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Abstract—One aim of this work is to investigate the feasibility 
of using a hierarchy of models to describe diffusion tensor mag
netic resonance (MR) data in fixed tissue. Parsimonious model se
lection criteria are used to choose among different models of dif
fusion within tissue. Using this information, we assess whether we 
can perform simultaneous tissue segmentation and classification. 
Both numerical phantoms and diffusion weighted imaging (DWI) 
data obtained from excised pig spinal cord are used to test and 
validate this model selection framework. Three hierarchical ap
proaches are used for parsimonious model selection: the Schwarz 
criterion (SC), the -test -test ( ), proposed by Hext, and the 

-test -test ( ), adapted from Snedecor. The approach 
is more robust than the others for selecting between isotropic and 
general anisotropic (full tensor) models. However, due to its high 
sensitivity to the variance estimate and bias in sorting eigenvalues, 
the and SC are preferred for segmenting models with trans
verse isotropy (cylindrical symmetry). Additionally, the SC method 
is easier to implement than the and methods and 
has better performance. As such, this approach can be efficiently 
used for evaluating large MRI data sets. In addition, the proposed 
voxel-by-voxel segmentation framework is not susceptible to arti
facts caused by the inhomogeneity of the variance in neighboring 
voxels with different degrees of anisotropy, which might contam
inate segmentation results obtained with the techniques based on 
voxel averaging. 

Index Terms—Diffusion tensor, diffusion tensor imaging (DTI), 
diffusion tensor magnetic resonance imaging (DT-MRI), hierar
chical, magnetic resonance imaging (MRI), model selection, par
simonious, segmentation, tissue classification. 

I. INTRODUCTION 

DIFFUSION tensor magnetic resonance imaging (DT-MRI) 
[1] is a noninvasive imaging technique for quantitative 

analysis of intrinsic features of tissues. DT-MRI has been ap-

plied to study the structural organization of skeletal muscles [2], 
brain [3], spinal cord [4], peripheral nerves [5], intervertebral 
discs [6], and heart muscle [7], [8]. Based on its extensive use, 
it is increasingly important to develop new tools for efficient 
and accurate tissue analysis and segmentation of DT-MRI data, 
since better characterization of organization of different tissue 
types may enhance our understanding structure/function rela
tionships in organs. In addition, quantitative tissue segmenta
tion may advance intrasubject comparisons between tissue com
partments. Most DT-MRI work to date has focused on char
acterizing the trace of the diffusion tensor (Tr), the fractional 
anisotropy (FA), and the fiber orientation of tissue. Compara
tively little has been done to identify the underlying microstruc
ture and microstructural models appropriate for each voxel. 

Automated tissue segmentation and classification are among 
the most challenging tasks in DT image analysis. Segmenta
tion separates acquired data into objects, while tissue classifi
cation generates meaningful regions of interest. Here, we ex
amine whether parsimonious model selection criteria applied to 
a hierarchy of diffusion models can simultaneously segment and 
classify tissues based on their underlying diffusion properties. 

A hierarchy of diffusion models and a statistical hypothesis 
testing framework were used in the context of the first magnetic 
resonance (MR) measurement of the translational diffusion 
tensor [1] to determine whether proton diffusion was isotropic 
in water and anisotropic in a skeletal muscle phantom. Because 
this study used diffusion spectroscopy sequences with data 
obtained at high signal-to-noise ratios (SNRs), it was not clear 
whether such statistical approaches would work at the SNR of 
clinical or animal images or would behave reliably from voxel 
to voxel within an image volume. Subsequently, it was used 
for diffusion models with different degrees of symmetry to 
characterize different modes of diffusion transport in tissue [9], 
[10]. 

Other parsimonious model selection methods have recently 
been used to analyze DT-MRI data. Alexander et al. [12] used 
a parsimonious modeling framework to test the adequacy of the 
tensor model applied to human brain tissues. Kroenke et al. [12] 
used a Bayesian model selection approach to analyze different 
diffusion models in fixed baboon brain. In this work, we test the 
appropriateness and relative efficiency of four predefined diffu
sion models: isotropic, general anisotropic, prolate, and oblate. 
We also compare and contrast three methods for parsimonious 
model selection, which employ the Schwarz criterion (SC) [13], 
the -test [14], [15], and the -test [14]. 
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II. THEORY 

A. Diffusion Tensor Imaging 

The relationship between observed echo attenuation [1], [16], 
[17], caused by applying diffusion sensitizing gradients along 
various directions, and the diffusion tensor can be character
ized by 

(1) 

where “:” stands for the tensor dot product, is the ob
served signal, is a signal in the absence of the diffusion-
weighting gradient, and is a matrix whose components are 
given by 

(2) 

where is the magnitude of the diffusion gradient pulse ap
plied in th direction with duration , and is the 
diffusion time. In (1), is a symmetric (3 3) second-order 
diffusion tensor that has a form 

(3) 

