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Nanomechanics of polymer gels and biological tissues: A critical review of 
analytical approaches in the Hertzian regime and beyond 

David C. Lin* and Ferenc Horkay* 
We survey recent progress in the application of nanoindentation to characterize the local mechanical 
properties of polymer gels and biological tissues. We review the theories, analytical models based 
thereon, and data processing techniques commonly used to determine elastic properties of these classes 
of materials by instrumented nanoindentation. Examples from the testing of synthetic and biological 
gels are used to illustrate the limitations of existing theories and approaches. Emphasis is placed on the 
need for contact mechanics models that more accurately represent the large-strain behaviour of soft 
matter. 
1. Introduction 

With the advent of atomic force microscopy (AFM) and depth-
sensing nanoindentation in the 1980s,1,2 the measurement of 
local hardness and elastic properties by applying minuscule 
forces to probes of submicron dimensions became feasible. 
Sensitivity and resolution of the instruments have increased 
concomitantly with advances in miniaturization-enabling tech
nologies such as photodetection, electrostatic and piezoelectric 
actuation, and microfabrication. Today, the AFM is a versatile 
tool for applications as diverse as atomic-resolution imaging3 

and force spectroscopy of inter- and intra-molecular inter
actions4–6 while the mechanical characterization capabilities of 
both the AFM and the depth-sensing nanoindenter have been 
extended to include specialized functions such as wear and 
scratch testing and lateral force spectroscopy.7,8 
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Conventional indentation, in which a rigid probe of well-
defined geometry is pressed into the flat surface of a test sample 
by a force applied normal to the surface, is a well-established 
technique in the characterization of hard surfaces that undergo 
elastic–plastic deformation. Methods developed for macroscopic 
indentation have been shown to be transferable to micron and 
submicron length scales in the testing of many hard materials 
including metals, ceramics, plastics, calcified biological tissues, 
and composites.9–13 When applied to soft materials that undergo 
purely elastic deformation even at large indentation depths, the 
physics of the indentation process are inherently more complex. 
Manifestations and consequences of the increased complexity 
include: 
• Tip–sample interactions such as adhesion are generally 

stronger in compliant samples, particularly in tip retraction. 
Data analysis is therefore usually more difficult and may 
require models that provide for contributions from interactive 
forces. 
• Applied forces for a given indentation depth are much 

smaller in soft materials, making the point of contact difficult 
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Fig. 1 (Left) AFM contact mode topography image of articular 
cartilage from the femoral head of a day-old mouse scanned over an 
18 mm x 18 mm area with a sharp pyramidal tip. Raised regions are 
chondrocytes. (Right) Corresponding elastic modulus map of the same 
area at a resolution of 32 x 32 indentations using the same tip, showing 
the local inhomogeneities in stiffness. Note that the elastic modulus 
varies over two orders of magnitude. 
to identify in many cases. Moreover, signal-to-noise ratios can be 
adversely affected. 
• Although the elastic deformation range of soft materials is 

typically larger than that of hard materials, the transition from 
linear to nonlinear stress–strain behaviour may be ambiguous. 
The opposite is true of many hard engineering materials, which 
possess obvious yield points. 
Despite the hindrances that cast uncertainty on its accuracy, 

nanoindentation remains an important tool in the study of soft 
materials. For example, the AFM’s capability of concurrent 
topographical imaging and mechanical probing has been 
exploited to generate high-resolution elasticity maps of tissues 
and cells, and even to chart the spatiotemporal evolution of 
stiffness during cellular processes.14,15 Nanoindentation is also 
one of a small number of techniques not limited by sample size; 
for example, elastic properties of single vesicles as small as 100 
nm in diameter have been measured.16 The adoption of combina

torial methods in the design of polymer gels for biomedical use 
(e.g. in soft contact lenses, drug delivery agents, and tissue 
engineering scaffolds) has engendered demand for high-

throughput characterization techniques compatible with the large 
libraries of minute sample volumes that are produced.17–19 

In this article, we focus on the theories and analytical models 
used in measuring the elastic properties of soft materials by 
conventional nanoindentation. Esoteric theories such as those 
pertaining to single molecule force spectroscopy and the indenta
tion of shells will be excluded. The body of work on indentation 
theory has focused chiefly on axisymmetric indenters, especially 
those that are spherical in form. Although such probes are most 
conducive to accuracy and consistency in mechanical measure

ments,20 their use is not always warranted in practice (e.g. 

when concurrently imaging and probing the compliance of 
a sample using the atomic force microscope). Hence, other 
geometric models are covered where they are available and 
deemed congruent with the objective of this review. We examine 
various approaches utilized by researchers and discuss the 
applicability and shortcomings of each. It should become clear 
to the reader that the full potential of the nanoindentation 
technique, particularly when utilizing the AFM, cannot be 
realized without further developments in contact mechanics 
theory and modelling. 
The paper is organized as follows: we begin with a brief 

summary of the Hertz contact mechanics theory. We then 
present a synopsis of the theories that incorporate tip–sample 
adhesive forces, followed by those that correct for the effect of 
small sample thickness. Next, we briefly discuss tip–sample 
repulsion and a proposed strategy for its treatment. A section 
is devoted to the discussion of nonlinear elastic contact 
mechanics. A number of analytical approaches based on linear 
elastic models are then highlighted, with the salient features of 
each identified. Finally, we provide an illustrative example of 
the shortcomings of each method and emphasize the strength 
of a combined approach. A comprehensive scheme is of parti
cular importance in the nanoindentation of materials with large 
local inhomogeneities such as biological tissues (Fig. 1) and 
polymer composites. As a consequence of variations in local 
structure, composition, surface charge, etc., the indentation 
response of these materials can vary over length scales compa

rable to the resolution of the instruments. 
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2. Contact in the Hertzian regime 

In reference to the original Hertz theory of contact between two 
elastic, ellipsoidal bodies21 we define force–indentation behaviour 
that can be assumed to be governed by linear elasticity as being in 
the ‘‘Hertzian regime.’’ Theories and models applicable in this 
range include those that account for influence from surface 
properties (e.g. tip–sample adhesion) and geometric factors (e.g. 

finite sample thickness). 

