, and has previously been validated in 
stroke patients.9–11 Since highly descriptive parameters vary 
from patient to patient in both identity and quantity, an self-
adjusting algorithm is particularly important. 

Both POM and ISODATA are capable of providing maps 
descriptive of the extent and environment in recurrent tu­
mors. We believe the specific physiologic parameters chosen 
in this study to be predictive of tumor metabolism, prolifera­
tive potential, cellularity, and oxygenation status, which we 
obtained via chemical shift imaging (CSI), perfusion, diffu­
sion and hypoxia scans. Our hypothesis is that the same lo­
cations would be identified as recurrent disease by both POM 
and ISODATA methods. In addition, through the comparison 
of the two techniques in the same patients, strengths and 
weaknesses of each method can be illustrated. 

II. METHODS 

To demonstrate the composite mapping techniques, we 
have chosen patients with recurrent high-grade primary brain 
tumors, specifically GBM. We have chosen to investigate the 
following parameters: CSI, diffusion-weighted images, 
perfusion-weighted images and blood oxygenation level de­
pendent (BOLD)-based hypoxia maps. Each parameter has 
previously been used by other investigators for characteriz­
ing brain tumors.1–4,12–15,17 

The study is an IRB approved clinical protocol, and all 
subjects provided informed consent. Magnetic resonance 
(MR) scanning was performed on a clinical 1.5T GE Signa 
Horizon magnet (GE Medical Systems, Milwaukee, Wiscon­
sin) equipped with gradients for whole-body echo-planar im­
aging (EPI). The multi-parametric dataset was composed of 
chemical shift imaging ratio maps (Choline:Creatine, Cho­
line:NAA, Lactate:Creatine), apparent diffusion coefficient 
(ADC) maps from diffusion-weighted imaging, permeability 
and regional cerebral blood volume (rCBV) maps from a 
dynamic contrast enhanced perfusion techniques, and a 
BOLD based method provided the hypoxia maps. 

Patient 1 was a male, age 53, being followed after surgery 
or the initial disease. Postsurgical histology confirmed the 

GBM diagnosis. External beam radiation therapy was com­
leted, and the multi-parametric dataset was acquired 
2 months postradiotherapy. This scan revealed progression 

of the tumor and further surgery confirmed GBM recurrence 
round the rim of the resection cavity. 

Patient 2 was a 47-year-old male diagnosed with GBM 
fter previously being treated for a low-grade glioma. The 
scan acquired 7 months postsurgery showed an enhancing 
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lesion posterior to the more frontal resection bed. The second 
progression was confirmed to be GBM at subsequent sur­
gery. 

Patient 3 was a female, age 63, who was initially treated 
for GBM with surgery and external beam radiation therapy, 
then recurred. Our study began 4 months after stereotactic 
radiosurgery for this recurrence. Conventional follow-up 
scans revealed a likely recurrent region 7 months postradio­
surgery and a craniotomy confirmed the presence of disease. 

Patient 4 was a 43 year old female. She was treated with 
a craniotomy and subsequent radiation therapy. Enrollment 
in the POM study occurred two years postsurgery. Conven­
tional followup scans failed to indicate recurrence at any of 
the follow-up time points acquired over three years. We 
therefore show a POM from a time point 58 months post-
surgery. 

A. CSI protocol 

The scan parameters for the PRESS CSI acquisition were 
TR=1.0 s, echo times (TE)=144 ms, <=90°, volume 
matrix=18X18. Voxels dimensions were 1.5X

u
1.5 

X1.5 cm3. The PRESS volume was prescribed based pon 
contrast-enhancing regions on T1-weighted images. The vol­
ume of tissue studied varied over patients and tumor loca­
tions, and full brain coverage never achieved. Postprocessing 
consisted of compensation for residual eddy currents, Gauss­
ian line broadening (time constant, 256 ms), and zero- and 
first-order phase correction after two-dimensional Fourier 
transformation.12 For each voxel, spectroscopic analysis was 
used to establish the relative areas of peaks corresponding to 
NAA, choline, creatine, and lactate. Metabolic images were 
formed from the real parts of the spectra after phase and base
line corrections (least squares method) by integration of the
signal within the spectral area of the particular metabolite.
Three ratio maps (Choline:NAA, Choline:Creatine and Lac-
tate:Creatine) were formed for the POM. 