Diagonal elements of the diffusion tensor are proportional 
to the diffusion rate in the collinear directions, while correla
tions in displacements along orthogonal directions are repre
sented by off-diagonal elements. The six independent elements 
of are sufficient to describe Gaussian molecular diffusivity in 
three dimensions. Furthermore, given that is symmetric and 
positive definite, it can be characterized bythe three orthonormal 
eigenvectors, , and , associated with three positive eigen
values, , and . In the matrix form it is represented by 

(4) 

where is the matrix whose columns are the orthonormal 
eigenvectors and is the diagonal matrix containing their 
corresponding eigenvalues. It was first suggested in [18] that 
in fibrous anisotropic media the eigenvector associated with 
the largest eigenvalue coincides with the tissue’s dominant 
fiber-tract axis, while the two remaining eigenvectors, and 

, define the transverse plane. For the general anisotropic 
model, a typical observation is that . 

It also has long been assumed that some anisotropic tissues, 
like skeletal muscle [2] and nerve white matter [19], are cylindri
cally symmetric having a prolate diffusion ellipsoid, i.e., 

. Cylindrical symmetry associated with an oblate diffu
sion ellipsoid entails . The diffusion tensors for 
both these transversely isotropic models can be written as [20] 

(5) 

where is the unit 
vector parallel to the axis of symmetry. For the prolate model, 

corresponds to , which is parallel to the long axis of the 
prolate diffusion ellipsoid. This was considered previously in 
[21] and [22]. However, we show how the same equation de
scribing transverse isotropy can be applied for estimating both 
the prolabe and oblate tensor models for the oblate model, where 

corresponds to , which is parallel to the axis of symmetry 
of the “pancake” shaped diffusion ellipsoid. Above, is the 
3 3 identity matrix. For the oblate model, we have 

. For the prolate model, we have 
. 

In contrast to an anisotropic medium, only one scalar diffu
sion coefficient is necessary to describe isotropy. Then (1) 
reduces to 

(6) 

where , and is an apparent diffusion 
coefficient (ADC). The isotropic diffusion tensor has the form 

(7) 

Equation (7) is also a special case of (5) in which and 
. In this section, we have established a hierarchy of nested 

models of diffusion given by (3), (5), and (7). 
1) Parameters Estimation for the Different Models: A non

linear least square (NLS) minimization method, proposed by 
Koay et al. [23] is used to estimate each diffusion tensor whose 
initial guess is obtained from the linear least squares minimiza
tion. In the NLS method, (1) takes the form 

(8) 

where the design matrix consists of a list of -matrix elements 
for a series of trials 

. . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . 

(9) 
and consists of six independent parameters of the estimated 
diffusion tensor and the estimated log of the signal in the 
absence of the diffusion-weighting gradient, . For the 
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general anisotropic (ga) model is written as a (7 1) column 
vector 

(10) 

Since the diffusion tensors for the transversely isotropic models 
can be estimated from four parameters (5) for cylindrically sym
metric oblate and prolate models the number of free pa
rameters we estimate is reduced from 7 [as in (10)] to 5 [24] 

(11) 

where the initial guesses of are obtained from the pre
viously estimated diffusion tensor, using the following assign
ments (mathematical support for (13) can be found in [25]). 

Oblate 

(12) 

Prolate 

(13) 

The final have the same form as (10).
 
For the isotropic model
 , the number of unknown param

eters is 2 

(14) 

We use the following initial guess for the isotropic case: 
and the design matrix is reduced to 

, where the first column is a list of averaged diagonal elements 
of the corresponding -matrices and the second column consists 
of .
 

Once the elements of
 are estimated for all four models, we 
can derive the corresponding residual sum of squares (RSS) for 
each model as 

(15) 

where 1, 

1general anisotropic (ga); prolate (p); oblate (o); isotropic models (J) 

, and is the th row of the design 
matrix, . 

The unbiased estimate of the residual mean square error for 
the full tensor model, , on degrees-of-freedom, is 
defined as 

(16) 

The unbiased estimate of the covariance matrix for the full 
tensor model, , is obtained from 

(17) 

where is a Jacobian matrix of first-order derivatives of 
with respect to the free parameters evaluated 

using the optimally estimated free parameters. 
With these definitions, we are interested to know whether 

one could select the model that most faithfully describes the ac
quired data, which uses the fewest unknown parameters. 

B. Hierarchical Approaches to Parsimonious Model Selection 

In this work we investigate three schemes for parsimonious 
model selection: SC [13], [10], [14], and [15], [11]. 
The logical schematic for the SC, and methods are 
shown in Fig. 1(a)–(c), respectively. 

The first step for all three approaches is to ensure that the esti
mated full diffusion tensor passes a goodness-of-fit test with 
the confidence level of 95%. If is admissible, the next step is to 
differentiate between the isotropic and anisotropic models. We 
test the null hypothesis that assumes that the diffusion tensor is 
isotropic, i.e., that the experimental data can be more economi
cally described by a model with two free parameters (14), rather 
than the full diffusion tensor model with seven unknowns (10). 