2.1 Non-interactive indentation of an infinite half space 

Hertz was the first to solve the problem of contact between two 
smooth, ellipsoidal solids.,22 In the context of the indentation of 
a flat (infinite radius of curvature), elastic surface by a rigid sphere, 
the assumptions employed by Hertz can be summarized as follows: 
• The strains are small, i.e. ac << R, where ac is the contact 

radius and R is the radius of the sphere. 
• The indented solid is a linear elastic, infinite half space. 
• The surfaces are frictionless. 
Following Hertz’s seminal treatise, numerous others (e.g. 

Boussinesq,23 Love,24 Segedin,25 Landau and Lifshitz,26 and 
Sneddon27) made significant contributions to the theoretical 
framework. Exact solutions in the form of force–indentation 
relationships, contact pressure distributions, and stress and 
displacement fields are readily available for common axisym

metric geometries (e.g. cone, cylinder, sphere) while approximate 
solutions have been derived for other geometries of practical 
interest such as sharp28,29 and blunt29 pyramids and blunt 
cones.30,31 Force–indentation and contact radius relationships 
for the most common geometries are summarized in Table 1. 
In addition to uncertainties about their true geometric dimen

sions, the small tip angles of common tapered tips used in instru
mented nanoindentation raise concerns of exceeding the linear 
stress–strain limit of the indented material.20,28 Hence, care 
should be exercised to select probes of the largest available tip 
angle and to minimize indentation depths whenever possible. 

2.2 Adhesive indentation of an infinite half space 

Some degree of tip–sample interaction is often unavoidable in 
nanoindentation, with the type and magnitude of the force 
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Table 1 Indentation relationships for common indenter shapes 

General force–indentation relationship: F ¼ ldh . F: force; d : indentation depth; l: geometry-dependent elastic constant; h: geometry-dependent 
exponent 

Model la h ac (contact radius) 

Hertz: sphere of radius R E*R1/2 3/2 (Rd)1/2 

Flat cylinder of radius r 3E*r/2 1 r 
Sharp cone of tip angle 2f 3E* tanf/(2p) 2 2d tanf/p 
Sharp pyramid of face incline angle p/2-f, Bilodeau solutionb 3(1.4906)E* tanf/8 2 1.5791/2d tanf/2 
Sharp pyramid, Rico et al. solutionc 3E* tanf/25/2 2 d tanf/21/2 

Blunt cone or blunt pyramid of tip angle 2f, 
transitioning at radius or half-width b to round tip with 
radius R, with b ¼ R cosf 3E

*
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pyramid : m ¼ 21=2; n ¼ 23=2=p 

a E* ¼ 4E/3(1-n 2) where E is Young’s modulus and n is Poisson’s ratio. b Contact radius is actually half the length of one side of the square of contact. 
c Effective contact radius is of a circle with equal contact area. 
affected by the composition and surface chemistry of the tip. 
Selecting the tip material or modifying its surface to be compa

tible with a specific sample is generally impractical. Hence, it is 
preferable to incorporate interactive interactions into contact 
mechanics theory. This was pioneered by Johnson et al.32 who 
were motivated by the large body of evidence (usually manifested 
in enlarged contact area at a given load) suggesting the existence 
of attractive forces between both contacting hard and rubber
like solids. The JKR (Johnson–Kendall–Roberts) theory 
modifies the Hertz theory by introducing an apparent Hertz 
load, or the equivalent load in the absence of adhesion that 
produces the enlarged contact area. Later, Derjaguin et al., 33 

proposed the seemingly contradictory DMT (Derjaguin– 
Muller–Toporov) theory in which the deformed surface profile 
is assumed to follow the Hertz model. The ensuing debate 
persisted in the pages of the Journal of Colloid and Interface 

Science34 until Tabor identified the applicability of the two 
theories to opposite extremes of the relationship between sample 
compliance and the range of the adhesive force.35 The JKR 
theory was found to be valid for the indentation of relatively 
compliant materials with probes of relatively large radii and 
strong adhesive forces. In contrast, the DMT theory applies 
under conditions of stiff materials, small probe radii, and weak 
adhesive forces. 
An important development in adhesive contact mechanics was 

advanced by Maugis,36 who employed the Dugdale square-well 
approximation of the Lennard-Jones potential to formulate 
a closed-form solution to the general spherical indentation 
problem spanning the JKR and DMT limits. The Maugis– 
Dugdale theory consists of three equations that give an indirect 
relationship between force and indentation.36,37 Carpick et al.38 

and Pietrement and Troyon37 developed an empirical form of 
the theory that greatly enhances its practicality. The following 
set of equations comprises the empirical Maugis–Dugdale 
model:37,38 
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(" #4=3 " #)
1=2 2b=3 

a2 x þ ð1 þ Fn =FadÞ x þ ð1 þ Fn =FadÞ
d ¼ c0 -S

R 1 þ x 1 þ x 

(1) 

" #2=3
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ac x þ ð1 þ Fn =FadÞ
ac0 
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1 þ x 

(2) 

a ¼Fc0 –0.451x 4 + 1.417x 3 – 1.365x 2 + 0.950x + 1.264 (3) 

FFad ¼ 0.267x 2 – 0.767x + 2.000 (4) 

1.919S ¼ –2.160x 0.019 + 2.7531x 0.064 + 0.073x (5) 

b ¼ 0.516x 4 – 0.683x 3 + 0.235x 2 + 0.429x (6) 

