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Abstract—Nonrigid registration of medical images is important 
for a number of applications such as the creation of population av
erages, atlas-based segmentation, or geometric correction of func
tional magnetic resonance imaging (fMRI) images to name a few. In 
recent years, a number of methods have been proposed to solve this 
problem, one class of which involves maximizing a mutual informa
tion (MI)-based objective function over a regular grid of splines. 
This approach has produced good results but its computational 
complexity is proportional to the compliance of the transformation 
required to register the smallest structures in the image. Here, we 
propose a method that permits the spatial adaptation of the trans
formation’s compliance. This spatial adaptation allows us to re
duce the number of degrees of freedom in the overall transforma
tion, thus speeding up the process and improving its convergence 
properties. To develop this method, we introduce several novel
ties: 1) we rely on radially symmetric basis functions rather than 
B-splines traditionally used to model the deformation field; 2) we 
propose a metric to identify regions that are poorly registered and 
over which the transformation needs to be improved; 3) we parti
tion the global registration problem into several smaller ones; and 
4) we introduce a new constraint scheme that allows us to produce
transformations that are topologically correct. We compare the ap
proach we propose to more traditional ones and show that our new 
algorithm compares favorably to those in current use. 
Index Terms—Adaptive bases algorithm, mutual information, 

nonrigid image registration. 

I. INTRODUCTION

NONRIGID medical image registration, also known in the
literature as spatial normalization or warping, is often an 

essential step in automated medical image analysis. A number 
of methods have been proposed over the years to solve this 
problem. For instance (a more complete review on the subject 
can be found in [1]), Collins [2] proposes a technique in which 
the overall transformation is obtained as a set of local affine 
ones. Bajcsy et al. [3], [4] use an elastic model approach. Algo
rithms based on viscous fluids are put forth by Christensen [5] 
and Bro-Nielsen [6]. Thirion [7] uses a method called “demons” 
that is similar to an optical flow approach for small displace-

ments. Recently and following their success for rigid body 
registration problems [8], [9], mutual information (MI)-based 
methods have also been used for nonrigid registration prob
lems. Meyer [10] relies on a technique based on thin-plate 
splines in which an optimizer is used to adjust the position 
of homolgous control points. Rueckert [11] and Studholme 
[12], [13] use a similar approach but with B-splines. Although 
implementations vary, these intensity-based techniques can be 
viewed in an optimization framework in which the registration 
problem consists of deforming a source image to “best” 
match a target image under a chosen similarity measure. 
Mathematically, this can be expressed as 

(1) 

in which 

(2) 

and is an intensity-based similarity measure (the cost func
tion), a coordinate vector in , with being the dimension
ality of the images, and 

a deformation field that warps image ; thus, is what 
is computed in the registration problem. As mentioned earlier, 
a number of authors have proposed to use linear combinations 
of B-splines placed on a regular grid to model the deforma
tion field [11], [12], [14], [15]. Because the splines are 
placed on a regular grid, the characteristics of the warping trans
formation [e.g., the number of degrees of freedom (DOFs) it 
possesses] does not vary spatially and we refer to this model 
as being spatially invariant. The major disadvantage of this ap
proach is that the computational complexity of the method is 
proportional to the compliance (i.e., the number of basis func
tions) of the transformation needed to register the smaller struc
tures in the image. Many structures of interest in medical im
ages, especially in the brain, are in the order of millimeters. 
Deforming such structures requires placing basis functions at 
approximately every couple of millimeters which can require 
the optimization of a few hundred thousand basis function coef
ficients. For example, registering two typical three–dimensional 
(3-D) MR image volumes (256 256 128 pixels large) using 
a 64  64 32 regular grid of splines generates a 393 216-di
mensional search space. Finding an optimum in such a search 
space is not only time consuming but difficult because of the 
possibility of convergence to local optima. The work presented 
here proposes a new approach to nonrigid image registration that 
reduces the computational complexity and improves the conver
gence properties of methods proposed so far. The new approach 
is based on the idea that much can be gained if the compli
cance of the transformation is adapted locally. We have derived 
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an approach that automatically identifies regions where the im
ages are misregistered, and we focus on these regions only, thus 
avoiding useless computations on regions that are already cor
rectly registered. Moreover, to prevent the optimization process 
from producing transformations that are physically incorrect, 
we have developed a new, precise, and fast way of enforcing that 
the Jacobian matrix of the deformation field remains uniformly 
invertible throughout the domain of the images. Together, these 
ideas were used to derive a new nonrigid registration algorithm 
that we call the Adaptive Bases Registration Algorithm. 
The remainder of this paper is organized as follows. Section II 

describes the new method in detail, including the method for 
region of misregistration identification, our local deformation 
field optimization scheme, as well as our constraint scheme. 
Section III presents results we have obtained with this algorithm 
and it includes a comparison with a regular grid approach. Sec
tion IV summarizes the main contributions of this paper and sug
gests possible future work in this area. The appendix provides 
details on the constraint scheme we propose. 