The first method we consider is the SC, also commonly 
known as the Bayesian information criterion (BIC). This 
method works by imposing penalties for models with a larger 
number of free parameters and a larger mean squared residual 
error. It is defined as 

(18) 

where represents the model type (isotropic, general 
anisotropic, prolate, or oblate), is the number of experi
mental data points, and is the number of free parameters for 
the th model. 

The remaining two model selection methods we consider are 
based upon sequential hypothesis tests. The second method is 
the hierarchical model selection approach, which is based 
on the -test [14] 

(19) 

where and are the numbers of the free pa
rameters in the general anisotropic and isotropic models, re
spectively; is the number of experimental data points; and 

, and are the sums of the squares of the acquired 
signals, and the fitted signals for the anisotropic and isotropic 
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Fig. 1. Schematic hierarchical model selection for (a) SC; (b) F 0 t; and (c) 
F 0 F approaches. 
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models, respectively. The approach uses a multivariate 
-test [15] performed according to (20) 

(20) 

where and are the residual sum of squares for the 
isotropic and general anisotropic models, respectively. Large 
values for , given above, indicate that the isotropic model 
can be rejected. 

If the anisotropic model is accepted, we further investigate 
whether it is more economical to represent diffusion as being 

transversely isotropic or cylindrically symmetric, i.e., having 
either an oblate or prolate-shaped diffusion ellipsoid with one 
axis of symmetry. The null hypothesis that two eigenvalues are 
equal, can be evaluated using a number of statistical tests. 

To evaluate this hypothesis, in the approach we modify 
Hext’s -test [14] whose -statistic is of the form 

(21) 

where and for the oblate model, and 
for the prolate model, is the estimate of covariance (17), 
and is the estimate of the orthonormal eigenvector associ
ated with the corresponding eigenvalue estimate, for the full 
tensor model. 

In the third approach, following scheme [1], we use 
an -test again to test whether the reduced model for transverse 
isotropy having five free parameters is more efficient than the 
full seven parameter tensor model. In this case, the test statistic 
is given by (22) 

(22) 

where is the residual sum of squares for the reduced 
model (prolate or oblate for which ) and is the 
residual sum of squares for the general anisotropic model with 

. 
From Fig. 1(c) it can be seen that the approach applies 

the same scheme, as above, if the isotropic model is accepted. 

III. METHODS 

A. Simulations 

To evaluate the various parsimonious model selection ap
proaches, synthetic phantoms [Fig. 2(a)] were generated in 
MATLAB (The MathWorks, Inc., Natick, MA) by setting 
the SNR to 15, 25, and 33 matches SNR in the 
excised pig spinal cord DTI data), for a fixed signal intensity, 

. The parameters for the general anisotropic and 
prolate models were chosen to simulate white matter, while the 
isotropic model parameters simulated gray matter, with values 
typical for living brain tissue [3]. The oblate model was set 
to parameters between white and gray matter. The trace of 
Tr for the general anisotropic model was set to 
mm /s and the FA was set to mm /s, 

mm /s, mm /s), for the 
prolate model mm /s and , for 
the oblate model mm /s and , 
and for the isotropic model mm /s and 

. Normally distributed random noise was added to the 
signal intensity in each voxel; the diffusion weighted images 
were calculated and scaled, as shown in (23). This model 
assumes that noise is added to the real and imaginary channels 
independently, and that the MR signal is rectified [26], [27]. 
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The -matrix was calculated with the imaging parameters 
described in Section III-B. 

(23) 

where 

and and are normally distributed random numbers 
with mean zero and standard deviation . 

Fig. 2 (a) Noise-free synthetic phantom; Model map results assuming FA = 
0.8 in prolate and FA = 0.55 in oblate and general anisotropy regions, respec
tively, with SNR = 33 for (b) SC (c) F 0 t and (d) F 0 F methods. 

The hierarchical methods for parsimonious model selection 
were applied to the set of 50 reconstructed diffusion-weighted 
images with four unweighed images. 

B. Excised Pig Spinal Cord DTI Experiments 

In addition to simulations, we demonstrate our results on ex
perimental MRI data obtained from an excised pig spinal cord 
fixed with 4% paraformaldehyde solution. Prior to MR data col
lection, the spinal cord was washed in phosphate-buffered saline 
(PBS) to avoid signal loss due to fixative-related -shortening 
[28]. The sample was imaged in a 15-mm NMR tube containing 
MR-compatible perfluoropolyether oil (“Fomblin”), using a 
Micro2.5 microscopyprobe (15-mm solenoid coil) with 1450 
mT/m 3-axis gradients. A diffusion-weighted spin echo pulse 
sequence was used with repetition time ms, 
echo time ms, kHz, field-of-view 