B. Diffusion protocol

Diffusion-weighted EPI images were acquired with the 
parameters as follows: TR=5 s, TE=86 ms, <=90°, field of 
view (FOV)=22 cm, slice=5 mm, gap=0 mm, matrix 
=256X256, b =0 and 1000 s /mm2. Diffusion gradients 
were applied in the three orthogonal directions. These acqui­
sition parameters of the multi-slice technique resulted in 
whole brain coverage. Diffusion-weighted images were re­
duced to ADC maps for comparison across patients.13 

C. Perfusion protocol 

Perfusion-weighted images were acquired over the whole 
brain in the axial plane using the acquisition parameters 
TR=2 s, TE=60 ms, <=60°, FOV=22 cm, slice=7 mm, 
gap=2 mm, matrix=128X128. Contrast of 0.1 mmol/kg of 
body weight of a gadodiamide (Omniscan, Nycomed-
Amersham, Princeton, NJ) was injected at 4.0 ml/s followed 
by a saline flush using a power injector (Spectris, MEDRAD, 

Indianola, PA) 13 s after scan initiation. 
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We created maps of regional cerebral blood volume 
(rCBV) using a bolus method. The arterial input function 
(AIF) was automatically detected based on a standard devia­
tion threshold of signal change.14 The area under the AIF is 
used to normalize the tissue curve such that: 

rCBV = k/ * a I (Ctissue(t)dt)/I (CAIF(t)dt) , 

where k /a are physiological constants that depend on the 
blood hematocrit and brain tissue density, Ctissue is the gado­
linium concentration in tissue and CAIF is the gadolinium 
concentration in the AIF. 

Li’s15 first pass leakage profile method was used to calcu­
late permeability maps using 

Ct(t) = Ktrans (t')dt' + vpCp(t) ,I Cp

where Ct is the time course curve of the contrast agent con­
centration, Ktrans is the volume transfer constant between the 
plasma and extracellular extravascular space as calculated 
from the first pass model, Cp is the tracer concentration in 
arterial blood plasma, vp is the volume of blood plasma per 
tissue unit volume.15 

D. Hypoxia mapping protocol 

Hypoxia maps were obtained via a multi-echo EPI se­
quence with ten different echo times (TE) to quantify T2*. 
Parameters were as follows: TR=2 s, TE=35–80 ms (steps 
of 5 ms), <=90°, FOV=22 cm, slice=5 mm, gap=1 mm, 
matrix=128X128 for full brain coverage. The patient 
breathed carbogen (95%O2,  5%CO2) through a tube placed 
in the mouth in order to modulate oxygenation in hypoxic 
areas. 

Differences between air and carbogen scans are specific to 
hypoxic areas since oxygenation levels will remain un­
changed in normal tissue as well as necrotic areas.16 During 
the air-breathing interval, the tube was not attached to the 
patient, allowing room air breathing. The tube then con­
nected the patient to the carbogen tank and the gas flow was 
djusted to a rate of 20 l /min for the equilibration and car­
ogen breathing intervals. The patient was instructed to 
reathe only through his mouth at those times. Nose clips 
ere used in later patient scans to ensure compliance. EPI 

mages were initially acquired with normal air breathing. The 
atient then breathed carbogen gas for a 15 min equilibration 

period before the next EPI scan began. The patient continued 
to breathe the carbogen gas during the acquisition of the 
second set of multi-echo EPI images. 

T2* was calculated for air and carbogen breathing by fit­
ting the signal intensity (SI) vs echo time (TE) to a single 
exponential function using MATLAB (Mathworks Corp., Nat­
ick, MA) according to the equation 

ln[SI(1)] = − TE/T2 + ln[SI(0)] , 

where SI(0) and SI(1) are the signal intensities at time 0 and 
1, respectively.17 Relative changes between air and carbogen 

breathing were evaluated using a paired Student’s t test. 
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E. Percent overlap method „POM… 

We hypothesized that if a voxel contained a recurrent tu­
mor, multiple parameter maps would contain an extreme pa­
rameter (i.e., maximum or minimum) value as determined by 
thresholding based on the undiseased hemisphere. To ac­
count for different acquisition resolutions, each dataset was 
resampled (1 mm3 voxels) and aligned to a high-resolution 
anatomical scan (postcontrast, T1-weighted SPGR acquired 
with the following parameters: TR=21 ms, TE=6 ms, flip 
angle=20°, FOV=24 cm, slice thickness=1.5 mm, gap 
=0 mm, matrix=256X256). 

