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ABSTRACT
Signal variability in diffusion weighted imaging (DWI) is influ­
enced by both thermal noise and spatially and temporally vary­
ing artifacts such as subject motion and cardiac pulsation. In 
this paper, the effects of DWI artifacts on estimated tensor 
values, such as trace and fractional anisotropy, are analyzed 
using Monte Carlo simulations. A novel approach for robust 
diffusion tensor estimation, called RESTORE (for robust esti­
mation of tensors by outlier rejection), is proposed. This 
method uses iteratively reweighted least-squares regression to 
identify potential outliers and subsequently exclude them. Re­
sults from both simulated and clinical diffusion data sets indi­
cate that the RESTORE method improves tensor estimation 
compared to the commonly used linear and nonlinear least-
squares tensor fitting methods and a recently proposed method 
based on the Geman–McClure M-estimator. The RESTORE 
method could potentially remove the need for cardiac gating in 
DWI acquisitions and should be applicable to other MR imaging 
techniques that use univariate or multivariate regression to fit 
MRI data to a model. Magn Reson Med 53:1088–1095, 2005. 
Published 2005 Wiley-Liss, Inc.†
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INTRODUCTION
Diffusion tensor magnetic resonance imaging (DT-MRI) is 
used increasingly in clinical research for its ability to 
depict white matter tracts and for its sensitivity to micro-
structural and architectural features of brain tissue. Diffu­
sion tensor maps are typically computed by fitting the 
signal intensities from diffusion weighted images as a 
function of their corresponding b-matrices (1) according to 
the multivariate least-squares regression model proposed 
by Basser et al. (2). The least-squares (LS) regression model 
takes into account the signal variability produced by ther­
mal noise by including the assumed signal variance as a 
weighting factor in the tensor fitting. Signal variability in 
diffusion weighted imaging (DWI), however, is influenced 
not only by thermal noise but also by spatially and tem­
porally varying artifacts. Such artifacts originate from the 
so called “physiologic noise” such as subject motion and 
cardiac pulsation, as well as from acquisition-related fac­
tors such as system instabilities. The multivariate least-
squares regression model assumes that the signal variabil­
ity in the DWI is affected only by thermal noise and does 

not account for signal perturbations and potential outliers 
that originate from artifacts. While the signal variability 
produced by thermal noise is approximately Gaussian dis­
tributed (3), signal variability produced by physiologic 
noise and other artifacts does not have a known parametric 
distribution and currently cannot be modeled. Situations 
in which experimental errors do not follow a Gaussian 
distribution, or are unknown, are generally addressed sta­
tistically by using “robust” estimators, which are less sen­
sitive to the presence of outliers. 

Surprisingly, the use of robust estimators has been 
largely neglected by the DT-MRI community. We are aware 
of only one robust tensor estimation approach recently 
proposed by Mangin et al. (4), which is based on the 
well-known Geman-McClure M-estimator (5) (we will re­
fer to Mangin’s approach as GMM in this paper). This 
approach uses an iteratively reweighted least-squares fit­
ting in which the weight of each data point is set to a 
function of the residuals of the previous iteration. The 
GMM method ensures that potentially artifactual data 
points having large residuals are given lower weights in 
the estimation of the tensor parameters. Clearly, this ap­
proach is statistically more robust than the standard LS 
methods in the presence of outliers. However, by using the 
residuals as the only determinants of the weights, it dis­
cards the information contained in the known distribution 
of errors related to thermal noise. 

In this paper, we propose an alternative approach, called 
robust estimation of tensors by outlier rejection (RE­
STORE), which uses an iteratively reweighted LS regres­
sion, such as the GMM method, only to identify potential 
outliers,which are then excluded. The final fit is per­
formed with the remaining data points using the constant 
weights that appropriately describe the error introduced 
by Gaussian distributed noise. 

We compare the performance of the RESTORE algorithm 
with that of the GMM method, nonlinear LS fitting, and 
linear LS fitting using both synthetic data and DT-MRI data 
acquired from healthy volunteers. In particular we inves­
tigate the ability of the RESTORE algorithm to provide 
reliable tensor estimation in the presence of artifacts re­
sulting from cardiac pulsation. 