mm, with seven con
tinuous 1 mm thick slices. Four DWIs per slice were acquired 
without applying the diffusion sensitizing gradients 
s/mm ), followed by the acquisition of 46 diffusion-weighted 
images with diffusion gradient strength mT/m 
yielding approximate -values of 1000 s/mm . The number 
of averages (NEX) was 2. Each of these diffusion-weighted 
scans were collected with the diffusion gradients applied along 
a different direction determined from the second-order tessel
lations of an icosahedron on the surface of a unit hemisphere. 
The diffusion gradient duration was 5 ms, and the gradient 
separation was 20 ms. The total imaging time was less 
than 13 h. At each voxel location in the raw image, the apparent 
diffusion tensor was estimated. Tensor-derived parameters, 
such as the principal directions, and , and the corre
sponding principal diffusivities, and , were estimated 
and passed to the parsimonious model selection algorithm. 

IV. RESULTS 

Systematic study of the residuals is performed to assess their 
distribution within different voxels. Fig. 3 shows a represen
tative - plot of the residuals, indicating that they are nor
mally distributed. Since the residuals from the phantom and the 
excised pig spinal cord experiments are normally distributed 
(Fig. 3), and the variance of each measurement is unchanging 
(homoscedasticity), the use of the hypothesis testing framework 
given below is well grounded. The confidence interval for all 
tests was set to 95%. 

Fig. 3. Q-Q Plot of prolate model residuals in (a) phantom and (b) pig spinal 
cord versus standard normal. 

A. Simulations 

Fig. 2(b)–(d) shows graphically the model selection results 
obtained with the SC, and approaches, at . 
Performance for the model selection framework at SNRs equal 
to 15, 25, and 33 are shown in Fig. 4(a), (b), and (d), respec
tively. The true positive and the false negative counts are cal
culated within the area of the predicted model, while the false 
positive counts are obtained from the outside regions. The SC, 

, and results are similar for the isotropic and gen
eral anisotropic models at all SNRs. The isotropic model se
lection showed consistent results for the true positive and the 
false negative counts with the averages of 96% and 4% success, 
respectively. The general anisotropic model performed better 
with the true positive counts 99.3% success. While the differ
ences between oblate and prolate models for the SC and 
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approaches were not significant for the true positive and false 
negative results and their overall errors were around 7% at all 
SNRs, the approach showed poor performance in identi
fying the oblate and prolate models with an average error in the 
range from 21% to 26%. These results for are shown 
as confusion matrices in Tables I–III. Here, each column of the 
confusion matrix represents the true model, and each row rep
resents the results of the parsimonious model classification. 

Fig. 4. Performance comparison at (a) SNR = 15, (b) SNR = 25, and (c) 
SNR = 33, where SC is represented by the blue bar, F 0 t by the green bar, 
and F 0 F by the red bar. The true positive and the false negative counts are 
calculated within the area of the predicted model, while the false positive counts 
are obtained from the outside regions. In each box the first group of three bars 
shows the performance of the isotropic model, second group—for the general 
anisotropic model and the other two groups show the performance of the oblate 
and prolate models, respectively. 

TABLE I
 
ACCURACY OF A CLASSIFICATION (%) OBTAINED
 

WITH SC APPROACH AT SNR = 33

SC 

""' Iso Ani Obl Pro 

Iso 98.6 0 0.7 0.7 

Ani 0 99.3 0.7 0 

Obl 0 2.2 97.8 0 

Pro 0 2.4 0.1 97.5 

TABLE II
 
ACCURACY OF A CLASSIFICATION (%) OBTAINED
 

WITH F 0 t APPROACH AT SNR = 33

F-t 

""' Iso Ani Obl Pro 

Iso 98.4 0.2 0.7 0.7 

Ani 0 99.4 0.6 0 

Obl 0 20.9 79.1 0 

Pro 0 21.8 0 78.2 

TABLE III
 
ACCURACY OF A CLASSIFICATION (%) OBTAINED
 

WITH F 0 F APPROACH AT SNR = 33

F-F 

""' Iso Ani Obi Pro 

Iso 94.8 0 3.4 1.8 

Ani 0 99.3 0.7 0 

Obl 0 3.2 96.8 0 

Pro 0 3.5 0 96.5 

Subsequently, we tested this approach with the fractional 
anisotropy varying from 0.1 to 0.9. The obtained results were 
consistent with the described above at , and 

for the SC, and approaches, respectively. 

B. Excised Pig Spinal Cord DTI Experiment 

Fig. 5 shows (a) the -weighted amplitude image, the ori
entationally invariant (b) Tr, and (c) FA. The -weighted am-

plitude image, the Tr and FA maps delineate white and gray 
matter groups consistent with previous works [29]. Addition
ally, regions appearing bright in the amplitude image appear 
dark in the FA maps. Fig. 5(d) is the direction-encoded color 
map [30]. White matter fiber groups are also easily discernible 
in this image. The bluish color in white matter groups indi
cates fibers pointing into the page, consistent with their known 
anatomy. 