To minimize registration error due to motion within a 
single scan session, the head was immobilized with straps 
and foam padding before the first scan was acquired. Images 
were registered by aligning common neuroanatomic land­
marks. Acquiring images from the whole-brain volume for 
perfusion, diffusion, and hypoxia data gave an increased 
number of landmarks. Due to shimming constraints, spec­
troscopy data were acquired in a smaller region placed 
around the abnormally enhancing area. AFNI was used to 
manually align physiologic data to the high-resolution T1­
weighted image when viewed in three planes.18 A rigid body 
transformation used 6 degrees of freedom, 3 for linear shifts 
and 3 for angular rotations. The CSI data were acquired in a 
smaller region of interest and the prescribed parameters of 
extent were used to overlay the metabolite maps on the ana­
tomical images. 

After registration, the POM method was completely auto­
mated and required no user interaction as whole brain maps 
were created. Using a standard desktop computer running 
MATLAB, maps were available after approximately 5 min. 
The entire contralateral (nontumor) hemisphere was used to 
establish appropriate thresholds for each parameter by select­
ing the same percentile value (i.e., 95th percentile for the 
maps shown) for each resampled and aligned parameter map.
Since each resampled parameter map except CSI contained 
the same number of voxels, the same quantity of tissue was
selected for each whole brain technique by selecting thresh­
old levels based on percentiles. Binary maps were then
formed by thresholding each parameter map to contain only
the extreme values (high Choline:NAA, Choline:Creatine,
Lactate:Creatine, high rCBV, high permeability, low ADC,
and highly significant T2* differences for hypoxia) such that 
surprathreshold voxels were equal to one, and all others were 
zero. Each thresholded parameter map contains a certain 
number of voxels, called Voxelsx, where x is the individual 
parameter (e.g., ADC, rCBV, hypoxia). 

A single composite map containing all seven parameters 
was formed where the signal intensity indicated the param­
eters that overlapped in each voxel. Unique values were first 
assigned to each of the seven thresholded parameter maps 
(e.g., permeability=1, hypoxia=2, Cho:Cre=4, 
Cho:NAA=8, Lac:Cre=16, rCBV=32, ADC=64) and sums 
were calculated. A unique value then existed for every pos­
sible combination of techniques. The assignment of unique 

values allowed for the determination of which parameters 
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overlapped from color coding based upon which pure param­
eter maps contributed to the sum in each voxel. Voxels for 
each value were then counted. 

The percent overlap was calculated for each technique x, 
using 

Percent Overlap = (Voxelsx − Voxelsonlyx)/Voxelsx, 

where Voxelsx was defined previously as the total number of 
voxels in a thresholded parameter map, and Voxelsonlyx 

counts the voxels for technique x that do not show overlap 
with any other technique. Therefore, the numerator gives the 
number of voxels that overlap with any other technique and 
the denominator counts every voxel in the thresholded map 
regardless of overlap. 

F. Assessing parameter map utility 

Calculations of overlap percentage were performed for 
each hemisphere separately for each parameter. A parameter 
was considered successful in mapping physiology of interest 
if the disease hemisphere showed increased overlap com­
pared to the contralateral hemisphere. When considering the 
28 physiologic maps from the four patients presented, a 
single map had higher percent overlap in the normal hemi­
sphere. There were equal overlap percentages between hemi­
spheres for three maps. Table I lists the overlap values ob­
tained for Patient 3 and illustrates how four parameter maps 
were selected for inclusion in a final POM map. 

TABLE I. Shows the percent overlap for Patient 3 in both healthy and tumor 
hemispheres. The selection of parameters for inclusion into the final map 
was based upon those maps which exhibited higher overlap in the tumor 
compared to the healthy hemisphere. After ensuring the tumor hemisphere 
exceeded the healthy hemisphere in overlap percentages, the four techniques 
with the highest overlap were included in the final map for this patient. 