METHODS 

Algorithm 

Table 1 lists the fitted equations and their respective 
weighting functions for three previously proposed diffu­
sion tensor fitting approaches: (i) the widely used linear 
least-squares fitting of the logarithmically transformed sig­
nals (linear LS); (ii) nonlinear least-squares fitting of the 
signals (nonlinear LS); and (iii) nonlinear LS fitting with 
robust GMM. 

http://onlinelibrary.wiley.com/
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Table 1 
Regression Methods Used in Diffusion Tensor Estimation 

Method Equation Weighting function 

Linear least-squares lnS(b)=lnS(0)-bD
 i =

 S b))2 

u2 

Nonlinear least-squares S b)=S(0) *exp(-bD)
 i = 

1 

u2 

Geman–McClure M-estimator S b)=S(0) *exp(-bD)

 i = 
1 

ri 
2 + C2 

All methods minimize the value of x2 computed from 
the equation 

x2 =  i  yi y xi  
2 , [1] 

i

where yi is the experimental value of the ith data point, xi 

is the value of the independent variable (or regressor) for 
that data point, y(xi) is the corresponding fitted value, and
 i is the weighting factor for the data point. 

For all approaches, the independent variable x is the 
b-matrix (b), while the dependent variable y is, respec­
tively, the signal intensity S for the nonlinear LS and GMM 
models and its natural logarithm for the linear LS model. 
The diffusion tensor, D, and the signal intensity with no 
diffusion sensitization S(0), or its logarithm ln(S(0)), are the 
estimated parameters (2). In Table 1, u is the signal SD, ri 

is the residual or difference between the experimental 
value yi of the ith data point and its estimated value y(xi). 
The scale factor C affects the shape of the GMM weighting 
function and represents the expected spread of the resid­
uals (i.e., the SD of the residuals) due to Gaussian distrib­
uted noise. The scale factor C can be estimated by many 
robust scale estimators. We used the median absolute de­
viation (MAD) estimator because it is very robust to outli­
ers having a 50% breakdown point (6,7). The explicit 
formula for C using the MAD estimator is C = 1.4826 X 
MAD = 1.4826 X median{lr1 - r̂ l, lr2 - r̂ l,  . . .  ,  lrn - r̂ l}, 
where r̂ = median {r1 r2,. . . , r n} and n is the number of data 
points. The multiplicative constant 1.4826 makes this an 
approximately unbiased estimate of scale when the error 
model is Gaussian. 

A flow chart describing the RESTORE algorithm is 
shown in Fig. 1. The diffusion tensor is first computed 
using the nonlinear LS method with constant weights (w = 
1/u2) and the result from linear LS fitting as the initial 
guess of parameters. The linear LS fitting is implemented 
using the “regress” procedure from IDL, and the nonlinear 
LS regression is implemented using the MPFIT procedure 
(8), which is also written in IDL based on the Levenberg– 
Marquardt algorithm. The expected signal variance u2 can 
be estimated from the variance of the noise measured in a 
background region of the images according to Henkelman 
(3), (u =  1.5267 X (SD of the background noise)). The 
results of this first fitting are then evaluated against a 
goodness-of-fit criterion. If the residuals of all data points 
lie within a given confidence interval, it is assumed that no 
outliers are present and the results are accepted with no 
further processing. We set the confidence interval equal to 

three times the expected SD of the signal. Other goodness 
of fit criteria can be used, for example, those based on the 
analysis of x2. 

FIG. 1. Flow diagram of the RESTORE algorithm. 

If the goodness of fit criterion is not satisfied, an iterative 
reweighting process using the GMM weighting function is 
initiated. The weight for each data point is normalized to 
the average of all the weighting factors to yield the maxi­
mum likelihood that the fitting function represents the 
parent distribution (9). The reweighting process continues 
iteratively until it satisfies a convergence criterion. When 
the iterative process is finished, points lying outside a 
confidence interval (set to three times the expected signal 
SD) are identified as outliers and excluded. Finally, the 
remaining data points are weighted equally and the diffu­
sion tensor is recomputed using the nonlinear LS method. 
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Monte Carlo Simulations 

We performed Monte Carlo simulations to investigate the 
effects of artifacts on diffusion tensors estimated with the 
different fitting methods. We simulated both an isotropic 
diffusion tensor and a cylindrically symmetric anisotropic 
diffusion tensor with diffusivity in the x direction set to 
five times the diffusivity in the y and z directions. The 
trace of both tensors was set to be representative of the 
trace of brain parenchyma (2100 µm2/s) (10). 