II. METHOD 

A. Problem Statement 
The goal in nonrigid registration is to generate a mapping re

lating any point in the domain of the source image to a 
point in the domain of the target image . Let 
, represent the domain of the images and , where 
is the dimensionality of the data sets, i.e., for two-di

mensional (2-D) images, and for volumetric images. Reg
istering images and is equivalent to finding the de
formation such that , where is 
the identity transformation, is a one to one onto continuous map 
with continuous inverse (homeomorphism) and for which some 
cost function is optimized. These con
straints on the transformation preserve the natural topology of 
the image, impeding the transformation from producing artifacts 
known as “folding” and “tearing” of the image. Here, we have 
used compactly supported radial basis functions to model the 
deformation , while the cost function optimized is the normal
ized MI (NMI) [16] between images and , al
though the approach we propose is not limited to this particular 
similarity measure. In our implementation, the NMI is estimated 
using the joint histogram of the source and target images while 
the value of image at an arbitrary point is evaluated using 
trilinear interpolation. The value of the NMI is always evaluated 
over all the voxels belonging to the overlapping domain of im
ages and . 

B. Local Deformation Fields and Radial Basis Functions 
As previously stated, rather than modeling the deformation 

field with a linear combination of cubic B-splines placed on a 
regular grid as is usually done [11]–[15], we build our deforma
tion field incrementally, region by region, focusing on regions 
that are misregistered. The method by which we identify the 
relevant regions is detailed below but the total deformation field 

is modeled as a linear combination of a set of basis func
tions irregularly spaced over the image domain, i.e., 

(3) 

with coefficients and a function 
that is positive definite on in the following sense: for all sets 

of finitely many distinct points 
in , the matrix is positive definite 
which guarantees the solvability of the system 

(4) 

This property is important for registration problems for it guar
antees that the model allows for the construction of any given de
formation field solution prescribed by points placed at arbitrary 
locations. In the context of nonrigid registration, this means 
that any deformation field specified at an arbitrary set of points 
placed on an irregular grid can be modeled. For this to be true, 
the basis functions used to model the deformation field need 
to possess what is know as the universal interpolation property. 
While it is known that radial basis functions possess this prop
erty (see for instance [17]–[19]), it is not known whether or not 
B-splines possess it. This lead us to use one of Wu’s compactly 
supported positive definite radial basis functions to model the 
deformation field 

(5) 

with 
(6) 

where , is a predetermined scale for 
the basis function, and is the usual Euclidean norm on . 
Fig. 1 shows a plot of this function in one and two dimensions. 

Fig. 1. Plot of the radial basis function whose equation is given in (6) with 
radius equal to one. Left: in one dimension; right: in two dimensions. 

There are several advantages in using a compactly supported 
basis function such as (6) in registration problems. First, com
pact support means that for each value of , the sum in (3) 
can be reduced to relatively few terms. This also means that 
under many circumstances optimization can be confined to a 
finite part of the domain D, improving the computational effi
ciency of the overall method. Moreover, (6) and, therefore, (5) 
have been shown to possess continuity. Smoothness prop
erties are important in registration problems since the first and 
second derivatives of the deformation field are often used for 
the computation of the gradient, and sometimes Hessian, of the 
cost function with respect to the optimization parameters. These 
quantities are used in several optimization algorithms applicable 
to this type of registration problem, e.g., conjugate gradient de
scent, or Newton methods. 

C. Multiscale and Multiresolution Approach 
The algorithm proposed here approaches the final deforma

tion field iteratively across scales and resolutions. Here, resolu
tion means the spatial resolution of the image while the scale is 
related to the transformation itself. A standard image pyramid is 
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created to apply the algorithm at different resolutions. At each 
resolution, the scale of the transformation is adapted by modi
fying the region of support and the number of basis functions. 
The scale of the transformation is proportional to the bases’ re
gion of support (i.e., a large region of support leads to a trans
formation at a large scale). Typically, the algorithm is initial
ized on a low-resolution image with few basis functions having 
large support. As the algorithm progresses to finer resolutions 
and smaller scales, the region of support of the basis functions 
is reduced. Following this approach, the final deformation field 
is computed as 

(7) 

with the total number of levels (in the remainder of this paper, 
a level refers to a particular combination of scale and resolu
tion). It should be noted that the universal interpolation prop
erty discussed above holds only if all the basis functions have 
the same scale. Here we model the overall deformation field as 
a sum of deformation fields each computed at a different res
olution and scale. Although the region of support for the basis 
functions changes from scale to scale and from resolution to res
olution, at a particular scale and resolution the deformation field 
is computed with bases that have the same scale and region of 
support. 