3E* 

aFc0 ¼ ac0 (7) 
pgR2 

1=3� �

FF 
ad ¼ Fad/(pgR) (8) 

where d is the indentation depth, ac0 is the contact radius at zero 
applied force (Fn ¼ 0, corresponding to the point indicated by , 
in Fig. 2), Fad is the constant adhesive force (in Fig. 2, it can be 
seen that contact or separation occurs when Fn ¼ -Fad), g is the 
interfacial energy, E* ¼ 4E/3(1-n2 ) where E is Young’s modulus 
and n is Poisson’s ratio, x is a nondimensional parameter that 
represents the intermediacy within the JKR–DMT transition, S 

and b are nondimensional functions of x, and aFc0 and FFad are 
nondimensionalized equivalents of ac0 and Fad. The special 
case x ¼ S ¼ b ¼ 0 corresponds to the DMT theory while the 
JKR equations are recovered when x ¼ 1 (and hence, S ¼ 2/3 
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Fig. 2 Essential reference points for cases of non-interactive and adhesive indentation. Bending of the AFM cantilever at each point is shown. Raw 
data from the depth-sensing nanoindenter are usually in the form of force (F) vs. tip position. For the AFM, raw data are in the form of cantilever 
deflection (d) vs. position of the cantilever base. Tip position and base displacement are mathematically equivalent and designated by coordinate z. 
Indentation is always zero at the point of contact in the non-interactive (indicated by 1) and DMT (indicated by B) models, but can be negative 
in the general case of adhesion (indicated by ,) to allow for deflection of the sample surface towards the tip. The general case therefore additionally 
requires the point of zero indentation (indicated by >). The point of zero applied force (indicated by O) occurs at positive indentation depth for all 
cases of adhesion. Figure adapted from Lin et al. 50 When electrostatic repulsion at larger separation transitions to adhesion, the resulting response is 
dependent on whether the adhesive force is greater than (curve ‘‘i’’) or less than (curve ‘‘ii’’) the maximum repulsive force. In curve ‘‘ii’’ analysis should be 
performed using data subsequent to the point of contact (indicated by •). 
and b ¼ 1/2). It is worth noting that the ‘‘jump to contact’’ 
phenomenon observed in some instances of strong adhesion is 
consistent with the JKR theory, which predicts abrupt contact 
of ac > 0 at the critical point where Fn ¼ -Fad. 
The JKR theory was extended by Sun et al.39 to a hyperboloid 

or blunt conical indenter of tip radius R and semivertical angle f. 
The contact equations are: 

"
2 
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2.3 Non-interactive indentation of thin layers 

The Hertz assumption of infinitesimal deformation (i.e. the 
indented sample is regarded as an infinite half-space) is a valid 
approximation in most practical applications. However, there 
exists a threshold in the ratio of maximum indentation depth 
to sample thickness at which errors from finite size effects 
become unacceptably large. Dimitriadis et al.20 cited examples 
of corrections based on extensive numerical computations and 
found that Chadwick’s approach provides a suitable estimate 
for modelling the indentation of very thin, incompressible 
layers by a spherical probe.40 They prescribed a condition of 
c ¼ (Rd)1/2/h # 1, where h is the sample thickness, for which their 
force–indentation relationship is valid: 
672 | Soft Matter, 2008, 4, 669–682 
2j 4j2 
2F ¼ E * R1=2d3=2 

h
1 - c þ c 

p p2 

(11) (
2 
) (

2 
) ]

8 4p 16j 3p 3 - j3 þ z c 3 þ j3 þ z c 
p3 15 p4 5 

In eqn (11), j and z are functions of Poisson’s ratio and take 
on different forms based on the interfacial conditions between 
the sample and the underlying rigid substrate. When the sample 
is not bonded to the substrate, the parameters are given by 

3 - 2n 5 - 2n 
j ¼ -0:347 ; z ¼ 0:056 (12)

1 n 1 n- -  

and when the sample is bonded to the substrate, they are given 
by 

1:2876 - 1:4678n þ 1:3442n 2 

j ¼ - ;
1 - n 

(13) 
0:6387 - 1:0277n þ 1:5164n 2 

z ¼ 
1 - n 

For very thin incompressible samples (i.e. c > 1 and n ¼ 0.5), 
use of Chadwick’s solution is recommended: 

F ¼ (2p/3)ER1/2d3/2c 3 (bonded sample) (14) 

F ¼ (2p/3)ER1/2d3/2c (nonbonded sample) (15) 

2.4 Repulsive tip–sample interactions 

While adhesion is the most prevalent form of tip–sample interac
tion in the indentation of soft materials, other types of interac
tions are possible. Of particular interest is the existence of 
electrostatic forces when indentation is performed in aqueous 
This journal is ª The Royal Society of Chemistry 2008 



media, specifically in the presence of ions.41 Models based on 
electrosteric and electrostatic interactions41–43 and on the 
Derjaguin–Landau–Verway–Overbeek (DLVO) theory44,45 have 
been applied in the limited body of work utilizing probe micros

copy to measure the repulsive force between a probe and a flat 
surface. The majority of recent research efforts have focused 
on repulsive interactions between microbes and various mate

rials.46–49 These studies are concerned with surface properties 
of the investigated materials rather than their bulk mechanical 
properties. Hence, although the repulsive force between a probe 
and sample surface of like charge can be modelled as a function 
of the separation distance using the electrosteric, electrostatic, 
and DLVO models, force–indentation relationships that account 
for repulsion are lacking. 
Lin et al.50 proposed a simplistic and inexact approach to 

handling repulsive interactions in the contact regime. Similar 
to the treatment of adhesive forces in the JKR, DMT, and 
Maugis–Dugdale theories (see section 2.2), the maximum repul
sive force is assumed to be constant at sufficiently large indenta
tion depths. Consequently, the force–indentation relationship in 
this portion of the post-contact regime is offset from its zero-
force position by a distance corresponding to the repulsive force. 
Because the mechanics in this region are otherwise assumed to be 
unchanged from the non-interactive case, the relationships in 
Table 1 along with eqn (11) – (15) are valid. 
In rare cases, a more complex phenomenon can occur in which 

the electrostatic repulsion that dominates at larger separation 
distances is overcome by adhesive forces upon tip approach, 
resulting in the characteristic dip shown by curves ‘‘i’’ and ‘‘ii’’ 
in Fig. 2.41 When the adhesive force is greater than the maximum 
repulsive force (curve ‘‘i’’), the indentation mechanics are similar 
to those associated with pure adhesion, and can be analyzed as 
such. If, however, the adhesive force is less than the repulsive 
force (curve ‘‘ii’’), the adhesive models are not applicable because 
the net force is repulsive at the point of contact. In this case, the 
suggested course of action is to discard the portion of data prior 
to contact and use the method outlined in the previous paragraph. 
3. Contact beyond the Hertzian regime 