Two experimental designs were tested, both with 35 
b-values (5 with b = 0 and 30 with b = 1000 s/mm2), but 
with different diffusion sampling direction schemes. The 
first experimental design was the widely used six diffusion 
sampling directions scheme (10) (11). This scheme makes 
an efficient use of the available gradient strength and pro­
vides diffusion weighted images with relatively high sig­
nal-to-noise ratio per unit time. A recent study by Jones 
(12), however, showed that the variability of estimated 
tensor maps can depend on the number of unique gradient 
sampling orientations and that at least 30 unique sampling 
orientations are required for rotationally invariant statisti­
cal properties of the estimated tensor quantities. There­
fore, we also tested a second experimental design with 30 
unique sampling directions (13). 

For each experimental design and predefined tensor we 
created synthetic diffusion weighted signal intensity data 
conforming to the diffusion tensor model. Gaussian dis­
tributed noise was then added in quadrature to the syn­
thetic noise-free signal to achieve a signal-to-noise ratio of 
25 in the b = 0 data. The diffusion tensor was subse­
quently estimated using: (i) the linear LS; (ii) the nonlinear 
LS; (iii) the GMM; and (iv) the RESTORE methods from 
16384 realizations of these noisy data sets to assess the 
distribution of tensor values in the absence of artifactual 
data points. 

Artifacts in DWI can cause signal intensities to be 
lower or higher than their normal values. To simulate 
these situations, we randomly corrupted some of the b = 
1000 s/mm2 data points by either decreasing or increasing 
their intensity values by 50%. We tested a number of 
corrupted data points ranging from 1 to 8, i.e., from 3.3 to 
26.7% of the 30 b = 1000 s/mm2 signal intensities in­
cluded in each data set. The distributions of Trace(D) and 
fractional anisotropy (FA) (14) were then computed for the 
corrupted tensors obtained with all the fitting methods. 

Data Corrupted by Cardiac Pulsation Artifacts 

Pulsations during the cardiac cycle can cause severe arti­
facts in diffusion weighted images acquired with no car­
diac gating. Such artifacts affect both trace and anisotropy 
values and are most pronounced in data acquired at spe­
cific time points during systole. Previous studies have 
shown that data acquired at about 120 ms after the onset of 
the R wave are very prone to corruption by cardiac pulsa­
tion (15). In order to assess the performance of the RE­
STORE method in the presence of cardiac pulsation arti­
facts, we acquired ECG-gated brain DT-MRI data sets from 
a healthy volunteer with five different trigger delays after 
the onset of the R wave. One data set was acquired during 
the critical systolic period (120-ms delay) and four during 

the diastolic period when cardiac induced artifacts are less 
pronounced (320-, 370-, 420-, and 520-ms delay). Images 
were acquired on a CNV LX 1.5 GE MRI System (General 
Electric, Milwaukee, WI) with a diffusion weighted, spin-
echo, single-shot EPI sequence with 2 X 2 X 4 mm3 reso­
lution and 42 slices to cover the whole brain. Each data set 
consisted of 8 replicates of b = 1100 s/mm2 images ac­
quired using the six-direction gradient scheme (10) and 8 
b = 0 images for a total of 56 images. Prior to the diffusion 
tensor computation, all images were corrected for eddy 
current distortion and rigid-body brain motion using the 
approach of Rohde et al. (16). The diffusion tensor was 
computed using the linear LS, the nonlinear LS, the GMM, 
and the RESTORE methods in two sets of pooled data: a 
“superset” consisting of the four diastolic acquisitions 
plus the systolic one and a “diastolic set” containing only 
the four diastolic acquisitions. Our goal was to test which 
tensor fitting method, once applied to the superset, gave 
results most similar to those obtained with the diastolic 
set. Moreover, we wanted to see whether the RESTORE 
method would identify data points collected during sys­
tole (rather than those collected during diastole) as outli­
ers. 