D. Regions of Misregistration Identification 
One of the key features of the algorithm we propose is to ad

just the transformation only where it needs to be adjusted. This 
requires identifying regions where the two images are not well 
registered at the current level and adjusting the deformation field 
over these regions. To achieve this, a local measure of misregis
tration needs to be developed. The approach we have used is as 
follows. When the algorithm moves from one level to another, 
we first place basis functions on a regular grid and we model the 
deformation field as 

(8) 

with the position of the basis functions , their scale, and 
the sum of the deformation fields obtained up to 

level . This equation states that, when moving from one 
level to the other, an additional set of basis functions temporarily 
placed on a regular grid is used to model the deformation field; 
we call this grid . Next, the gradient of the cost function 

with respect to the basis function’s coef
ficients is evaluated through finite differences. The value of 
is then used to determine which regions in the images 

and are most likely to be misregistered 
at the current level. The idea behind using to decide on re
gions of mismatch is as follows: if the magnitude of the gradient 
of the cost function with respect to the coefficient is large, 
then the cost function is not at a minimum with respect to . 
If the cost function is not at a minimum at the location corre
sponding to then it is likely that the region where the corre
sponding basis function is located is misregistered. Therefore, 
registration in this particular area could be improved at the cur
rent level. If, on the other hand, the magnitude of the gradient 
with respect to coefficient is small, two situations are pos
sible. Either the images are reasonably well registered over that 

region at the current level or the images could be significantly 
misregistered at that location but the cost function is at a local 
extremum. In either case, further gradient-based optimization in 
this region is unlikely to be fruitful and we assume that it can be 
neglected. 
The algorithm we use for identifying regions over which to 

concentrate starts by evaluating as described above. Once 
this is done, the individual components of are sorted in 
decreasing order according to their magnitude . The center 
of the regions of misregistration are chosen as the location of 
the basis function for which is above the selected threshold. 
Once a center is selected, the adjacent locations are eliminated 
from the list; this is done to force regions of interest (ROIs) to 
be disjoint (i.e., prevent overlap between these regions). This is 
discussed further in the next section. 

E. Local Optimization 
Once ROIs have been identified, the local deformation fields 

need to be computed. One possible approach would be to opti
mize all the coefficients associated with the ROIs chosen in 
the previous step simultaneously. This would amount to opti
mizing the coefficients of basis functions scattered throughout 
the image domain which would be akin to the approach recently 
proposed by Schnabel et al. [20]. Here, however, we propose 
a solution that allows us to reduce the dimensionality of the 
optimization process by partitioning it. Given a location repre
senting the center of a ROI and the current resolution and 
scale , we choose eight locations arranged in the form 
of a cube around as centers for the basis functions that will 
be used for computing the deformation field associated with a 
particular region of the image. For 2-D registrations a square 
around the center location is used, in 3-D we use a cube. This 
gives us the ability to build local deformations with eight DOFs 
in 2-D and 24 DOFs in 3-D around location . The support of 
the basis functions placed around location is also . Note that 
the value for is obtained from the support of the basis func
tions used in the automatic ROI identification algorithm pre
sented earlier. The local deformation field is thus adjusted at 
the current scale and resolution. A steepest gradient descent al
gorithm combined with the quadratic interpolation four-point 
bracketing update method of line minimization is then applied 
to the coefficients of the cube of basis functions under the fol
lowing cost function: 

in which 

and 

(9) 

In these equations, the values represent the aforemen
tioned cube of center locations, and is the number of regions 
of mismatch identified at this level. Therefore, for each local 
field, the set of coefficients must be optimized. Because 
the ROIs are chosen in such a way that they do not overlap, the 
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optimization of the set of coefficients can be done inde
pendently of all other sets of coefficients , with . 
Thus, we optimize (9) one region at a time. Fig. 2 illustrates the 
operation of the algorithm. 

Fig. 2. Graphical illustration of the sequence of steps through which the 
algorithm goes at each level. 

Conducting the optimization one region at a time reduces one 
large optimization problem to a series of small ones with at most 
24 parameters each. This strategy has one main advantage: by 
decoupling the optimization of coefficients associated with dis
joint regions into separate optimization problems, we eliminate 
the possibility that undesirable effects such as noise and local 
minima associated with optimization over one region do inter
fere with optimization over other regions, thus leading to more 
accurate results as will be illustrated further. Furthermore, this 
strategy permits the parallelization of the algorithm. 