Fig. 5. Excised pig spinal cord images: (a) T -weighted amplitude; (b) Trace 
in mm /s; (c) FA; (d) DTI colormap: green—left to right direction, red—up and 
down direction, blue—through the plane. 

To assess the results obtained using the SC Fig. 6(a), 
[Fig. 6(b)], and [Fig. 6(c)] parsimonious model selec
tion methods, we compared our results with the typical DTI 
maps, i.e., Tr, FA, and color maps [Fig. 5(b)–(d)], respectively. 
Fig. 7(a) was obtained using the recently developed diffusion 
orientation transform (DOT) technique [31]. In this image, the 
orientation profiles computed using the DOT are overlaid on 
generalized anisotropy (GA) maps displayed using a gray col
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ormap on the background. The blue color represents surfaces 
of probability profiles. It is obvious that the coherently oriented 
and highly anisotropic fibers of white matter appear to be ori-
ented along the direction normal to the image plane (inset 1 in 
Fig. 7); these regions also have high GA values. In contrast, 
in most regions of the spinal cord gray matter, there is a great 
deal of directional heterogeneity in the preference of water dif-
fusion. However, much of the fiber directions appear to be on 

the image plane suggesting an oblate diffusion profile (inset 2 
in Fig. 7), where voxels with more complicated patterns are ex-
pected to yield general anisotropy in our model selection frame
work [inset 3 in Fig. 7(a)]. As can be seen from Fig. 6, the SC 
and approaches consistently selected the prolate model 
in the areas corresponding to white matter, while the ap
proach frequently failed. Furthermore, although the FA map of 
the excised pig spinal cord appears to be uniform throughout 

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 11, NOVEMBER 2007 

Fig. 6. Parsimonious model maps for excised pig spinal cord using: a) SC, b)  F 0 t and c) F 0 F approaches. 

Fig. 7. (a) Diffusion orientation transform (DOT) map: the orientation profiles are overlaid on generalized anisotropy (GA) maps, where blue color represents 
surfaces of probability profiles and GA is displayed in gray scale. The three insets (4 voxels each) are selected to show detailed 3-D of probability profiles in 
different regions; (b) Parsimonious model map obtained with the SC method. The inset 1 shows the parallel aligned peanut shaped surfaces orientated through the 
plane (top and side views), which corresponds to the prolate model region in the SC map (red color); The inset 2 shows the complicated orientational characteristics, 
i.e., voxels with more than one fiber direction, which corresponds to the oblate region in the SC map (orange color). The inset 3 shows deformed peanuts, which 
could reflect the presence of more than one fiber orientation. This inset corresponds to the general anisotropic model in the SC map (turquoise color). 
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the entire white matter region, the Tr map revealed less uni
formity in this region. This indicates that some of the regions 
have more complex structures than the voxels with fibers aligned 
along one direction. Thus, we may assume that the voxels in 
the white matter region, which were not selected as prolate, 
might correspond to the structures with more than one fiber 
orientation [e.g., SC method inset 3 in Fig. 7(b)]. Moreover, 
more complicated orientational fiber directions in gray matter 
[e.g., inset 2 in Fig. 7(a)] overlap with the voxels identified as 
oblate by our model selection frameworks [e.g., SC method inset 
2 in Fig. 7(b)]. Although the sharpened displacement profiles 
produced by the DOT [Fig. 7(a)] appear unidirectional in the 
medial sections of the spinal cord gray matter, the generalized 
anisotropy (GA) [32] image provided in the background sug
gests that these orientational features are not as pronounced; 
this suggests that the variations due to noise were comparable to 
the overall anisotropy due to diffusional preference. As a result, 
these voxels are identified as general anisotropic according to 
our model selection method. 

V. DISCUSSION 

The aim of this work is to investigate the feasibility of using 
a parsimonious model selection framework to obtain the most 
appropriate and economical diffusion model within each voxel 
of an imaging volume. Analysis of the three proposed model 
selection methods has shown that the SC approach is more ro
bust than the and methods. The -test applied to 
selecting models exhibiting transverse symmetry was less suc
cessful than the and SC approaches, due to its high sensi
tivity to the variance estimation and the bias owing to sorting the 
eigenvalues [33], [27]. Since the method requires only one 
nonlinear fit, rather than the three required for the and SC 
approaches, the former may be computationally less intensive. 
Currently, we are investigating the effect of variance estima
tion improvement on the -test. Monte Carlo simulations have 
shown that in the method it is unnecessary to perform the 

-tests to compare isotropic and oblate/prolate models. Gener
ally, the performance of the SC method is better than the other 
two methods. 

Under what circumstances can we justify the use of this hy
pothesis testing framework for model selection? As long as the 
residuals are normally distributed, and the variance of each mea
surement is not changing (homoscedasticity) we can safely use 
the -test and -test formalisms to compare one model to an
other. In this study, the – plots and statistical tests sup
ported the use of this sequential hypothesis testing framework 
for model selection. 