RESULTS 

Monte Carlo Simulation 

When no corrupted data were included, all fitting methods 
showed similar results. The computed Trace(D) had mean 
values ranging from 2067 to 2077 µm2/s for the linear LS 
method and 2092 to 2095 µm2/s for the other three meth­
ods, which are close to the expected value of 2100 µm2/s. 
The computed FA had mean values ranging from 0.085 to 
0.099 for the isotropic case (expected value = 0.000) and 
0.769 to 0.772 for the anisotropic case (expected value = 
0.770). The discrepancy between computed and expected 
mean values for the FA in the isotropic case is relatively 
large, but to be expected considering that noise biases 
anisotropy indices, particularly for low anisotropy values 
(17).

Figure 2 shows the effect of outliers on the distributions 
of Trace(D) and FA values computed with the widely used 
linear LS method. Figure 2a and b shows the case in which 
artifactual points had their signal intensity decreased by 
50%, while Fig. 2c and d shows the case in which artifac­
tual points had their signal intensity increased by 50%. 
This simulation demonstrates that both Trace(D) and FA 
values are significantly biased by the presence of even a 
small percentage of outliers. Interestingly, artifacts pro­
ducing increased signal intensity have a more pronounced 
effect than artifacts with decreased signal intensity. This 
finding can be understood by considering that the weight­
ing function used to account for the logarithmic transfor­
mation of the data includes the signal intensity squared 
(see Table 1). With the linear LS method, artifacts reducing 
the signal intensity also reduce the weights of the cor­
rupted data points in the fitting, thereby reducing their 
damaging effect on the estimated parameters. This effect is 
not observed with nonlinear fitting methods in which the 
weighting function does not contain the signal intensity as 
a term (data not shown). 
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FIG. 2. Trace(D) and fractional anisotropy (FA) distributions for an isotropic diffusion tensor obtained from Monte Carlo simulated data 
using the linear least-squares method. Corrupted data points had intensity decreased by 50% (a and b) or increased by 50% (c and d). 
Different colors represent different percentages of outliers (red = 0%, blue = 6.67%, green = 13.3%, and purple = 20%). 

Figure 3 shows the distributions of Trace(D) and FA 
values computed using the three nonlinear fitting ap­
proaches: (i) nonlinear LS, (ii) GMM, and (iii) RESTORE. 
The results of the nonlinear LS fitting are severely affected 
by the presence of outliers (Fig. 3a and b). The robust 
GMM approach shows some improvement but, surpris­
ingly, a considerable bias remains (Fig. 3c and d). The 
RESTORE algorithm is the most robust approach, giving 
almost unbiased results provided that the number of cor­
rupted point is not excessively high, for example, the blue 
and red curve are almost superimposed (Fig. 3e and f). 
When the number of outliers exceeds half of the replica­
tions and all outliers occurred in the same direction, the 
bad points outnumber the good points and both GMM and 
RESTORE methods fail (e.g., a second hump is observed in 
the green and purple curves). The results obtained for 
artifacts that decrease the signal intensity are not shown in 
the figure but again results from the RESTORE algorithm 
proved to be the least sensitive to the presence of cor­
rupted data points. 

Figure 4 shows the median value of Trace(D) as a func­
tion of the percentage of corrupted points for the isotropic 
tensor case. The effect of both signal decreasing (Fig. 4 a) 
and signal increasing (Fig. 4 b) artifacts using four different 
methods is shown. The expected value of the median of 
Trace(D) (in the absence of corrupted points) is 
2100 µm2/s. As the percentage of corrupted points in­
creases, the computed values progressively deviate from 
the expected values. Computed values from data pro­
cessed with the RESTORE method show the smallest de­
viation from the expected values for both signal decreasing 

and signal increasing artifacts. For a percentage of artifac­
tual data points below 15% the RESTORE method shows 
virtually no error. 