F. Optimization Constraint Scheme 
Previous attempts at constraining spline-based deformation 

field models to produce consistent topological deformations can 
be found in Rueckert et al. [11] or Studholme et al. [13] where 
the basic idea is to optimize the similarity measure while regu
larizing the deformation field by minimizing its second deriva
tive. While this technique can reduce folding artifacts, it does 
not guarantee the positive definiteness of the Jacobian of the 
transformation. Here we not only make explicit the relationship 
between a smoothness constraint and the Jacobian of the defor
mation field, but we derive precise bounds for the basis func
tions coefficients in (3) that guarantee this positiveness. Con
sider the following deformation field: 

(10) 

from , where is the number of levels utilized during 
registration. Let 

be the Jacobian of the transformation , where is the iden
tity matrix and is the Jacobian matrix of the displacement 
field . In the appendix, we prove that if the constraint 

(11) 

is satisfied, then the Jacobian remains positive. In other words, 
for any given deformation field (10), a displacement field 

can be added without violating the topology con
straint as long as relationship (11) is satisfied for . 
Relationship (11) can be used to design a number of possible 
constraint schemes for registration procedures that use splines, 
radial basis functions, or other types of bases. One possible 

scheme is to compute after each level. Then (11) 
can be used to compute bounds on the basis function coeffi
cients composing the th displacement field. This, 
however, would be computationally expensive since in our 
registration algorithm the evaluation of for all 
coordinates would have to be done explicitly through finite 
differences. Another possible constraint scheme is to use (11) to 
compute bounds for the basis function coefficients by assuming 
worst-case estimates for . For example, if the 
number of levels is fixed a priori, then (11) will be satisfied 
if is positive for any value of . 
Using the triangle inequality , 
we derive the bound 

(12) 

In practice, we use (12) to obtain the bounds for the basis 
function’s coefficients at each level of the algorithm. At every 
iteration, the value of the coefficients is computed and checked 
against their upper limit. If this limit is exceeded the maximum 
allowable value is substituted which, in effect, forces the dis
placements to be compatible with our topological constraints. 

G. Deformation Field Derivative Estimation 
Since the use of the constraint scheme 

described above requires a fast and accurate method for esti
mating the partial derivatives of the deformation field. Because 
at each level the displacement field is a linear combination 
of basis functions, these partial derivatives can be directly com
puted from the coefficients of the linear combination. Thus, a 
constraint on the coefficients will translate into a constraint on 
the lefthand side of (12). For example, for a one-dimensional 
(1-D) deformation field 

we have . Therefore, to 
impose all we need is to impose 

In practice, this can be achieved simply by verifying that the 
constraint is not violated after each step of the optimiza
tion process. When the constraint is violated, the optimization 
process is interrupted. Note that the aforementioned estimate is 
crude (i.e., it is overconstraining) and sharper bounds can be ob
tained by taking into account the spatial arrangement of the basis 
functions (e.g., their regions of support and amount of overlap). 
For instance, if it is known that the basis functions have the same 
radius and are placed in such a way that the support of one does 
not extend beyond the center of the next one, one can show that 
the maximum value of the derivative of the deformation field 
obeys the following inequality: 

(13)

in which is a 1-D deformation field modeled by a linear combi
nation of basis functions located at and with coefficients 
and and radius . 
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H. Summary of the Adaptive Bases Algorithm 

Fig. 3 summarizes the algorithm we propose. At first, input 
images and are downsampled to the lowest user-
specified resolution and a bounding box is computed from the 
union of the foreground of both images. Initially, is set to 
zero. The parameters needed by the algorithm are the number 
of resolutions and the scales at which the transformation needs 
to be computed at each resolution (the scales are specified by the 
number of basis functions to be used when creating the regular 
grid ; the lower the number of basis functions, the larger the 
scale). At each resolution and scale, the region of support for 
the basis functions is calculated as a constant times the distance 
between two adjacent grid points in (in practice the constant 
is between 1.5 and 2). 

Fig. 3. The adaptive bases registration algorithm. 

Initialize A(x), B(x'), x' at the lowest resolution and scale. 
For I =1 ... Number of resolutions. 

For J=1 .. . Number of scales at current resolution. 
Create regular grid  e at current resolution and scale and 

compute region of support for basis functions. 
Identify regions of misregistration. 
Optimize each region independently from each 

End for 
Upsample A(x), B(x'), x' 

End for 
Ouput B(x') and x'. 