While the Bayesian method for model selection [12] is ele
gant, we have developed this model testing pipeline to accom
modate the high throughput of diffusion weighted data of de
manding DT-MRI applications. In a typical microimaging study 
512 512 64 voxels might be acquired. The advantage of 
using this hypothesis testing approach is that most of the cal
culations required for the hypothesis tests themselves have al
ready been performed during the nonlinear estimation of the 
free parameters of each model. Thus, the subsequent statistical 
tests have a small computational overhead. This approach is also 
easily extended to consider a larger number of nested diffusion 

models. For instance, one can incorporate models having mul
tiple compartments (such as a CSF compartment), or consider 
HARDI or CHARMED models within this testing framework. 
While this initial demonstration uses on diffusion tensor MRI 
data, the hierarchical testing framework is not limited only to 
data of this type. 

The proposed segmentation methods are based on a voxel-by
voxel analysis. Such approach prevents possible introduction 
of artifacts due to averaging the neighboring voxels with dif
ferent variances. The inhomogeneity in the variance is observed 
in voxels with different degrees of anisotropy [34]. 

What are the prospects for extending this approach to clinical 
and in vivo biological MRI applications? Provided that the con
ditions for normally distributed residuals and stable variances 
for DWI in time are met, this analysis pipeline could be used 
with in vivo data as well. However, one should establish that 
these conditions are satisfied before using this approach. With 
the methods introduced in this work, we performed a plot study 
using a clinical data set, where artifacts, such as physiological 
noise, small scale motion, and eddy current distortion were ame
liorated prior to performing statistical model selection. Prelim
inary results (not reported here) are promising and will be the 
subject of the future work. 

It has been shown that the segmentation obtained from our 
parsimonious model selection scheme can be used to inform an 
unsupervised tissue clustering algorithm, also based on multi
variate hypothesis testing [35], [36]. We used the parsimonious 
model selection framework to identify seed regions for unsu
pervised tissue clustering algorithms to ensure that the vari
ance of each measurement in the seeding region is uniform (ho
moscedasticity), and that the distribution of diffusion tensor pa
rameters is similar, making the clustering algorithm more reli
able. 

Furthermore, model selection maps can be useful for unsu
pervised tractography, as well. For example, voxels selected 
as prolate are better candidates for seed voxels from which to 
launch fibers, while the voxels identified as general anisotropic 
or oblate will indicate changes in structure, thus requiring more 
detailed analysis. 

In addition, while FA, trace, and skewness [37] maps indi
vidually provide useful scalar information about isotropic and 
anisotropic regions, the parsimonious model selection map dis
tills this information into a single map. 

VI. CONCLUSION 

The maps produced by the proposed parsimonious model se
lection schemes provide useful information about underlying 
tissue microstructure in each voxel. The simplicity and speed of 
applying the - and -tests and the SC make the proposed ap
proaches feasible for large DWI data sets routinely encountered 
in high resolution microscopic DT-MRI studies or in clinical 
DT-MRI applications. The results of the phantom simulations 
increase our confidence in model selection schemes based upon 
statistical hypothesis tests. When applied to ex vivo tissue spec
imens, where background noise is the primary artifact and other 
systematic artifacts can be remedied, this approach should work 
robustly. In clinical applications, however, where other system
atic artifacts can corrupt DWI data, this approach may be more 
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problematic. When using DWI data from living tissue, tests for 
Gaussianity of the distribution of residuals and a careful assess
ment of the degree of homoscedasticity should be performed 
prior to applying our model selection approaches to ensure data 
integrity. Our expectation is that these model selection proce
dures may lead to improved methods of automatic region of 
interest (ROI) delineation and classification of different tissue 
types in DT-MRI volume data sets. 

ACKNOWLEDGMENT 

R. Z. Freidlin would like to thank Dr. R. L. Martino and K. 
Kempner for their support and encouragement on this work. The 
authors wish to thank W. Jarisch, who originally interested them 
in parsimonious model selection methods, and particularly, in 
the use of the Schwarz criterion, Dr. C. Pierpaoli, Dr. U. Nevo 
and Dr. Y. Assaf for helpful discussions throughout this study, 
and L. Salak for editing this paper. The authors also would also 
like to thank the people who were involved in providing this 
research with the biological specimens. R. R. Clevenger, T. J. 
Hunt, G. J. Zywicke, A. D. Zetts, K. Keeran, S. M. Kozlov, 
and K. R. Jeffries, from LAMS, NHLBI, for supplying fixed pig 
spinal cord tissue. 

REFERENCES 

[1] P. J. Basser, J. Mattiello, and D. LeBihan, “Estimation of the effective 
self-diffusion tensor from the NMR spin echo,” J. Magn. Reson. B., 
vol. 103, no. 3, pp. 247–254, Mar. 1994. 