Figure 5 shows a comparison of the distributions of 
Trace(D) and FA values obtained with the RESTORE algo­
rithm for the 6-direction scheme (Fig. 5 a and b) and the 
30-direction scheme (Fig. 5c and d). The results for the two 
schemes are very similar when the percentage of artifac­
tual data points is low (below 10%); however, as the per­
centage of outliers increases, the 6-direction scheme starts 
showing a bimodal distribution that is not observed with 
the 30-direction scheme. 

The computation time required for the RESTORE 
method is acceptable compared to the standard nonlinear 
LS fitting. If we set the computation time for the nonlinear 
LS method to 1 in our simulation, the computation time 
required is 2.53 and 3.51 for GMM and RESTORE, respec­
tively. Given that the results obtained using linear LS and 
nonlinear LS methods are so similar when no outliers are 
present in the data, we may use the linear LS for the final 
tensor fitting to reduce the total computation time. Practi­
cally, using the goodness of fit criterion after the initial 
nonlinear fitting can also reduce the computation time 
depending on the quality of images. 

Data Corrupted by Cardiac Pulsation Artifacts 

Previous studies indicate that cardiac-induced artifacts 
affecting tensor-derived parameters are most pronounced 
in infratentorial regions of the brain, in particular in the 
cerebellar peduncles and ventral portions of the cerebel­
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FIG. 3. The Trace(D) and fractional anisotropy (FA) distributions for an isotropic diffusion tensor obtained from Monte Carlo simulated data 
using the nonlinear least-squares method (a and b), the GMM method (c and d), and the RESTORE method (e and f). Corrupted data points 
had intensity increased by 50%. Different colors represent different percentages of outliers (red = 0%, blue = 6.67%, green = 13.3%,and 
purple = 20%). 

lum (15). We selected a region of interest (ROI) in the 
ventral portion of the cerebellum and compared the mea­
sured values of Trace(D) and FA obtained using the super­
set consisting of the four diastolic acquisitions and one 
systolic acquisition and the diastolic set containing only 
the diastolic acquisitions. The average value of Trace(D) 
and FA in the selected ROIs computed with the diastolic 
dataset using the various fitting approaches was very sim­
ilar (within 1%). We used the result of the nonlinear LS as 
a benchmark value for computing the percentage error 
introduced by the systolic points in the superset according 
to the formula 

Percentage error = 100 X (valuesuperset - valuediastole)/ 
valuediastole. 

The percentage error for Trace(D) was 9.37% for the 
nonlinear LS, 2.77% for the GMM, and 1.61% for the 
RESTORE method. The percentage error for FA was 

23.64% for the nonlinear LS, 3.57% for the GMM, and 
1.81% for the RESTORE method. 

Figure 6 shows that the spatial distribution of outliers 
identified by the RESTORE method in the superset matches 
well the regions where cardiac-induced artifacts are known 
to be most severe. When the RESTORE algorithm is applied 
to the diastolic set the portion of the image identified as 
having the highest percentage of outliers is a region suffering 
from susceptibility artifacts (pointed to by the arrow in Fig. 
6b). The cerebellum and brain stem, however, have roughly 
the same amount of excluded points as the rest of the brain. 
When the RESTORE algorithm is applied to the superset, the 
percentage of excluded systolic points is selectively high in 
the cerebellum and brain stem. These results demonstrate 
that the RESTORE method successfully excluded the systolic 
data points from the fitting in areas that are known to be 
affected by the cardiac pulsation (15). 



1093 Robust Diffusion Tensor Estimation 

FIG. 4. The median of Trace(D) for an isotropic diffusion tensor 
obtained from Monte Carlo simulated data using different methods. 
Corrupted data points had intensity decreased by 50% (a) or in­
creased by 50% (b). 

Regarding computation time, processing the superset took 
less than 2 min using the linear LS method on a Dell 4100 
with dual Intel Xeon 2.80-GHz processors. Computation time 
was 1 hr 56 min for the nonlinear LS method, 2 hr 32 min for 
the GMM method, and 2 hr 59 min for the RESTORE method. 