III. RESULTS 

A. Algorithms Comparisons: Simulated Data 
As explained above, the adaptive basis registration algorithm 

introduces three novel concepts to intensity-based image regis
tration. The first is an adaptation step, where at each level only 
the regions that are mismatched at the current scale are opti
mized. Secondly, we propose optimizing disjoint regions one 
at a time, instead of jointly. Lastly, we also introduce a novel 
constraint scheme. The purpose of this section is to demon
strate the effect of the adaptation step separately from the ef
fects of disjoint optimization. To that end, four 2-D registra
tion algorithms were implemented. The first treats the problem 
with the conventional stationary approach described in [11], 
[12], [14], and [15]. The second method referred to as the adap
tive method (AM) uses the region of mismatch identification 
algorithm presented earlier but the coefficients of all the basis 
functions are optimized concurrently whether or not these basis 
functions define overlapping regions. This approach is similar 
to the methods investigated in [20] and [21]. The third method 
implements our approach in which the algorithm operates on 
disjoint regions. As described before, in this implementation re
gions where the images are misregistered are first identified then 
four basis functions are placed around each identified location 
while making sure that regions over which the algorithm oper
ates do not overlap. Here we optimize over all the basis func
tions at once and we refer to this implementation as the adap
tive disjoint parallel method (ADPM). The last algorithm is sim
ilar to the third one except that we optimize over each disjoint 
region in sequence. We refer to this algorithm as the adaptive 
disjoint serial method (ADSM). The source and target images 
used here are shown in Fig. 4. For this example the target image 

was generated by applying a known transformation to the source 
image. The deformation modified the image in three disjoint lo
cations (around the eye, on the top of the cortex, and around 
the hippocampus). It was built using the radial basis function 

it is, thus, different from 
the basis used to compute the deformation field that registers 
the two images. The radius of the basis function used in gener
ating the simulated warping function was 20 pixels. Gaussian 
distributed noise was added to both images. When using the 
ADSM or ADPM algorithms to register the source image to 
the generated target image, we do not control the position of 
the basis functions. These are placed automatically over regions 
that have been identified as misregistered. 

Fig. 4. From left to right, the source and target images used in the 2-D 
simulated experiments. 

The four algorithms were set to span ten levels, starting with a 
grid of basis functions of 10 10 up to a grid of 20 20. At the 
end of each level, the system time as well as the error between 
the current displacement field solution and the true displacement 
field was computed. The plots of system time and deformation 
field error for each algorithm are shown in Fig. 5. Several con
clusions can be drawn from these experiments. First, the tradi
tional method based on a regular grid is the slowest. As could be 

(a) 

(b) 

Fig. 5. Timing (a) and average (b) pixel error for various optimization 
schemes. 
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expected because the dimension of the search space is reduced, 
the AM method speeds up the process. It also leads to an average 
pixel error inferior to the one obtained with the traditional ap
proach. The disjoint region optimization approach we propose 
when performed simultaneously over all regions of mismatch is 
the fastest but lead to accuracy numbers that are similar to the 
numbers obtained with the AM. This suggests that the algorithm 
does converge rapidly toward a local minimum. The best accu
racy numbers we have obtained are with the ADSM although 
it is slower than the ADPM. Note that the results presented in 
this figure are only indicative of what can be achieved. Rela
tive timing and accuracy numbers between methods depend on 
both the images being registered and parameters being used (re
sults presented in the next section on a series of 3-D volumes do 
show more than a threefold gain in speed between the traditional 
approach and the ADSM). In our experience, however, the tra
ditional method is the least accurate and the slowest while the 
ADSM method is, in general, the most accurate. This suggests 
that optimizing the cost functions on small regions one at a time 
rather than together reduces the overall process’ sensitivity to 
local minima. As discussed before it is also worth noting that 
the ADSM lends itself to parallelization which could improve 
performance substantially. Fig. 6 illustrates visually differences 
between the four algorithms. The results obtained with the tra
ditional approach, the AM, and the ADPM appear very similar. 
The ADSM is the only one that has been able to deform correctly 
the ventricular region at the end of the hippocampus, indicating 
that this approach permits focusing on small regions over which 
the images are misregistered. 

Fig. 6. From left to right, registration results obtained with regular grid optimization, the AM, the ADPM, and the ADSM. 