[2] U. Sinha and L. Yao, “In vivo diffusion tensor imaging of human calf 
muscle,” J. Magn. Reson. Imag., vol. 15, no. 1, pp. 87–95, Jan. 2002. 

[3] C. Pierpaoli, P. Jezzard, P. J. Basser, A. Barnett, and G. D. Chiro, “Dif
fusion tensor MR imaging of the human brain,” Radiology, vol. 201, no. 
3, pp. 637–648, Dec. 1996. 

[4] C. A. Clark and D. J. Werring, “Diffusion tensor imaging in spinal cord: 
Methods and applications—A review,” NMR Biomed., vol. 15, no. 7–8, 
pp. 578–586, 2002. 

[5] M. Skorpil, M. Karlsson, and A. Nordell, “Peripheral nerve diffusion 
tensor imaging,” Magn. Reson. Imag., vol. 22, no. 5, pp. 743–745, Jun. 
2004. 

[6] E. W. Hsu and L. A. Setton, “Diffusion tensor microscopy of the inter-
vertebral disc anulus fibrosus,” Magn. Reson. Med., vol. 41, no. 5, pp. 
992–999, May 1999. 

[7] J. Dou, T. G. Reese, W.-Y. I. Tseng, and V. J. Wedeen, “Cardiac dif
fusion MRI without motion effects,” Magn. Reson. Med., vol. 48, no. 
1, pp. 105–114, Jul. 2002. 

[8] T. G. Reese, R. M. Weisskoff, R. N. Smith, B. R. Rosen, R. E. Dins-
more, and V. J. Wedeen, “Imaging myocardial fiber architecture in 
vivo with magnetic resonance,” Magn. Reson. Med., vol. 34, no. 6, pp. 
786–791, Dec. 1995. 

[9] P. J. Basser,	 “Testing for and exploiting microstructural symmetry 
to characterize tissues via diffusion tensor MRI,” in ISMRM 4th Sci. 
Meeting, 1996, vol. 2, p. 1323. 

[10] D. Shrager, D. K. Jones, S. Pajevic, P. Munson, and P. J. Basser, “When 
is a gaussian displacement distribution adequate to describe water dif
fusion in tissues?,” in ISMRM Workshop Diffusion MRI: Biophys. Is
sues: What Can We Measure?, 2002, pp. 21–25. 

[11] D. C. Alexander, G. J. Barker, and S. R. Arridge, “Detection and mod
eling of non-Gaussian apparent diffusion coefficient profiles in human 
brain data,” Magn. Reson. Med., vol. 48, no. 2, pp. 331–340, Aug. 2002. 

[12] C. D. Kroenke, G. L. Bretthorst, T. E. Inder, and J. J. Neil, “Modeling 
water diffusion anisotropy within fixed newborn primate brain using 
Bayesian probability theory,” Magn. Reson. Med., vol. 55, no. 1, pp. 
187–197, Jan. 2006. 

[13] G. Schwarz, “Estimating the dimension of the model,” Ann. Statist., 
vol. 6, pp. 461–468, 1978. 

[14] G. R. Hext, “The estimation of second-order tensors, with related tests 
and designs,” Biometrika, vol. 50, pp. 353–357, 1963. 

[15] G. W. Snedecor and W. G. Cochran, Statistical Methods, 8th ed. 
Malden, MA: Blackwell, 1989. 

[16] H. Y. Carr and E. M. Purcell, “Effects of diffusion on free precession 
in nuclear magnetic resonance experiments,” Phys. Rev., vol. 94, no. 3, 
pp. 630–438, May 1954. 

[17] E. O. Stejskal and J. E. Tanner, “Spin diffusion measurements: Spin 
echoes in the presence of a time-dependent field gradient,” J. Chem. 
Phys., vol. 42, no. 1, pp. 288–292, Jan. 1966. 

[18] P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spec
troscopy and imaging,” Biophys. J., vol. 66, no. 1, pp. 259–267, Jan. 
1994. 

[19] J. Coremans, R. Luypaert, F. Verhelle, T. Stadnik, and M. Osteaux, “A 
method for myelin fiber orientation mapping using diffusion-weighted 
MR images,” Magn. Reson. Imag., vol. 12, no. 3, pp. 443–454, 1994. 

[20] S. G. Advani and C. L. Tucker, “The use of tensors to describe and 
predict fiber orientation in short fiber composites,” J. Rheol., vol. 31, 
no. 8, pp. 751–784, Nov. 1987. 

[21] D. Alexander, An Introduction to Computational Diffusion MRI: The 
Diffusion Tensor and Beyond, Ser. Visualization and Image Processing 
of Tensor Fields. New York: Springer, 2005. 

[22] O. Friman and C.-F. Westin, “Uncertainty in white matter fiber tractog
raphy,” Med. Image. Comput. Comput. Assist. Interv. Int. Conf. Med. 
Image. Comput. Comput. Assist. Interv., vol. 8, pt. 1, pp. 107–114, 
2005. 