Parameter Value Healthy Tumor 

Permeability 1 4% 19% 
Hypoxia 2 45% 91% 
Cho:Cre 4 73% 93% 
Cho:NAA 8 87% 100% 
Lac:Cre 16 42% 40% 
rCBV 32 34% 34% 
ADC 64 17% 18% 

While an unlimited number of input techniques are fea­
sible when implementing POM, the color coding for the final 
map becomes confusing when including more than four in­
put parameters and the possible combinations thereof. After 
examination of overlap values and selection of techniques 
likely to be specific to tumor areas containing the highest 
percent overlap, POM maps were formed in AFNI.18 The top 
four overlap values were chosen unless fewer techniques 
yielded an overlap percentage less than or equal to the con­
tralateral value. Voxels containing overlap are displayed as 
functional overlays with corresponding color bars. 

Figure 1 illustrates the POM in two steps for Patient 3. A 
high-resolution postcontrast T1-weighted image is used for 

reference and shows several areas of enhancement around 
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the original tumor site. Whole brain parameter maps (L-R: 
permeability, hypoxia, Cho:Cre, Cho:NAA) are thresholded 
at the 95th percentile of intensity values in the healthy hemi­
sphere. Each map was reduced to the extreme values (i.e., 
only voxels with values exceeding 95% of the maximum of
the value derived from the undiseased hemisphere are re­
tained) and assigned a unique number (L-R: high
permeability=1, high aT2*=2, high Cho:Cre=4, high 
Cho:NAA=8). These binary maps were added to create a 
composite map where the voxel value represents the number 
and identity of overlapping techniques. Voxels with a value 
of 13 indicate an overlap of Cho:NAA, permeability and 
Cho:Cre (displayed in the POM map as orange), while yel­
low voxels would have a value of 5, from an overlap of
Cho:Cre and permeability. 

FIG. 1. Percent overlap method. (A) A high-resolution postcontrast T1­
weighted image is used for reference and all parameter maps are resampled 
and aligned to match this scan. (B) Whole brain parameter maps (L-R: 
permeability, hypoxia, Cho:Cre, Cho:NAA) are thresholded to contain the 
maximum 5% of voxels to obtain (C). Voxels with values of parameter maps 
exceeding 95% of the undiseased hemisphere extreme value presented as a
color-coded overlay on the postcontrast T1 image. Each thresholded param­
eter map is assigned a unique number (e.g., 1=permeability, 2=hypoxia, 
4=Cho:Cre, 8= Cho:NAA), then unions are calculated to create (D) a com­
posite map where voxels displayed contain more than one thresholded pa­
rameter map, color coded to indicate the identity of the maps in (C) that 
overlap. 

G. ISODATA clustering analysis 

We have chosen to compare the POM results with ISO­
DATA, an iteratively self-organizing variation of the 
K-means algorithm, since this clustering technique has been 
validated against histology when considering multi-
parametric datasets in stroke patients.9–11 ISODATA places 
each parameter on a separate axis, creating an n-dimensional 
space describing the tissue. Different tissue types can be dif­
ferentiated by the parameter clusters in the n-dimensional 
parameter space. Details on the method are available in Ja­
cobs et al.10 and Mitsias et al.11 As described in Shen et al., 
the lumping parameter was chosen by defining a region of 
interest in the dominant tissue type for a given slice. The 
standard deviation parameter was then selected based upon 
another tissue type within that slice.19 

Eigentool image processing software (Henry Ford Hospi­
tal, http://www.radiologyresearch.org/eigentoolhelp/) was 
used to perform the ISODATA analysis. The multi-

parametric images were considered slice by slice, and in-

https://content.hfhs.org/docs/rad.pdf
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cluded anatomical as well as physiologic maps such that the 
dataset for each patient included a postcontrast T1-SPGR, 
postcontrast T2-FLAIR, ADC, rCBV, permeability, hypoxia, 
Cho:NAA, Cho:Cre, and Lac:Cre. A second clustering analy­
sis was completed using only the four parameters containing 
the highest percent overlap from the POM. Using a Sun 
workstation, the user is required to enter initial parameters, 
hen the analysis takes less than 1 min per slice. However, 

when our goal was to obtain whole brain maps, up to 80 
lices resampled to match the high-resolution anatomical 
rid could require organization and processing, creating a 
onsiderably labor-intensive process. 