In soft materials, the linear stress–strain approximation becomes 
progressively inadequate with increasing deformation. The strain 
at which deviation from linearity becomes significant is a material 
property that is seldom known prior to performing indentation 
experiments. Hence, it may be difficult to limit deformations to 
the linear regime. The lack of closed form force–indentation 
relationships appropriate for nonlinear elastic deformation has 
been the impetus for investigators to conduct numerical studies 
of nonlinear contact mechanics.30,51 These studies illustrate the 
potentially significant errors that can be incurred by applying linear 
models to the indentation of stiffening or softening materials. The 
prevalence of using tapered tips to measure the mechanical proper
ties of soft materials, particularly of cells and tissues, underscores 
the necessity for nonlinear contact mechanics models that cover 
a range of tip geometries and non-Hertzian deformations. 
A number of phenomenological theories originating from 

polymer science have been developed over the years to describe 
the nonlinear elastic behaviour of rubbers and other polymeric 
materials.52,53 Continued research in the nonlinear elasticity of 
This journal is ª The Royal Society of Chemistry 2008 
soft materials now encompasses constitutive equations formu

lated to model the micromechanics of cells.31,54,55 Such models, 
however, are largely academic except when implemented in 
computational methods. Interestingly, Jaasma et al.56 found 
the indentation of osteoblasts with a spherical probe to closely 
follow a single parameter, second-order power law as a function 
of force. 
Because contact mechanics remains a relatively under

developed field, linear models often serve as the basis for 
qualitative analyses of deformations beyond the Hertzian 
regime. For example, Costa et al.57 used a pointwise approach 
of calculating Young’s modulus with the blunt cone model 
(Table 1) to determine the extent of material nonlinearity. By 
comparing the value of E at each point, the stiffening and 
softening behaviour could be discerned. Mathur et al.58 observed 
similar transitions in the elastic modulus with indentation depth 
in their studies on cardiac and skeletal muscle cells. 
Lin et al.59 addressed the dearth of nonlinear force– 

indentation relationships and derived an approximate equation 
based on the Mooney–Rivlin strain energy function.53 The 
relationship for the indentation of a rubber-like material by 
a rigid sphere of radius R is  

 
d5=2 - 3R1=2d2 þ 3Rd3=2 

F ¼ pR1=2B1 
d - 2R1=2d1=2 þ R 

5=2 3=2R1=2d 2 þ 3R3=2d- 3RdþpR1=2B2 -d3=2 þ 3R1=2d - 3Rd1=2 þ R3=2 

 !
 ! (16)

where B1 and B2 are essentially the Mooney–Rivlin constants 
and are related to Young’s modulus at infinitesimal strain, E0, 
by59

4E0
B1 þ B2 ¼ (17)

9pð1 - n2Þ 

The net force is equal to the sum of the applied force and the 
adhesive force (F ¼ Fn + Fad) if adhesion is present and conforms 
to the specific conditions of the DMT theory (stiff material, small 
probe radius, and weak adhesive force). However, eqn (16) cannot 
be used for general cases of adhesion. The model reduces to the 
neo-Hookean form53 when B2 ¼ 0. Although the neo-Hookean 
equation should be adequate for perfectly rubber-like materials 
under compression, Lin et al. suggested the use of the Mooney– 
Rivlin form to allow for slight deviations from rubber elastic 
behaviour. Eqn (16) eliminates the need to limit deformations to 
the linear regime or to truncate datasets, and was shown to be 
a good fit for the large-strain indentation of swollen poly(vinyl 
alcohol) gels and some cartilage samples.59 The method of 
derivation of eqn (16) can be extended to other hyperelastic strain 
energy potentials (e.g. Ogden, van der Waals, Fung).60,61 The 
family of equations thus generated covers models that have been 
used successfully for many rubber-like gels and soft tissues. 
4. Analytical techniques 

A multitude of techniques have been developed for the analysis 
of data from the AFM or depth-sensing nanoindenter. Virtually 
all the techniques presented in this section were designed for 
Soft Matter, 2008, 4, 669–682 | 673 



extracting linear elastic properties from indentation data. Many, 
however, can be adapted for use with eqn (16). The features, 
capabilities, and shortcomings of what we believe to be the 
most representative approaches will be discussed. We will assess 
the capability of each in handling irregular data sets (i.e. those 
with excessive noise, significant adhesion, or significant 
repulsion). Obviously, it is not possible to cover the intricacies 
of implementing each technique. However, it is hoped that this 
critical review will aid the researcher in selecting or developing 
an approach suitable for the analysis of experimental data. 
Before commencing with the survey of methods, the subject of 

material compressibility merits a brief discussion. While the 
assumption of sample incompressibility applied in many tests is 
generally valid, Poisson’s ratio of some materials, particularly 
soft tissues, can be significantly less than 0.5. Using the Hertz 
equation as an example, it can be verified that the assumption 
results in an underestimation of Young’s modulus by nearly 
18% and 11% for actual Poisson’s ratios of 0.3 and 0.4, respec
tively. In the following methods, if Poisson’s ratio is unknown, 
it can be combined with Young’s modulus to form an effective 
material constant (e.g. E* in Table 1) useful for comparing the 
elasticity of materials with similar compressibility. Note, however, 
that the quantity is not as meaningful as Young’s modulus. 

4.1 Reference point dependence 

The majority of methods require the determination of reference 
points to transform positional coordinates to force and 
indentation data. The complexity of the process depends on 
whether adhesive interactions are present and on the type of 
instrument employed, with the depth-sensing systems generally 
Table 2 Essential reference points in nanoindentation data processing 

Instrument 
type 

Non-interactive 
Indentation Adhesive Indentationa 

Atomic force 
microscope 

Contact or release/ zero 
indent: (z0, d0)

Contact or release: 0 (z , d0)

Zero indent: (z0, d0) 
Zero force: (z1, d1) 

Depth-
sensing 
nanoindenter

Contact or release/zero 
indent: (z0, F0)

Contact or release:  (z0, F0) 

Zero indent: (z0, F0) 

a When adhesion is governed by the DMT theory, i.e. a ¼ S  ¼ b ¼ 0 in
 
eqn (1) – (8), the point of zero indentation is also the contact point.
 
z is the position of the tip (nanoindenter) or cantilever base (AFM).
 
d is the deflection of the cantilever (AFM).
 