DISCUSSION 

Artifacts are common in clinical DT-MRI acquisitions, es­
pecially those originating from cardiac pulsation in un­
gated acquisitions and those originating from subject mo­
tion when scanning uncooperative patients or unsedated 
pediatric subjects. Signal perturbations produced by such 
artifacts can be severe and neglecting to account for their 
contribution can result in erroneous diffusion tensor val­
ues. Our Monte Carlo simulations show that a single cor­
rupted data point in the data set can significantly affect the 
accuracy of the computed diffusion tensor values if tensor 
computation is performed with the commonly used least-
squares regression method. A recently proposed robust 
tensor fitting approach which utilizes the Geman–McClure 

M-estimator achieves an improved accuracy of the esti­
mated tensor parameters with respect to both the linear 
and the nonlinear LS methods in presence of artifacts, but 
fails to yield completely unbiased results. The proposed 
RESTORE algorithm proves to be the most robust ap­
proach, giving almost unbiased results for both Trace(D) 
and FA provided that the percentage of corrupted points is 
below 15% (see Fig. 4). 

At first glance the significantly improved performance of 
the RESTORE algorithm compared to that of the GMM 
method may appear surprising. Outlier diagnostics (e.g., 
RESTORE) have the same goal as robust regression (e.g., 
GMM), and in most applications, in which the error dis­
tribution is not known a priori, both approaches yield 
similar results. As we mentioned earlier, our motivation 
for designing the RESTORE approach was the realization 
that in diffusion weighted images, even in the presence of 
artifacts, the error distribution is not completely unknown 
and that the GMM approach did not make efficient use of 
the prior information regarding the distribution of errors 
produced by thermal noise. We believe that the reason for 
the superior performance of the RESTORE algorithm over 
the GMM method is essentially related to the more effi­
cient use of such information. 

We used the Gema–McClure M-estimator in the iterative 
reweighting procedure of the RESTORE algorithm for the 
purpose of providing a direct comparison with the results 
of a previously proposed robust tensor estimation ap­
proach (4). Various types of robust estimators have been 
successfully used to deal with the presence of outliers 
such as M-estimators, R-estimators (18), the least median-
of-squares, and RANSAC (19). They could replace the 
Geman–McClure M-estimator in the RESTORE algorithm. 
The class of M-estimators, however, appears to be one of 
the more appropriate choices given the underlying Gauss­
ian distribution of errors produced by thermal noise. The 
scale factor C appearing in the Geman–McClure M-estima­
tor formula (see Table 1) is an estimate of the signal vari­
ability due to Gaussian distributed noise. For consistency 
with the approach previously proposed by Mangin et al. 4, 
we extracted the value of C from the data by setting it equal 
to a robust estimate of the SD of the residuals. Alterna­
tively, C can be set equal to the expected signal SD, which 
can be estimated from measurements of noise in the back­
ground of the images. In simulations experiments (that we 
did not report here), this latter approach showed slightly 
better performance compared to the case in which data 
driven estimates of C were used. 

Despite the very good performance of the RESTORE 
algorithm, there are some limitations and opportunities for 
improvement. The main weakness is of a theoretical na­
ture. The thermal-noise induced errors and the artifact 
induced errors are intrinsically mixed and we do not at­
tempt to deconvolve them. The artifactual data points that 
the RESTORE algorithm identifies as outliers (and subse­
quently eliminates) are those in which the “artifact” error 
component is large (i.e., outside the bounds of our confi­
dence interval of three standard deviations), but remaining 
data points that fall within an acceptance confidence in­
terval may also be partially corrupted by artifacts. 

Another potential weakness is that the RESTORE 
method relies on data redundancy, as do other robust 
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FIG. 5. Comparison of the 6- (a) and 30- (b) gradient direction schemes showing Trace(D) and fractional anisotropy (FA) distributions 
obtained from Monte Carlo simulated data for an anisotropic diffusion tensor using the RESTORE method. Corrupted data points had 
intensity decreased by 50%. Different colors represent different percentages of outliers (red = 0%, blue = 6.67%, green = 13.3%, and 
purple = 20%). 