Two theme maps per patient resulted from these analyses, 
here different clusters are shown by different colors.10 

While the number of input parameters was constant over 
patients, the identity of the four physiologic maps included 
in the ISODATA analysis was determined by the percent 
overlap calculations. 

The Kappa Statistic20 was used to determine if the POM 
maps defined areas similar in location to those identified by 
the clustering algorithm. The assumption is that if our thresh­
olding values were appropriate and the relevant techniques 
were chosen, similarly appearing maps would result from 
both POM and ISODATA clustering. Area measurements 
were obtained slice by slice for overlap composite maps and 
for clusters on ISODATA theme maps. When viewing the 
techniques on the same underlying image, inclusive and ex­
clusive voxels were counted and used to calculate kappa. 

III. RESULTS 

Figure 2 displays a three-axis view of the POM composite 
map for Patient 1 from a scan acquired six months post-
therapy. The color-coded map utilized the extreme 5% of 
values from each selected parameter map. The rim of the 
resection bed shows enhancement on the T1-weighted image. 
Voxels along the interior edge show overlapping combina­
tions: Lac:Cre overlaps with rCBV in cyan; Lac:Cre, rCBV 
and hypoxia overlap in blue; Cho:Cre with rCBV (indigo), 
and Cho:Cre with hypoxia (red). RCBV/hypoxia overlap is 

FIG. 2. Patient 1 POM composite map. Abnormal voxels from Cho:Cre, 
Lac:Cre, rCBV and hypoxia parameter maps for Patient 1. POM map over­
laid on postcontrast T1. Yellow voxels, abnormal in all four parameter maps, 
are most compelling, but insight into the heterogeneous environment is of­
fered by other colors showing overlap among various parameter maps. 
There appear to be regions of microscopic extension extending medial to the 
enhancing rim of the surgical bed. 
found near the inferior portion of the overlapping region in 
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green, while a medial band of orange shows 
Cho:Cre and Lac:Cre voxels. The central yellow region 
shows overlap of all four parameters. 

Figure 3 displays a three-axis view of the overlap com­
posite map for Patient 2 acquired seven months postresec­
tion, using a 5% threshold. Four parameters met the selection 
criteria including Cho:NAA and Lac:Cre—both with 97% 
overlap, hypoxia at 27% and 23% overlap in ADC. Voxels 
showing these overlaps are seen in an enhancing region pos­
terior to the most frontal resection cavity. Regions of overlap 
between the Lac:Cre, Cho:NAA and hypoxia are found in all 
slices colored cyan. Yellow voxels represent Cho:NAA, 
Lac:Cre, ADC and hypoxia overlap and are found toward the 
interior edge of the overlap region in Fig. 3. Dark blue re­
gions show Lac:Cre and ADC overlap. More subtle overlaps 
include voxels in orange (ADC and hypoxia) as well as re­
gions displaying Cho:NAA and ADC shown in green. 

FIG. 3. Patient 2 POM composite map. POM map for Patient 2 shows a 
region of interest posterior to the most frontal of the resection cavities. The 
regions containing yellow voxels, abnormal in all four parameter maps, are 
most compelling. A large cluster is defined by the spectroscopy ratio maps 
and the hypoxia scan, and could direct specific attention to that corner of the 
resection cavity when planning treatment. 

Permeability, hypoxia, Cho:NAA and Cho:Cre were se­
lected from the seven parameter maps for Patient 3 at the 
recurrent time point acquired seven months post-stereotactic 
radiosurgery for Fig. 4. Areas of overlap are seen in the 
enhancing areas. Hypoxia and permeability overlap in ven­
tricle areas, likely reflecting blood flow effects from each 
technique. When considering hypoxia and permeability maps 
alone, however, many additional areas would need to be ex-

FIG. 4. Patient 3 POM composite map. Physiology of interest within the 
central portion of the enhancing region for Patient 3. Permeability is thought 
to be a biomarker for immature, leaky vasculature. Correlations with areas 
of high cell turnover as measured by Choline, and areas of hypoxia are seen. 
Using a 5% threshold, Cho:NAA showed 100% overlap, Cho:Cre – 93%, 
permeability – 19%, hypoxia – 91%. Voxels in and around the ventricles 
show overlap between permeability and hypoxia (violet) thought to relate to 

blood flow effects. 
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amined for lack of specificity. The overlap map decreases the 
chances of returning areas not corresponding to tumor pro­
cesses. 