F is the net force measured by the force actuator of the nanoindenter.
 

Table 3 Force and indentation relationships 

Instrument type Non-interactive Indentation 

Atomic force microscope F ¼ Fn ¼ kc(d - d0) 
d ¼ (z - z0) - (d - d0) ¼ (z 
(

-
z0 - d0) ¼ w - w0 

Depth-sensing nanoindenter F ¼ Fn ¼ F - F0 

d ¼ z -z0 

kc is the spring constant of the cantilever; w ¼ z - d is a transformed position c
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requiring less rigorous treatment of the raw data due to their 
ability to measure forces directly. For typical AFM and depth-
sensing nanoindenter setups, the essential reference points under 
non-interactive and adhesive conditions as identified by Lin 
et al.50 are summarized in Table 2 and illustrated in Fig. 2. Force 
and indentation depth are derived from the reference points using 
the relationships listed in Table 3. 
For non-interactive contact, the implications of an incorrectly 

identified contact point (equivalent to the release point in tip 
retraction) on the accuracy of extracted mechanical properties 
were studied by Crick and Yin.62 Simulations were performed 
of the indentation of materials with linear and nonlinear 
stress–strain properties using a blunt conical tip. It was found 
that the errors incurred by misidentifying the contact point 
were affected by the linearity and stiffness of the material, the 
level of noise in the data, the distance of the misidentified point 
from the actual contact point, and whether the misidentified 
point was situated in the pre-contact or post-contact region. 
4.2 Methods for non-adhesive contact 

4.2.1 General principles of data fitting. Techniques based 
purely on data fitting are usually implemented in search strate
gies. The appropriate transformations in Table 3 are substituted 
into a force–indentation relationship to form the fitting 
equation; the sole reference point in non-adhesive indentation 
is the contact point. These methods were further grouped by 
Lin et al. according to whether the identified contact point is 
required to be a member of the data set.63 Different levels of 
constraints were defined: 
• Fully constrained, in which the contact point must come 

from the data set and the lone fitting parameter is an elastic 
constant. 
• Semi-constrained, in which only one coordinate of the 

contact point is from the data set and the other coordinate along 
with an elastic constant are the fitting parameters. Bounds can 
be imposed on the parameters. 
•Unconstrained, in which both coordinates are allowed to fall 

outside the data set, leaving three fitting parameters (both 
coordinates of the contact point and an elastic constant). A 
good initial guess of the contact point is usually necessary. 
Variants of these search procedures have been used by many 

researchers to process data from the nanoindentation of hydro-
gels, cells and other biologically relevant materials.14,20,29,64–68 

The semi-constrained and unconstrained techniques help to 
compensate for errors arising from high levels of noise (e.g. 

ensuing from adhesive ‘‘jump to contact’’) or from relatively 
minor misidentifications of the contact point by allowing the 
Adhesive Indentation 

F ¼ Fn + Fad ¼ kc(d - d1) +  kc(d0 - d1) 
d) - d ¼ (z - z0) - (d - d0) ¼ (z 

w 
- d) - (z0 -d0) ¼ 

- w0 

F ¼ Fn + Fad ¼ (F - F1) + ( F0 -F1) 
d ¼ z - z0 

oordinate introduced for simplicity and w0 is its value at the contact point. 
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contact point to ‘‘float’’. Ideally, multiple iterations are not 
necessary with the unconstrained technique. Lin et al. found 
the semi-constrained approach to be amenable to optimization 
strategies such as the Golden Section search, which offsets its 
relative computational expense.63 This is illustrated in Fig. 3 by 
the plots of the fitting error as the assumed contact point is 
moved along the curves of three sample data sets. 
Because the fitting schemes are compatible with any force-

indentation equation, material nonlinearity does not preclude 
their use. In their large-strain AFM indentation tests of poly(vinyl 
alcohol) hydrogels and cartilage specimens, Lin et al.59 applied 
eqn (16) successfully in an implementation of a semi-constrained 
search procedure. These schemes fail to produce acceptable fits 
of the data, however, when large repulsive forces obscure the 
contact point. As in the case of adhesion, the contact point is 
shifted under the influence of repulsive forces and non-interactive 
contact models do not accurately fit the data. By assuming the 
maximum repulsive force to be constant at sufficiently large 
indentation depths, Lin et al.63 argued that the force–indentation 
behaviour essentially obeys non-interactive contact mechanics. 
Fig. 3 Curves ‘‘a’’–‘‘c’’: Force curves (every fifth point indicated by >), best-
error (MSE) as a function of the position of the assumed contact point u
engineered cartilage specimens with a 9.6 mm diameter spherical tip are shown
on the solutions. In curve ‘‘c’’, points prior to the inflection point (indicated b
the analysis. A surrogate contact point (indicated by •) is found using a semi-c

of the retained data, the MSE plot is unimodal (curves ‘‘a’’ and ‘‘b’’) and optim
When the contact point lies outside the range of the retained data (curve ‘‘c’’), a
a global minimum. Curve ‘‘d’’ is a representative curve showing significant adh
Lin et al. 50 

This journal is ª The Royal Society of Chemistry 2008 
Discarding the data points affected by repulsion, a semi-

constrained ‘‘rearwards search’’ is performed to locate a surrogate 
contact point (see curve ‘‘c’’ in Fig. 3). 