[23] C. G. Koay, L.-C. Chang, J. D. Carew, C. Pierpaoli, and P. J. Basser, 
“A unifying theoretical and algorithmic framework for least squares 
methods of estimation in diffusion tensor imaging,” J. Magn. Reson., 
vol. 182, pp. 115–125, Jul. 2006. 

[24] E. W. Hsu and S. Mori, “Analytical expressions for the NMR apparent 
diffusion coefficients in an anisotropic system and a simplified method 
for determining fiber orientation,” Magn. Reson. Med., vol. 34, no. 2, 
pp. 194–200, Aug. 1995. 

[25] O. Friman, G. Farneback, and C.-F. Westin, “A bayesian approach for 
stochastic white matter tractography,” IEEE Trans. Med. Imag., vol. 25, 
no. 8, pp. 965–978, Aug. 2006. 

[26] R. M. Henkelman, “Measurement of signal intensities in the presence 
of noise in MR images,” Med. Phys., vol. 12, no. 2, pp. 232–233, 1985. 

[27] C. Pierpaoli and P. J. Basser, “Toward a quantitative assessment of 
diffusion anisotropy,” Magn. Reson. Med., vol. 36, no. 6, pp. 893–906, 
Dec. 1996. 

[28] T. M. Shepherd, P. E. Thelwall, P. E. Stanisz, and S. J. Blackband, 
“Chemical fixation alters the water microenvironment in rat cortical 
brain slices—Implications for MRI contrast mechanisms,” in Proc. Int. 
Soc. Magn. Reson. Med., 2005, no. 13, p. 619. 

[29] B. A. Inglis, L. Yang, E. D. Wirth, D. Plant, and T. H. Mareci, “Dif
fusion anisotropy in excised normal rat spinal cord measured by NMR 
microscopy,” Magn. Reson. Imag., vol. 15, no. 4, pp. 441–450, 1997. 

[30] S. Pajevic and C. Pierpaoli, “Color schemes to represent the orientation 
of anisotropic tissues from diffusion tensor data: Application to white 
matter fiber tract mapping in the human brain,” Magn. Reson. Med., 
vol. 42, no. 3, pp. 526–540, Sep. 1999. 

[31] E. Özarslan, T. M. Shepherd, B. C. Vemuri, S. J. Blackband, and T. 
H. Mareci, “Resolution of complex tissue microarchitecture using 
the diffusion orientation transform (DOT),” NeuroImage, vol. 31, pp. 
1086–1103, 2006. 

[32] E. Özarslan, B. C. Vemuri, and T. H. Mareci, “Generalized scalar 
measures for diffusion MRI using trace, variance and entropy,” Magn. 
Reson. Med., vol. 53, no. 4, pp. 866–876, 2005. 

[33] H. Van Der Vaart, Some results on the probability distribution of the 
latent roots of a symmetric matrix of continuously distributed elements, 
and some applications to the theory of response surface estimation Inst. 
Statistics, Univ. North Carolina, Chapel Hill, 1958. 

[34] J. D. Carew, C. G. Koay, G. Wahba, A. L. Alexander, M. E. Meyerand, 
and P. J. Basser, The asymptotic behavior of the nonlinear estimators 
of the diffusion tensor and tensor-derived quantities with implications 
for group analysis Dept. Statistics, Univ. Wisconsin, Madison, 2006. 

[35] R. Z. Freidlin, Y. Assaf, and P. J. Basser, “Multivariate hypothesis 
testing of DTI data for tissue clustering,” IEEE Int. Symp. Biomed. 
Imag.: Macro to Nano (ISBI), pp. 776–779, Apr. 2007. 

[36] R. Z. Freidlin, Y. Assaf, and P. J. Basser, “Multivariate hypothesis 
testing for tissue clustering and classification: A DTI study of excised 
rat spinal cord,” in Joint Annu. Meeting ISMRM-ESMRMB, May 2007, 
p. 625. 

[37] T. E. Conturo, R. C. McKinstry, E. Akbudak, and B. H. Robinson, “En
coding of anisotropic diffusion with tetrahedral gradients: A general 
mathematical diffusion formalism and experimental results,” Magn. 
Reson. Med., vol. 35, no. 3, pp. 399–412, Mar. 1996. 


	Parsimonious Model Selection for Tissue. Segmentation and Classification Applications: A. Study Using Simulated and Experimental DTI Data
	Abstract
	Index Terms

	I. INTRODUCTION 
	II. THEORY 
	A. Diffusion Tensor Imaging 
	1) Parameters Estimation for the Different Models: 

	B. Hierarchical Approaches to Parsimonious Model Selection 

	III. METHODS 
	A. Simulations 
	B. Excised Pig Spinal Cord DTI Experiments 

	IV. RESULTS 
	A. Simulations 
	B. Excised Pig Spinal Cord DTI Experiment 

	V. DISCUSSION 
	VI. CONCLUSION 
	ACKNOWLEDGMENT 
	REFERENCES 