The comparison of POM to ISODATA maps for each of 
three patients is presented in Fig. 5. The Kappa statistic20 

indicates significant agreement between ISODATA results 
and POM maps, specifically Kappa=0.932, 0.854, and 0.842 
for patients 1, 2 and 3, respectively. 

FIG. 5. ISODATA vs POM. ISODATA results are shown in the top row for 
patients 1 (A1), 2  (A2) and 3 (A3). An outline of the ISODATA result was 
placed on the corresponding POM map for comparison, B1–3. There is some 
mismatch in spatial location, but the same general areas are found. 

Figure 6 shows Patient 4 three years postradiotherapy 
with no indications of progression (A). The stability of that 
time point was also suggested by a scan acquired four 
months later (B). Individual thresholded maps found no large 
areas of concern (C-F), nor does the overlap image. There­
fore, even when using a moderate 5% threshold for the maps, 
areas which should not appear in the maps are largely absent. 
Overlap therefore seems to be contained to areas of likely 
recurrence in our patient population. 

IV. DISCUSSION 

An accurate, rapid and objective method for condensing 
information from multi-parametric studies for use in diagno­
sis or treatment planning is critical for large-scale implemen­
tation. We present results from the percent overlap method 
(POM) as a potential candidate. 

When many parameters are considered for recurrent brain 
tumor patients, the amount of information can become over­
whelming and therefore of limited use. Combining multiple 
parameters in an easy to read map is therefore desirable for 
use in radiology, neurosurgery, oncology, and radiation treat­
ment planning. By finding the most appropriate techniques at 
every time point, the number of parameters of interest can be 
reduced in an easily standardized way. 

The threshold percentile chosen to select extreme values 
from the individual parameter maps may introduce a degree 
of subjectivity. A concern with this approach is that the POM 

could neglect some recurrent areas since the complementary 
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FIG. 6. No recurrent tumor POM composite map. A representative POM 
map at a stable time point is shown for Patient 4(A). Orange voxels indicate 
overlap between the Cho:NAA and ADC maps. Yellow voxels represent 
Cho:NAA and hypoxia overlap. The corresponding slice from a future scan
acquired at a four month interval (B) is also shown to indicate this patient’s 
stability over time after the nonspecific overlap map. Parameters of possible 
interest appeared to be rCBV (C), hypoxia (D), Cho:NAA (E) and ADC (F). 
Overlap percentages tend to be lower than those seen in recurrent patients 
and composite maps show no areas of particular interest. Also note that 
while the rCBV map does not overlap with the other physiologic maps, its 
inclusion does not affect other POM voxels. 

nature of the individual parameters is neglected in order to 
focus on redundant information. However, falsely positive 
areas could be largely avoided due to the nature of the over­
lap calculations because of the same reliance on parameter 
redundancy. 

In future studies, POM subjectivity could be minimized 
by accurate histologic confirmation. Though GBM recur­
rence was confirmed by subsequent surgery for each of the 
patients studied here, detailed histologic information describ­
ing true extent and environment was not available. Due in 
part to the lack of detailed histological verification in our 
patient population, we have also chosen to present a com­
parison to the POM via the ISODATA technique. 

Since a majority of GBM patients recur locally, we ex­
pected to see voxels highlighted in composite maps located 

21 
close to the resection bed. Three patients displayed this 
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pattern, and recurrence was confirmed by subsequent sur­
gery. Since diffusion, perfusion and hypoxia scans were ac­
quired for the whole brain, there was the potential to detect 
distal recurrences as well. Spectroscopy appears to offer an 
advantage in its specificity to the recurrent locations, but was 
only acquired in a region prescribed around the contrast-
enhancing abnormality. Advances in CSI acquisition should 
make composite mapping strategies stronger. 