4.2.2 Method of Crick and Yin. As a complement to their 
study, Crick and Yin proposed an algorithm for finding the contact 
point and subsequently extracting the value of Young’s modulus.62 

Using a moving subset containing 25% of all data points, the 
difference in cantilever deflection between the first and last points 
is used to evaluate whether the contact point is bracketed within 
the subset. The iterative process is performed until the difference 
is significantly greater than the noise level. The first and last points 
of the subset are then used to define initial lower and upper bounds 
of the search interval. The size of the interval is adjusted according 
to rough estimates of the stiffness of the material and the location 
of the contact point. Within the new interval, an exhaustive 
search is performed by fitting the first half of the data up to the 
candidate contact point with a line and the second half with either 
another line or a quadratic function. The solution is determined 
from an aggregate measure of the accuracy of each fit. 
fit curves (dark solid lines), and corresponding plots of the mean-square

sing a linear, semi-constrained search. Three separate indentations of 
. For visualization purposes, curves were shifted vertically with no effect 
y ,) and presumably influenced by repulsive forces, were discarded from 
onstrained rearwards search. When the contact point lies within the range 
ization strategies such as the Golden Section search can be implemented. 
s is prone to occur with significant repulsion, the MSE plot does not have 
esive interactions, and requires a different analytical approach. Data from 
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This method can be extended for nonlinear elastic indentation 
by substituting eqn (16) in place of the linear or quadratic 
functions for fitting the assumed contact portion of the data. 
Its chief deficiency is that it will only work when the pre-contact 
portion of the data set is virtually free from tip–sample inter
actions. Repulsion and adhesion may both cause the bracketing 
procedure to erroneously omit the true contact point from the 
search interval. It is clear that this is the case for sample data 
set ‘‘c’’ shown in Fig. 3, where the difference in deflection 
between the first and last points of any subset will be substan
tially larger than the level of noise. 

4.2.3 Method of Jaasma et al.. For indentation in the 
Hertzian regime with a tip profile satisfying the general force– 
indentation relationship given in Table 1 (F ¼ ldh), Jaasma 
et al.56 showed that the derivative of the AFM cantilever deflec
tion with respect to the base position is zero at the point of 
contact or release. This relationship is linear for their empirical 
value of h ¼ 2. Extrapolation of post-contact portions of the 
data to the point of zero derivative yields the location of the 
point of contact or separation. Regression analysis is applied 
to determine Young’s modulus. This method requires that the 
deformation be confined to the linear regime. However, it is 
compatible with adhesive and repulsive indentation provided 
that there is sufficient data at large indentation depths for which 
interactive forces are negligible. It is important to note that 
because the analysis is based on the derivative of the data, high 
levels of noise may introduce large errors. 

4.2.4 Method of Guo and Akhremitchev. Guo and 
Akhremitchev69 devised a data fitting scheme based on the 
linearization of data. The general force–indentation relationship 
given in Table 1 is first rewritten in terms of the tip–sample 
separation distance D and a constant C related to the point of 
contact or separation (d ¼ C – D, where d is the indentation 
depth).70 The linearization in D is obtained by rewriting the 
general equation as 

F1/h ¼ C* –  l1/hD (18) 

where C* is another constant and equal to l1/hC. 
Guo and Akhremitchev estimate a maximum systemic error 

of approximately 10% associated with manually selecting the 
point of contact or separation. This method is most suitable for 
data sets in which the point can be easily identified. After 
transforming the raw coordinates to values of force and 
indentation, points in the post-contact region are plotted using 
eqn (18). Young’s modulus is then extracted from the slope of 
the line. Indentations are required to be linear elastic and 
non-interactive. 

4.2.5 Method of Oliver and Pharr. This method is an 
extension of traditional methods for determining the hardness 
and elastic moduli of solid materials.71 In order to limit 
experimental complexity and make the method more tractable 
for nanoindentation data, Oliver and Pharr dispensed with the 
need to measure the geometry of the residual impression. Hence, 
their approach can be adapted for the indentation of soft 
materials.72–76 
676 | Soft Matter, 2008, 4, 669–682 
For indentation with a rigid indenter, the reduced modulus, 
Er, is defined by71 

E ¼ 
 

1 n2   -

ffiffiffiffi
p

p

2

sp
Ac

ffiffiffiffiffi
where s is the initial loading stiffness determined from the 
derivative of the transformed force–indentation relationship at 
maximum load and Ac is the corresponding contact area. 
Although Oliver and Pharr performed experiments to establish 
the relation between the contact radius and applied load, the 
equations in Table 1 can be used in lieu of empirical relation
ships. Eqn (19) serves as a substitute of the regression analysis 
employed in other approaches of extracting the elastic modulus. 
The constraint of limiting the analysis to the unloading data can 
be relaxed in testing many soft materials due to the absence of 
inelasticity. 

4.2.6 Method of A-Hassan et al.. A-Hassan et al.77 proved 
that the relative work of indentation (i.e., the ratio of areas under 
the force–indentation curves for two different samples) is 
proportional to the ratio of their stiffness. Hence, the work 
can be used as a relative measure of the elastic modulus. 
Although this method is valid for both linear and nonlinear 
deformation and does not require the identification of reference 
points, its practicality is severely limited by its inability to 
measure the absolute elastic moduli of materials. 

4.2.7 Other methods. A number of other contact point 
dependent methods, mostly designed for non-interactive contact, 
have been described in the literature. We touch on a few of them 
here to provide awareness of alternative schemes: 
• Derivatives of cantilever deflection78 – the contact or release 

point is assumed to occur at the point of maximum change in 
deflection with respect to the cantilever base position. When 
the level of noise is high, however, large errors in the detected 
contact point are likely. 
• Average deflection in the contact region79 – after identifying 

the pre-contact portion of the data set, the average of the 
deflection is calculated. The force–indentation equation is then 
fit to the purported contact portion of the data, with the elastic 
constant and the z-coordinate of the contact or release point as 
fitting parameters. The pre-contact region will be difficult to 
identify unless tip–sample interactions are absent and the level 
of noise is low. 
• Power series correction80 – the force–indentation equation is 

expanded in a two-term power series about an arbitrary point in 
the vicinity of the contact or release point. This modified fitting 
equation is then used to find the values of the elastic constant and 
the coordinates of the true contact or release point. Subjectivity 
in the selection process and significant influence from the size of 
the pre-contact portion make this method difficult to implement. 

4.3 Methods for adhesive contact 

4.3.1 Method of Lin et al. for adhesive interactions. When 
adhesion is detected (see Fig. 2 and curve ‘‘d’’ in Fig. 3), typically 
in tip retraction, Lin et al.81 proposed an approach based on the 
Pietrement–Troyon empirical model represented by eqn (1) – (8). 
The locations of the zero force and contact reference points 
This journal is ª The Royal Society of Chemistry 2008 



Fig. 4 Sample retraction curves from the AFM indentation of a poly(vinyl alcohol) gel using a 9.6 mm diameter spherical tip. The contact points 
(indicated by B) and the zero indentation reference point (indicated by •) do not necessarily coincide. Data from Lin et al. 81 

Fig. 5 Flowchart representation of the algorithm developed by Lin et al. 50 for the analysis of AFM nanoindentation data. Contingencies for repulsive 
and adhesive interactions are incorporated into the scheme. 
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START 
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aggregate fit of line and 
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point denoted by 
(z*, (z*, d*). d*). 
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Fit non-contact portion 
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Janes type force law 
as well as a line. 