B. Algorithms Comparisons: Real Data 
In this section we evaluate the performance of the Adaptive 

Bases Registration Algorithm we propose on a series of 3-D MR 
data sets. The program was written in the C++ programming lan
guage, and all experiments were run on an IBM compatible PC, 
with an Intel Pentium 4 processor (1.7 GHz) running Windows 
ME. 
For the purpose of comparison, we have also implemented a 

method which is similar in nature to the methods used in [11], 
[12], [14], [15], except for the additional constraint scheme used 
in our method. Both programs were built by compiling iden
tical codes, with the exception that the identification of misreg
istered regions was turned off for the second program leading 
to a gradient descent optimization of the cost function (5) using 
a spatially invariant model for the deformation field. The data 
used in this set of experiments were 11 MRI volumes. The MR 
brain images used here were obtained with high-resolution 3-D 

SPGR pulse sequences (FOV 24 24 cm, 256 256, 1.3-mm 
thickness, 0-mm gap, ms, flip angle , 

ms, ms, 128 slices). We have used a 
set of 11 volumes and the task was to register ten volumes to the 
11th one chosen as the target image for all registrations, by using 
both registration algorithms. The parameters used with both al
gorithms were identical. Six levels were used, with the radius of 
the basis functions varying from about 200 mm (with of size 
2 2 2) to about 6 mm (with of size 17 17 15). For both 
algorithms, the optimization of any set of basis functions was 
halted when improvements of at least 0.0005 in the cost function 
could not be detected. In this set of experiments, we have used 
the NMI [16] computed from the joint histogram of the overlap
ping regions between the two image volumes as the cost func
tion. The NMI is computed from the joint histogram of the entire 
overlapping area between the two image volumes even though 
we only alter small regions of the deformation field. We have 
used 32 bins to generate the joint histograms and a two-point fi
nite difference formula to compute the gradient of the cost func
tion. The number of bins was chosen experimentally as a good 
compromise between speed and accuracy on a few volumes and 
then kept constant for the entire study. Although we could have 
changed the number of bins in the histogram when moving from 
one resolution to the other we have chosen no to do it to avoid 
having to specify another set of parameters. Prior to applying 
our algorithm, each volume was registered to the target volume 
using a nine DOFs transformation computed with an indepen
dent implementation of an MI-based method similar to the one 
proposed by Maes [8]. 
The time required for each registration for both algorithms as 

well as the final value of the cost function are given in Tables I 
and II. These tables show that, on average, the adaptive bases 
algorithm is about 3.5 times faster than the more traditional ap
proach for this set of experiments. For every registration, the 

TABLE I
 
FINAL VALUE OF COST FUNCTION (NMI) AND TOTAL TIME TAKEN TO
 

ACHIEVE REGISTRATION (SECONDS) BY THE ADAPTIVE ALGORITHM
 

_____ 1 2 3 4 5 6 7 8 9 10
Time 9773 9781 10058 9869 10155 9928 9862 9802 9950 10165 
NMI 1 .25 1 .23 1 .242 1.24 1 .242 1.23 1.25 1.25 1.23 1.228

TABLE II
 
FINAL VALUE OF COST FUNCTION (NMI) AND TOTAL TIME TAKEN TO
 

ACHIEVE REGISTRATION (SECONDS) BY THE TRADITIONAL APPROACH
 

_____ 1 2 3 4 5 6 7 8 9 10
nme 24405 28973 29579 41331 36413 46698 24207 29441 35473 48012 
NMI 1.224 1.211 1.216 1.213 1.222 1.213 1.217 1.232 1.219 1.213 
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adaptive bases approach is at least twice as fast as its nonadap
tive counterpart. Moreover, Tables I and II also show that for 
every registration, the adaptive bases registration algorithm is at 
least as accurate, or more, as measured by the final value of the 
cost function, than the traditional approach. The average final 
value for the cost function for the registrations which used the 
adaptive approach was 1.239, while it is 1.218 for the nonadap
tive approach. 
To further assess the quality of the registrations, for one 

cannot always use the cost function itself to assess the quality 
of the results, we also show the average brains computed 
through registration using both approaches. These are shown 
in Fig. 7. In this figure, the leftmost image is the average com
puted after nonrigid registration with the traditional approach. 
The middle image is the average computed after nonrigid 
registration with the approach we propose. The target image is 
also shown on the right. The average computed after nonrigid 
registration with the new approach is visibly sharper than 
the average computed after registration with the traditional 
approach, indicating that, overall, the new approach succeeded 
in matching the target image better than the traditional one. 

Fig. 7. Representative slices of atlases constructed through nonrigid registration with both adaptive and nonadaptive approaches. From left to right: average after 
nonrigid registration using nonadaptive approach, average constructed after registration using adaptive approach, and target image. 

Finally, note that the smallest radius of the basis functions 
used in the registrations described above was about 6 mm. Fur
ther improvements in accuracy can be achieved by adding more 
levels, which use radial basis functions with even smaller radii. 
Fig. 8 shows an example of a registration achieved using seven 
levels of the adaptive bases registration algorithm, with radial 
basis function ranging in radius from about 200 mm to 3 mm. 
The images clearly show that the adaptive bases registration al
gorithm is capable of producing high-quality matches, even for 
the smallest visible structures. 