The overlap map from Patient 1 suggests certain regions 
could be outgrowing their blood supplies and forming hy­
poxic conditions where anaerobic metabolism is necessary. 
High Choline was found near these regions, overlapping with 
hypoxia, rCBV, both hypoxia and rCBV, and both Lac:Cre 
and rCBV. An overlapping area of hypoxia and high blood 
volume was located near the hypoxia and Lac:Cre region, 
possibly relating to leaky neovasculature promoted by hy­
poxic conditions.16 

Further treatment was initiated for Patient 1 when recur­
rence was diagnosed using the conventional images acquired 
during the first follow-up scan after completing radiation 
therapy. Physiologic parameters supported the diagnosis, and 
regions of interest are seen in the composite map. Lactate 
levels are elevated in many hypoxic regions lending support 
to the hypothesis of an oxygen-starved environment in these 
areas. Tumor blood vessels are highly irregular, have arterio­
venous shunts and blind ends, and lack normal smooth 
muscle;22 as a result, tumor blood flow is highly variable. 
Since BOLD-based hypoxia mapping has not been used ex­
tensively in humans, overlap with relevant techniques pro­
vides some support for its utility by relating it to previously 
validated parameter maps. 

BOLD-based hypoxia maps are not currently used clini­
cally to our knowledge. Ongoing research indicates that 
changes in response to hyperoxygenation in well oxygenated 
and necrotic regions would be expected to be relatively small 
in comparison to the hypoxic tumor regions. If vessels are 
highly constricted or blocked, or if regions are lacking vas­
culature or contain highly immature vessels, they experience 
no vasodilation. Therefore, there is no signal change. Addi­
tional areas which do not respond to carbogen are necrotic 
areas with paramagnetic breakdown products. These appear 
as bright regions on T2* maps. Dark regions are cystic or 
have low cellular density.23 Well perfused, oxygenated re­
gions also show no significant signal changes since improve­
ments in oxygenation cannot occur to a great degree.24 

The map for Patient 2 shows voxels containing a combi­
nation of Cho:NAA, Lac:Cre, decreased ADC and hypoxia, 
suggesting the presence of areas with high cell turnover that 
could resort to anaerobic metabolism when competition for 
utrients and oxygen becomes too severe. More medial re­

gions of Cho:NAA and hypoxia overlap voxels could further 
indicate increased cell turnover resulting in lack of oxygen to 
some cells. Areas showing high Lac:Cre, hypoxia and low 
ADC could possibly indicate dense cellularity, creating an 

environment lacking in oxygen and nutrients, therefore 
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promoting anaerobic metabolism. While ADC has been un­
reliable in differentiating infiltration from surrounding 
edema,25 it still has potential value in composite maps such
as these. While many parameters may be introduced that 
show a lack of specificity or reliability, considering them as 
part of a set of parameters allows overlap measures to in­
crease the knowledge of underlying physiology. This could 
aid in the evaluation of parameter utility on a patient-by­
patient basis. 

Patient 3 shows several regions of interest. There are very 
small areas of overlap between high permeability and Cho­
line ratio maps. The larger region shows hypoxic abnormali­
ties. These areas appear highly localized to the enhancing
region with the exception of the purple voxels likely showing 
blood flow effects in hypoxia and permeability maps. Perme­
ability is thought to be a measure of angiogenesis induced by
hypoxic environments. Since hypoxia could result from
densely cellular areas, the overlap among these four param­
eters is reasonable. 

Whole-brain maps may be obtained very quickly with the
POM. In addition, analysis of the individual maps could be 
aided through comparison to the composite map regions.
Though the ISODATA technique has been extended to order
clusters in terms of the probability that they contain normal
tissue,11 the POM maps offer descriptive information in 
terms of which parameters indicate recurrence at specific 
voxels. 

The POM introduces subjectivity in selecting extreme 
values of each technique. However, when considering that 
extreme values are important in many of the parameters, re­
ducing the maps to only the maximum values (or minimum
values in ADC maps) appears to be a valid method at com­
bining parameters. In addition, this thresholding step allows
some control over the area defined as abnormal on the final
composite maps. Lowering the threshold, and therefore in­
creasing the number of voxels that are allowed to participate
in overlap composite maps, will increase the areas obtained
from the overlap technique. 