Force reference (z1, d1) derived from 
force law. Fmax is max. applied force. 
Contact/release point (z', d') is 
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Calculate aco from Eq. (3), Fad from 
Eq. (4), then Y END from Eq. (8). 
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, 

Data smoothing: cubic spline Calculate first through third 
fit of data points spaced at derivative of smoothed curve. 
every 5% of total points. 

Limit data to specified Identify inflections: first and last 
strain threshold. Strain points for which a2d/az2 =0 
based on (z*, d*). and a3d/az3 > o. 

Compute (MSE)112 of smoothed Apply unbounded, semi
curve. Set distance tolerance constrained fit to first point 
D dmax =(MSE)1/2 and a point offset slightly. 

Unbounded, semi
Rearwards 

constrained, Golden 
search. 

Section search. 

Bounded, semi
constrained search. 



Fig. 6 Simulated, non-adhesive AFM data sets analyzed by three methods. Random noise of up to ±1 nm was added to each value of deflection d. For 
the method of Jaasma et al.56 the range of analysis was found through trial and error. For the neo-Hookean data, the method of Guo and 
Akhremitchev69 relies on the Hertz equation. For the Hertz and neo-Hookean data sets, the method of Crick and Yin62 yields essentially the same results 
as the method of Lin et al.50,63 Best-fit curves (solid lines) are plotted with the data (every fifth point indicated by B) where possible. 
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Notes 

E = 10 kPa 
Poisson's ratio= 0.5 
Spherical indenter of 2500 nm 
diameter 

Point of con tacVseparation is 
indicated by solid square ( • ).

All analyses performed using 
Matlab. 

A range of selected contacV 
separation points (indicated in each 
plot of d vs. w) is used in the analysis
to illustrate the sensitivity of the 
method. 

Bottom plots show errors in 
the extracted Young's modulus as a 
function of the selected point. 

A range of analysis is chosen 
(indicated in bottom plots). Point of 
contacVseparation is determi ned from
the point at which the fit of ddtdw 
extrapolates to zero. 

Values of ddtdw are calculated afte r 
smoothing the raw data. 

Fitting is performed us ing the He rtz 
or Mooney-Rivlin equations. 

Anal ysis is based on the algorithm 
shown in Fig. 5 for non-adhesive 
interactions. 



Fig. 7 Simulated, JKR type adhesive AFM data sets analyzed by three methods. Best-fit curves (solid lines) are plotted with the data (every fifth point 
indicated by B) where possible. 

Notes 

E = 10 kPa 
Poisson's ratio =0.5 
Spherical indenter of 2500 nm 
diameter 

All analyses performed using 
Matlab. 

A range of analysis is chosen 
(indicated in bottom plots). Point of 
contact/separation is determined from 
the point at which the fit of ddldw 
extrapolates to zero. 

Values of ddldw are calculated 
after smoothing the raw data. 

Fitting is performed using the Hertz 
model. 

Results are strongly dependent on 
the selected range of analysis. 

Analyses are based on the 
algorithm shown in Fig. 5 fo r 
adhesive interactions. 

t 	 For JKR-type adhesion, the difference in indentation between the zero force reference (z , d ) and the point of contact or separation (z', d ) is, from 1 1
Eq. (1) with a= 1, {3 = 1/2, and S = 2/3:

a~  4ja1Fad a~  4ja2Fad ( RFad) 113 ( 4RFad) 113 
(z1- z)- (d1- d) = R- 3 RE* - R + 3 RE* where a1 = ---p- and a2 = ----p

The two points indicated by the 
solid circles ( • ) correspond to the 
point of contact/separation and the 
point of zero applied force. These 
points are used in the analysis 
base d on the method of Sun et a/. 

Large errors can be incurred if the 
adhesive force is small compared to 
the maximum applied force. 
(Table 2 and Fig. 2) are determined independently prior to the 
principal data fitting and search process. The separation point 
(or contact point in the loading phase) is taken to be the point 
of minimum absolute deflection (i.e. the bottom of the valleys 
shown in Fig. 2) when the tip completely detaches from the 
sample upon initial release. Frequently in the indentation of 
soft materials, multiple release points resulting in a sawtooth 
pattern are observed.81,82 Examples of this phenomenon can be 
seen in the two data sets displayed in Fig. 4. When this occurs, 
the first release point is chosen to be the reference point. 
This journal is ª The Royal Society of Chemistry 2008 
Following the identification of the first two reference points, 
an iterative search for the zero indentation reference point is 
conducted by varying the value of the nondimensional parameter 
a that represents the intermediacy within the JKR–DMT 
transition. At each iteration, eqn (1), (5) and (6) are used to 
calculate the coordinates of the reference point at d ¼ 0. The 
coordinates that result in the best fit of the data are accepted 
as the solution. Young’s modulus can be extracted from eqn 
(3), (4), (7) and (8). Because this method is based on an empirical 
form of the Maugis–Dugdale theory, it shares the same 
Soft Matter, 2008, 4, 669–682 | 679 



Table 4 Matrix of methods, amount of user intervention required in implementing each method, and types of AFM data each is suited for 

Data Crick and Yin62 Guo and Akhremitchev69 Jaasma et al.56 Lin et al.50,63,81 Oliver and Pharr71 Sun et al.39

Non-interactive, Hertzian U U U U U 
Repulsive U

a 
U

b 
U 

Mooney–Rivlin elastic U U
b 

U 
Small adhesive force U U

a 
U

b 
U U

Large adhesive force of JKR type U U 
Large adhesive force of DMT type U U 
Large adhesive force in the 
JKR–DMT transition 

U 

User intervention Minimal Significant Moderate Minimal Significant Minimal 

a Accuracy is contingent on the selected contact/separation point or range of points. b Accuracy is contingent on the range of data used in the analysis; 
a fixed range may not be suitable for all data sets.
limitations. These include the requirements of material linearity 
and large relative sample thickness. 