Fig. 8. Representative slices of an example registration using the adaptive grid 
registration algorithm. From left to right: The source image, the source image 
resampled to match the target image, and the target image. 

C. Atlas-Based Segmentation Results 
The accuracy of the adaptive bases algorithm for nonrigid 

registration problems was assessed quantitatively by means of 

an atlas-based segmentation task. ROIs (whole brain, eyes and 
optic nerves, and spine) were manually delineated in the atlas 
used in Section III-B and binary masks were created. The re
gions were chosen because these present a range of difficulty 
with the whole brain contours being the easiest and the optic 
nerves the most difficult. The deformation fields between the 
atlas and the ten other volumes were computed and used to 
project the masks from the atlas onto each of the remaining vol
umes. Contours were manually drawn on a few slices chosen at 
random in each volume (four slices/volume/structure). Manual 
contours and contours obtained automatically were then com
pared using an accepted similarity index defined as two times 
the number of pixels in the intersection of the contours divided 
by the sum of the number of pixels within each contour [22]. 
This index varies between zero (complete disagreement) and 
one (complete agreement) and is sensitive to both displacement 
and differences in size and shape. Table III lists mean values for 
the similarity index for each structure. It is customarily accepted 
that a value of the similarity index above 0.80 indicates a very 
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good agreement between contours. Our results are well above 
this value except for the eyes. The major source of errors is the 
optic nerve which is a thin and elongated structure. Because of 
the size of this structure, an error of a few pixels reduces the 
value of the similarity index considerably. Fig. 9 shows a few 
representative examples of contours that have been obtained au
tomatically. 

TABLE III 
AVERAGE VALUES OF S FOR A NUMBER OF STRUCTURES 

Volume 1 2 3 4 5 6 7 8 9 10 

Whole Head 0.97 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.96 0.96
Spine 0.93 0.92 0.93 0.92 0.93 0.92 0.91 0.95 0.92 0.92
Left Eye 0.91 0.9 0.9 0.88 0.9 0.86 0.86 0.92 0.91 0.82 
Right Eye 0.89 0.86 0.81 0.88 0.9 0.82 0.86 0.89 0.92 0.82 

Fig. 9. Illustrative contours obtained automatically with our algorithms by 
deforming templates in the atlas. 

D. Constraint Scheme Demonstration 
We now demonstrate the effect of the constraint scheme pre

sented earlier on a 3-D registration problem. Fig. 10 shows rep
resentative slices of the source image and the target image 

used in this demonstration. We have used our algorithm 
together with the constraint scheme described above to register 
image to image . We have repeated the experiment 
four times, each with a different value for . The total number of 
levels used was 6, while the last level used a grid with 17 
17 15 center locations. Fig. 11 shows the registration results 

for each value of in (12). The results shown in Fig. 11 
were generated with equal to (from left to right): 0.3, 0.2, 0.1, 
and 0.05. Note that the results look identical in nearly all of the 
regions of the slices shown in Fig. 11. The same has been vi
sually confirmed for all the other slices in these images. Dif
ferences can be noticed mainly around the mouth. The bottom 
row of Fig. 11 displays the mouth region for each output image. 

As can be seen by focusing on the bottom left corner of these 
images, the results generated with does not satisfy the 
topological constraint for it produces folding. The folding effect 
becomes decreasingly noticeable as the threshold used is low
ered. Using (12) our theory predicts a value of or 
less for . From Fig. 11 one can verify that the folding 
effect completely disappears in the result image generated with 

, confirming what has been theoretically predicted. 

Fig. 10. Images used in constraint scheme demonstration. Left: source image 
B(x). Right: target image A(x). 

IV. DISCUSSION 

Over the years, nonrigid registration using NMI and B-splines 
placed on a regular grid has been shown to be both accurate and 
robust. In this paper, we present an approach which, while in
spired by existing work, presents several novel elements. First, 
we do not rely on basis functions placed on a regular grid. This 
allows us to adjust the deformation field only where it needs 
to be adjusted at the current scale and resolution. By doing so 
we reduce the dimension of the search space, thus speeding up 
the process. We simplify the process further by computing local 
deformations on disjoint regions. By doing so we transform one 
large optimization process into a series of smaller ones with at 
most 24 DOFs (in 3-D). While it is possible to show theoreti
cally that the global optimum reached when optimizing over the 
entire region is the same as the one reached when optimizing 
over smaller, separate, regions when the cost function is sepa
rable (as would be the case if we were using the L2 norm), we 
have not been able to prove the same with a nonseparable cost 
function such as MI without making stationarity assumptions 
that may not always be verified in practice [23]. There is, there
fore, no theoretical guarantee that by optimizing on separate re
gions we will be able to reach the global optimum. In practice, 
however, the various local minima in the MI cost function limit 
the ability of numerical algorithms commonly used to solve the 
nonrigid registration problem to reach this optimum. Our results 
show that by optimizing on small separate regions in series we 
reduce the effect of local minima and reach solutions that are 
better than solutions arrived at when trying to solve the problem 
globally. 
The method we have used to identify ROIs is not the only 