The 5% threshold was initially utilized since it appeared
to find relevant voxels but did not cause an appreciable
amount of noise in the contralateral hemisphere. Without in­
dependent hypothesis testing and verification, we found the
5% threshold was a viable compromise. If histologic confir­
mation of tumor extent was available, the composite map
area could be optimized to highlight the truly important ar­
eas. 

POM is insensitive to the addition of parameters that do
not indicate recurrent disease. However, adding irrelevant
parameters to ISODATA limited its ability to find the abnor­
mal clusters. When using all seven physiologic parameter
maps and the two anatomical scans in the ISODATA algo­
rithm, a single cluster appeared for the entire region. In our
small group of patients, ISODATA appears to be of limited
use when irrelevant parameter maps are added. Conversely,
overlap maps were insensitive to the inclusion of irrelevant
parameters. We have limited our input to four maps for ease
of reading the corresponding color bar, but additional param­

eters could be added and more colors assigned to the various 
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overlapping regions. If techniques are not found to be useful, 
they would be unlikely to overlap with the other component 
techniques, but the other concordant voxels would remain 
unaffected. 

Patient 4 suggests the specificity of the POM to likely 
recurrent areas. Thresholding nonspecific physiologic param­
eter maps and their subsequent combination into a single 
composite map failed to show any large areas of interest. For 
each of our patients, the typical follow-up scans acquired at 
three-month intervals failed to produce POM maps of inter­
est until the final imaging time point where treatment was 
initiated due to the suggestion of recurrence based upon stan­
dard imaging methods. 

Clustering methods have previously been shown to be 
useful for combining multiple parameters, and have demon­
strated their utility in stroke studies in human and 
animals.8–11 However, current programs accept information 
slice by slice, adding some organization issues and losing 
efficiency when multi-slice maps are needed. Since tumor 
physiology is heterogeneous, a whole brain strategy using 
small voxel volumes may be optimal. If whole-brain process­
ing can occur with overlap methods, and comparable maps 
result from an ISODATA algorithm, the ease and speed of 
considering overlapping voxels makes the POM a feasible 
choice. 

An efficient way of using ISODATA to select for the most 
tumor-specific parameters is not immediately apparent. 
While the maps could be considered independently and clus­
tering results examined for each technique, considering mul­
tiple slices would involve considerable time. If diffusion 
measurements are corrupted by peritumoral edema, or if 
rCBV results are not specific to tumor areas, it would be 
difficult to determine their efficacy at particular time points. 

ISODATA also suffers from some degree of subjectivity 
in the selection of input parameters. The technique failed in 
several slices for each patient when standard deviation and 
lumping parameters were not ideally selected. Additionally, 
there must be some subjectivity introduced to interpret the 
ISODATA clusters. While the overlap offers a color bar to 
determine which techniques contributed to the selection of 
voxels as abnormal, it is difficult to determine which param­
eters determined the cluster size and location in ISODATA 
theme maps. 

In addition, areas of extreme values for single component 
parameters could be viewed for the overlap maps to deter­
mine if the complementary nature of the techniques indicates 
a greater spatial extent for recurrence. While many of these 
parameters seem to be somewhat redundant, one of the major 
reasons for using multi-parametric datasets is to find infor­
mation not offered by other techniques. If a particular map 
strongly indicates recurrence, it could be viewed in its en­
tirety along with the overlapping voxels from other tech­
niques. Overlap maps would then serve to cue nonradiologi­

cally trained personnel to check certain regions on the 
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individual component maps more carefully if they are near
areas highlighted on the POM composite map. 

V. CONCLUSION 

We have shown that the POM offers a fast, easily imple­
mented method for combining multiple parameters into a
single map that reflects the probability of abnormality. The
confirmation that ISODATA clustering techniques isolate
similar regions gives confidence that overlap methods are
robust. The question of true spatial extent is a critical one,
especially since the there can be optimization of the cluster
area returned from the POM. Histologic measurements will
be necessary to map true extent for comparison with multi-
parametric techniques for combination, but we offer a simple
technique that enables clinical staff to utilize physiologic im­
aging parameters. 
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