4.3.2 Method of Sun et al. for adhesive interactions. An alter
native technique for analyzing indentation data sets that are 
strongly influenced by adhesive interactions was developed by 
Sun et al.39 using transformed force and indentation data. The 
zero force reference, which can generally be identified with little 
difficulty, and another reference point (e.g. the release point) are 
used to generate four equations based on eqn (1) and (2) or on 
eqn (9) and (10). This system of equations can be solved for 
the four unknown quantities (the contact radius at the two 
points, the interfacial energy, and the elastic constant E*). 
Especially in the case of the AFM, however, transformation of 
the data may be difficult. In such circumstances, a single 
equation can be generated for the change in indentation between 
the two chosen reference points using eqn (1) or (9). 
Because this method makes use of only data up to the zero 

force reference, material nonlinearity is not a concern. For 
spherical indenters, it should also be compatible with the JKR 
and DMT theories, but not the general Maugis–Dugdale theory. 
Care should be exercised to limit the indentation depth in order 
to minimize the amount of superfluous data. It should also be 
realized that because only two points are used in the analysis, 
the results depend greatly on the accuracy in identifying the 
reference points. 
4.4 Combined approaches 

Lin et al.63 offered an algorithm as an example of combining 
multiple analysis strategies into a synergistic approach that can 
better handle different types of problematic data sets (e.g. 

excessive noise and tip–sample adhesion or repulsion). Two 
main conditions were stipulated as key requirements of a 
comprehensive scheme: 
• It must be capable of detecting and handling data sets that 

are influenced by adhesion or repulsion. 
• User intervention should be minimized to prevent subjectivity. 
In the algorithm, a preprocessing step determines whether 

adhesive interactions are present and invokes one of two measures 
– one based on the semi-constrained search and the rearwards 
search procedure for non-interactive or repulsion-influenced 
data, and the other based on the empirical Pietrement–Troyon 
model for adhesive interactions. The algorithm is represented 
in flowchart form in Fig. 5. 
680 | Soft Matter, 2008, 4, 669–682 
If accuracy is the primary criterion in formulating an 
analytical approach, multiple techniques can be employed and 
their results compared to identify the best solution (i.e. the one 
that provides the best fit of the data). For example, the 
method of Jaasma et al.56 can be used to identify the point of 
contact or separation, and then the method of Guo and 
Akhremitchev69 can be applied to extract the value of Young’s 
modulus from the transformed data. The advantages of applying 
a combined approach are illustrated in Fig. 6 and 7, where 
simulated data sets are analyzed using a number of methods. In 
Table 4, we identify the methods that are most suitable 
for various types of data as well as those that require 
minimal user input and hence, are most appropriate for 
automated analysis schemes. The comparisons should provide 
a clearer understanding of the capabilities of the different 
methods. 

5. Conclusions and future perspectives 

Nanoindentation of soft materials can present several unique 
challenges compared to the traditional processes developed for 
the testing of hard materials. The analytical approaches based 
on linear elasticity theory listed in this paper are all capable of 
accurately extracting elastic properties from ideal data sets that 
exhibit high signal-to-noise ratios, limit deformations to the 
Hertzian regime, and have conspicuous points of contact or 
separation. In intractable data sets, complications usually arise 
in the form of ambiguities in the location of important reference 
points. Under such circumstances, a combination of techniques 
is the recommended course of action. 
When the deformations extend beyond the Hertzian regime, 

the linear elastic models are inadequate. In fact, the linear elastic 
limit may be essentially nonexistent in many materials of 
biological origin. Additionally, the nonlinear response may 
vary significantly among different materials. Although a simple 
force–indentation relationship based on the Mooney–Rivlin 
formalism has been developed and validated for the testing of 
certain gels and soft tissues, no hyperelastic model exists that is 
capable of serving as a universal constitutive law for soft elastic 
materials. Hence, multiple models are necessary for representing 
the diversity of large strain behaviours that exists among soft 
matter. It is obvious that further advances in the area of 
nonlinear elastic indentation modelling are required to match 
the rapid growth of nanoindentation in fields from polymer 
science to biology. 
This journal is ª The Royal Society of Chemistry 2008 



6. List of symbols 

a1 contact radius at point of contact or separation in 
JKR-type adhesive contact 

a2 contact radius at point of zero applied force in JKR-type 
adhesive contact 

ac contact radius 
ac0 contact radius at zero applied force 
aFc0 nondimensionalized value of ac0 used in empirical 

Maugis–Dugdale model 
Ac contact area 
B1 first Mooney–Rivlin or neo-Hookean elastic constant for 

spherical indentation 
B2 second Mooney–Rivlin elastic constant for spherical 

indentation 
C constant used to relate indentation depth and separation 

distance in the method of Guo and Akhremitchev69 

C* constant obtained after linearizing the relationship 
between force and separation distance in the method of 
Guo and Akhremitchev69

E Young’s modulus 
Er elastic constant or reduced modulus used in the method of 

Oliver and Pharr71

E* elastic constant combining Young’s modulus and 
Poisson’s ratio
 

F net indentation force

Fad adhesive force
 
FFad nondimensionalized value of Fad used in empirical 
Maugis–Dugdale model 

Fn normal or externally applied force 
kc spring constant of AFM cantilever 
R radius of spherical indenter 
S nondimensional term used in the empirical Maugis–

Dugdale model 
b nondimensional term used in the empirical Maugis–

Dugdale model 
c transformed indentation depth used in finite layer thickness 

models 
d indentation depth 
D tip–sample separation distance 
f semivertical or half tip angle of conical or pyramidal 

indenter 
g interfacial energy 
h geometry-dependent exponent in the general force–indenta

tion equation 
l geometry-dependent elastic constant in the general force–

indentation equation 
n Poisson’s ratio 
s loading stiffness at maximum load during tip retraction 
x nondimensional constant representing intermediacy within 

the DMT–JKR transition 
j constant representing the interfacial condition between 

sample and underlying rigid substrate 
z constant representing the interfacial condition between 

sample and underlying rigid substrate 
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