FIG. 6. Maps of the percentage of data points identified as outliers by the RESTORE algorithm in the diastolic data set (b) and in the 
superset (c). For the diastolic dataset the map represents the percentage of data points excluded. The arrow in (b) shows the high 
percentage of outliers is a region suffering from susceptibility artifacts. For the superset the map represents the percentage of systolic data 
points excluded. Grayscale values range from 0 (black) to 100% (white). The T2-weighted image is shown in (a) for anatomic reference. 

estimation methods. Problems may arise if the data set 
does not have enough good data points to correctly iden-
tify outliers. Interestingly, the percentage of artifactual 
data points that can be tolerated depends not only on the 

degree of redundancy of the data set but also on the gra­
dient sampling scheme. In our simulation it was seen that 
in the 6-direction scheme a bimodal distribution of the 
computed Trace(D) and FA values appeared when there 
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were three or more outliers. This effect was not observed 
with the 30-direction scheme. In the 6-direction scheme 
there are five replicates per diffusion sampling direction, 
and when three or more corrupted data points happened to 
be in the same direction, the good data points were out­
numbered by the outliers. In such cases, the outlier diag­
nostic process fails and the good data points are them­
selves identified as outliers leading to diffusion tensor 
parameters with large bias. In the 6-direction scheme there 
is no redundancy in sampling orientations, and the data 
points in the remaining 5 directions could not contribute 
information useful to correctly identify outliers in the di­
rection affected by the corrupted data points. This is not 
the case with the 30-direction scheme which is relatively 
immune to this problem because sampling directions are 
more evenly distributed. 

In addition to improving tensor estimation in the simu­
lation, the RESTORE algorithm proved to be very effective 
in identifying data corrupted by cardiac-induced artifacts 
in actual DT-MRI data. Cardiac gating lengthens the dura­
tion of the scan and it is not routinely performed in clin­
ical DT-MRI. Moreover, some commercially available dif­
fusion weighted imaging sequences perform gating by trig­
gering the acquisition of a series of images collected over 
several cardiac cycles. With these sequences, only the first 
image of the series is effectively gated, while the others 
may still suffer from cardiac-induced artifacts (20). Our 
results indicate that processing the data with the RE­
STORE algorithm would be a very effective approach to 
obtain diffusion tensor parameters immune from cardiac-
induced artifacts when data are acquired with ungated or 
partially gated acquisitions. 

In its current implementation, the RESTORE algorithm 
performs nonlinear fitting of the diffusion weighted data, 
rather than the much faster linear fitting. Moreover, com­
pared to the conventional nonlinear fitting, the computa­
tion time is increased by the iterative reweighting process 
and the final fitting step after outlier exclusion. Theoreti­
cally a linear fitting version of the algorithm can be devel­
oped, although designing the proper weighting function 
for logarithm transformed data corrupted by artifacts may 
be difficult. Given the length of the processing time, the 
use of the RESTORE, the GMM, or the nonlinear LS meth­
ods may not be feasible for computing diffusion tensor 
images that need to be displayed “on the fly,” during or 
immediately after the acquisition. However, the problem 
can be overcome by using parallel processing techniques 
in a multiprocessor system. The computation time would 
be reduced in direct proportion to the number of proces­
sors available since the tensor fitting is done on a voxel­
by-voxel basis. 

One possible weakness of nonlinear fitting is its suscep­
tibility to local minima, which may lead to severely flawed 
estimated parameters. We encountered this problem only 
in a few occasions and always in voxels close to large 
vessels or at the periphery of the brain where signal vari­
ability may be high because of poor SNR and local misreg­
istration. In such rare cases, prior information inferred 
from neighboring voxels may be used to guide the iterative 
reweighting process in the right direction. Alternatively, 

these voxels can be masked out by setting a threshold of 
acceptance for the x2 of the final fit. 

CONCLUSION 

Both our Monte Carlo simulation and real data results 
show that the proposed RESTORE algorithm is an effective 
tool for robust estimation of the diffusion tensor in the 
presence of artifactual data points in the diffusion 
weighted images. This method eliminates the need for 
identifying corrupted images by visual inspection and also 
automatically detects spatially localized outliers that 
would be easily missed at visual inspection. We believe 
that this approach would be particularly useful for routine 
processing of clinical DT-MRI data. Its ability to provide 
an objective and operator-independent exclusion of arti­
factual data points would also be a desirable feature for 
multicenter research studies. 
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