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INTRODUCTION 
Diffusion tensor MRI (DT-MRI) provides a discrete 

representation of the diffusion tensor field ofwater in living 
tissues. A graphical means to display the diffusion tensor 
field, '�[�\�]���is to construct diffusion ellipsoid maps or 
images (1). Moreover, from the diffusion tensor field, one 
can infer the fiber-tract direction field in some anisotropic 
tissues ( 1 ) . 1n white matter and skeletal muscle, for 
example, the local fiber-tract direction corresponds to the 
major or polar axis of the ellipsoid, and is thus given by the 
principal direction (eigenvector) e1(x,y,z), associated with 
the largest principal diffusivity (eigenvalue), 11(x,y,z)
(1 ). This vector field can be displayed in various ways, 
e.g., as an arrow o r a line drawn in each voxel (2) or as a 
set of Euler angles displayed in each voxel (3). 

One issue of great biological significance, but not 
previously addressed, is the degree of susceptibility of 
diffusion tensor fields, and their associated fiber-tract 
direction maps, to MRI noise present in diffusion weighted 
(amplitude) images (DWls). Since DT-MRl is intrinsically a 
statistical technique ( 4), D and all of the quantities
computed from it are random variables. Therefore, the 
eigenvalues and eigenvectors in each voxel are nOt 
determined precisely in a DT-MRI experiment, but are 
subject to variation. Moreover, MRI noise has already been 
shown to introduce a significant bias in the assignment of 
the eigenvalues of ' ( 5). Since each eigenvector is 
associated with a particular eigenvalue, the assignment or 
determination of the fiber-tract direction in each voxel (or of 
the set of Euler angles) is also biased. 

An added complication in addressing this question is the 
inherently non-linear, non-analytical relationship between '  
and quantities computed from it, and the set of DWIs from 
which D is estimated ( 4). Therefore, we must resort to 
empirical approaches, such as Monte Carlo simulations, 
and approximate methods, such as Matrix Perturbation 
Analysis to assess these complex relationships. 

METHODS 
Monte Carlo simulations are useful in simulating the 

outcome of DT-MRl experiments subject to different levels 
of background thermal noise (5). Typically, we synthesize 
noisy DWIs (5) by assuming a distribution of diffusion 
tensors that are representative of ones we measure in 
different regions of living tissue, and assuming values of b-
matrices and MRI parameters that are identical to those used 
in those studies, as well as an assumed level of background 
(thermal) Gaussian noise (6). From the noisy magnitude 
DWJs, we then estimate '  in each voxel as in (4), from 
which we calculate its eigenvalues and eigenvectors, as well 
as their statistical distributions. 

First-Order Matrix Pertuibation Analysis (7) provides
another means to estimate the mean and variance of the 
eigenvalues and eigenvectors of '� directly from the 
estimated '�D�and its estimated covariance matrix, D2 that 
contains the standard errors of each component RI�'�(4) . 
The uncertainty in each eigenvalue lM is DLj and the 
uncertainty in the matrix of eigenvectors, E, is .DE, where 

  

T 

Dlj = ej DD ej DE �(5 DQG�5LM� ei DDe(t- G.. ) 
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H��LV�the LWK eigenvector, and GMO  is the Kronecker delta. The 
subtended angle, D0j, between the ith perturbed eigenvector 
of'��Hej+Dej  and the estimated eigenvector ei, PHDVXUHV�the 
angular deviation of the fiber direction, D0i:

D0j =tan-1( Dei) 

RESULTS AND DISCUSSION 
)LJXUH���1 shows a graphical construct that VKRXOG�be XVHIXO� 

in displaying both the elgenvectors of D and their associated 
uncertainties. Matrix Pcrturbation Analysis shows that to 
first order, the unit eigenvector, Ej, is orthogonal to its 
uncertainty vector, DEj. This suggests that we can display 
the unit eigenvector and with "cone of uncertainty" DURXQG�
its tip. This would convey the fact that the fiber direction is 
not known precisely, which is currently implied fiber 
orientation images. 
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Fig 1: Eigenvector and LWV�cone of uncertainty 

CONCLUSIONS 
We show that background noise in the DWIs affects the 

determination of the fiber tract direction calculated from the 
diffusion tensor. Monte Carlo simulations of Diffusion 
Tensor Imaging experiments explain the origin of the 
statistical bias and Matrix Pertubation methods provide 
good order of magnirude estimates of the variance in the 
eigenvectors. More sophisticated algorithms must be 
developed to eliminate the sorting bias 
and eigenvectors of �', perhaps by usmg mformanon about 
local fiber direction field coherence or order ( 8) or by
using invariants of the diffusion tensor to perform the 
sorting (9).

It is essential that studies intended to determine fiber 
directional patterns, such as those presently being
conducted to elucidate muscle fiber architecture in cardiac 
tissue (2) and nerve fiber direction fields in brain (3), will 
begin to address and account for MR noise-induced artifacts 
in fiber-direction, and that careful histological analysis 
accompany studies of fiber direction fields to ensure that no 
systematic artifacts corrupt the analysis of the diffusion 
tensor data. 
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