one possible but in our experience it is robust and reliable. In 
[24], we did try to use the local correlation as an index of re
gional misregistration but we found the current strategy to be 
superior. The method we use to select misregistered regions in
volves a threshold whose value is set experimentally. Chosen too 
high, some regions at a particular resolution and scale could be 
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Fig. 11. Each row from left to right: registration results obtained with , = 0.3, , = 0.2, , = 0.1, and = 0.05. Bottom row are zoomed in versions of the 
images on top row. 

skipped and may not be recoverable at the next level. Chosen too 
low, many regions will be optimized at the current scale when 
they could be better registered at the next one. At the time of 
writing we have not studied the effect of this threshold on the 
registration accuracy. We also did not investigate the possibility 
of changing the number of bins in the joint histogram when 
moving from one resolution to the other to take into account 
the change in pixel numbers on the images when their spatial 
resolution is changed. It is possible that convergence properties 
of the algorithm could be improved by doing so.
Since we published earlier versions of this paper [24], [25] 

others have also proposed techniques by which the compliance
of the transformation could be adapted within a B-spline frame
work [20], [21]. The approach these authors use is to fix the 
coefficients of the B-splines whose region of support have been 
labeled as passive. Criteria used to identify passive regions 
include local statistical measures such as the joint entropy or 
the gradient measure we introduced in [25]. The constraint 
scheme we propose to guarantee the topological correctness 
of the overall transformation is another novelty we introduce. 
Constraints proposed in the literature are somewhat ad hoc, 
attempting to limit the folding problem by adding a smoothness 
constraint to the cost function. The method we propose here 
explicitly enforces the correctness of the transformation and our 
experimental results have verified our theoretical predictions. 
The results we have shown demonstrate that when using basis 
functions with the same supports the method we propose is both 
more accurate and faster than a method relying on a regular 
grid. Although the accuracy of nonrigid registration algorithms 
is difficult to assess, we have shown that the value of the final 
similarity measure is larger with our method than with a more 
traditional approach. We have also shown qualitatively that 
the accuracy of the registration is better with our approach by 
comparing the sharpness of average volumes. Quantitatively, 
we have shown that our algorithm, when used for atlas-based 
segmentation tasks, produces results that are comparable to 
those obtained manually. As is the case for all intensity-based

algorithms, the main limitation of our approach is the lack of 
a priori and anatomical information that can lead to erroneous 
deformation. This is particularly true in the cortical area where 
nothing prevents the algorithm to match sulci that do not 
correspond to each other. Addressing this problem will require 
adding constraints in a way similar to the approach proposed 
by Hellier et al. [26]. 

APPENDIX

Let be the Ja-
cobian of in (10), is the identity matrix, and the
Jacobian matrix of the displacement field . If

(here is the usual 
-norm), then it is well known that exists and is 

given by the Neuman series

(14)

Moreover, we have 

(15)

Since exists for all , we conclude that 
for . Moreover, since 1) the 

mapping that takes the vector space of (3 3)
matrices into is continuous; 2) ; and 3) 
is a connected set, it follows that (if 
switches sign, the continuity would imply that must
become null for some matrix contradicting the fact that 
has an inverse). 
Let , and . For  , 

exists, and we write as 
. Thus, is invertible if and only if 
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is invertible and . Using (14), it 
follows that exists if and as before 

remains positive since it is the product of positive values. But 
using (15) together with a well known norm inequality we get 

(16)

Thus assuming , if  
, then remains positive. Equivalently, does not 
change sign if . This last condition 
gives a bound for in terms of . By induction, 
we obtain that 

(17) 

is sufficient for to be invertible, and 
for to remain positive. Therefore, to satisfy the topolog
ical constraint on the displacement field , it is sufficient to 
enforce (17) for all possible coordinates . This can be achieved 
by restricting the range of the coefficients of the radial bases 
functions used in modeling the displacement field . How
ever, computing the operator norm of matrix during 
optimization is cumbersome for it involves the computation of 
eigenvalues. To avoid computing operator norms , we  
can use the infinity norm , which can 
be computed cheaply from the coefficients in (3). Using the 
well known matrix relation together with a 
simple calculation that yields , we obtain that 
if (11) is satisfied for then (17) is satisfied. 
Thus, for any given deformation field 

a displacement field can be added without violating 
the topology constraint. 
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