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ABSTRACT
The longitudinal relaxation time, T1, can be estimated from two 
or more spoiled gradient recalled echo images (SPGR) acquired 
with different flip angles and/or repetition times (TRs). The 
function relating signal intensity to flip angle and TR is nonlin­
ear; however, a linear form proposed 30 years ago is currently 
widely used. Here we show that this linear method provides T1

estimates that have similar precision but lower accuracy than 
those obtained with a nonlinear method. We also show that T1 

estimated by the linear method is biased due to improper ac­
counting for noise in the fitting. This bias can be significant for 
clinical SPGR images; for example, T1 estimated in brain tissue 
(800 ms < T1 < 1600 ms) can be overestimated by 10% to 20%. 
We propose a weighting scheme that correctly accounts for the 
noise contribution in the fitting procedure. Monte Carlo simu­
lations of SPGR experiments are used to evaluate the accuracy 
of the estimated T1 from the widely-used linear, the proposed 
weighted-uncertainty linear, and the nonlinear methods. We 
show that the linear method with weighted uncertainties re­
duces the bias of the linear method, providing T1 estimates 
comparable in precision and accuracy to those of the nonlinear 
method while reducing computation time significantly. Magn 
Reson Med 60:496–501, 2008. © 2008 Wiley-Liss, Inc. 
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INTRODUCTION
Clinical imaging of the longitudinal relaxation time, T1, in
human subjects has several potential applications, includ­
ing perfusion imaging (1), dynamic contrast imaging (2), 
assessment of Parkinson’s disease (3), assessment of 
schizophrenia (4) and multiple sclerosis (5), and quantifi­
cation of myocardial blood flow (6). In spite of its potential 
clinical utility, quantitative T1 mapping is not routinely 
used due to the long scanning time inherent in inversion 
recovery sequences. Recently, however, the acquisition of 
high-resolution T1 maps in a clinically feasible time frame 
has been demonstrated with Driven Equilibrium Single 
Pulse Observation of T1 (DESPOT1) (7,8). DESPOT1 de­
rives T1 from two or more spoiled gradient recalled echo 
(SPGR) images acquired with a constant TR and different 
flip angles. The T1 maps have been computed on a voxel­
by-voxel basis using linear least squares (LLS) fitting of a 
linear transformation of the function relating signal inten­
sity, flip angle, TR, T1, and equilibrium longitudinal mag­

netization, M0. This transformed LLS fitting method—first 
described by Gupta (9) in 1977, which we denote as Gup­
ta’s LLS (GLLS), and used in many previous works 
(7,8,10–12)—has the advantage of being computationally 
efficient. However, our preliminary study found that the 
estimated T1 using GLLS was generally biased and over­
estimated (13). 

In this work, we study systematically the bias in T1

computed from SPGR signals when different fitting meth­
ods are used. Monte Carlo simulations provide a detailed 
evaluation of the accuracy of T1 using GLLS and nonlinear 
least squares (NLS) methods in several experimental con­
ditions. We also evaluate the performance of an intensity-
based weighted LLS approach (ILLS) proposed by Deoni et 
al. (14). The ILLS method assigns greater weight to high 
signal-to-noise ratio (SNR) points in order to increase the 
precision of estimated T1. Finally, we propose a new LLS 
approach that uses weighted uncertainties in the fitting 
(WLLS). The proposed WLLS method weights each image 
with the uncertainty that takes into account the adjust­
ment of noise contribution due to the rearrangement of a 
nonlinear model into a linear one. Numerical and human 
brain data simulations are used to compare the accuracy of 
T1 estimates using the GLLS, ILLS, WLLS, and NLS meth­
ods. 

THEORY 

NLS Method 

The measured SPGR signal intensity, si, is a function of the 
longitudinal relaxation time, T1; the repetition time (TR); 
the flip angle, ai; and the equilibrium longitudinal magne­
tization, M0: 

TR 
M0(1 - exp( - ))sin(ai)T1 

si = .
TR 

1 - exp( - )cos(ai)T1 

 [1]

The NLS approach estimates T1 and M0 from Eq. [1] by 
minimizing the following x2 objective function: 

xNLS 
2 (M0,T1) 

TR 2 

n 1 - exp( - )1 T1 
= n 2 si - M0sin(ai) , [2]

ui TR 
iF1 ( 1 - exp( - )cos(ai))T1 

where ui is the expected signal standard deviation (SD) 
due to noise. When the SNR, si/ui, is greater than 5, ui can
be considered as a constant in all images, i.e., u1 = u2 
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= . . .  = un = u. But when si/ui is less than 5, this 
assumption becomes invalid (15). 

LLS Method 

In the LLS method, the linear equation is obtained by 
assuming that TR is a constant. By rearranging Eq. [1] and 
denoting exp(-TR/T1) by E1, we have: 

si si 
= E1 + M0(1 - E1). [3]

sin(ai) tan(ai) 

Equation [3] can be rewritten in a more explicit linear 
notation as y F bx + a with yi = f(si) = si/sin(ai), xi 

= g(si) = si/tan(ai), b = E1, and a = M0(1 - E1). 
The slope, b, and the y-intercept, a, can be estimated by 

linear regression (16,17), i.e., by minimizing the x2 objec­
tive function: 

n 

2 a)2xLLS(a,b) = nw(i)x(yi - bxi -
iF1 

n si si 
= nw(i)x( - E1 - M0(1 - E1))2

.
sin(ai) tan(ai)

iF1 

[4] 

The GLLS method proposed by Gupta (9) uses the linear­
ization approach of Eq. [3] with wGLLS(i) = 1/u2

i , which has 
been used in many previous works (7,8,10–12). Note that 
ui is the SD of the measurement error on yi and is generally 
assumed to be a constant in a linear model when measure­
ments of yi are independent. The assumption in the wide-
ly-used GLLS method that the SD of yi is the same for all 
data points (i.e., ui = u) is incorrect because the experi­
mental errors are distorted by the nonlinear to linear trans­
formation. Under this assumption, T1 and M0 can then be 
calculated with the representation of a and b (10,16): T1

= - TR/lnb and M0 = a/(1 - b). 
An empirical weighting approach for the LLS fitting was 

introduced in Ref. 14. This method, which we call the 
ILLS method, assigns greater weight to data points with 
higher signal intensity in an attempt to increase the preci­
sion of estimated T1, and solves Eq. [3] by minimizing Eq.
[4] with a different weighting function defined in Ref. 14: 
wILLS(i) = sai/saE, where sai is the signal intensity acquired 
with flip angle ai, and SaE is the signal intensity acquired 
with the Ernst angle. T1 and M0 can be calculated as above. 

Experimental errors are generally distorted when a non­
linear model is transformed to a linear one. A weighting 
function that accommodates the distorted uncertainties 
can be derived by using the error propagation theory (16) 
(see Appendix). Here, we can rewrite the x2 objective func­
tion for the NLS approach (Eq. [2]) as: 

1 1 - E12 xNLS = 2(si - M0sin(ai) )2 n 
n 

ui 1 - E1cos(ai)
iF1 

n 1 sin(ai) si Si 
= n ( )2( - E1 ui 

2 1 - E1cos(ai) sin(ai) tan(ai)
iF1 

E1))2 

- M0(1 - . [5] 

Notice that Eq. [5] is similar in form to the objective 
function in LLS (i.e., Eq. [4]), and can be considered as 
a new weighted LLS method, which we denote as WLLS. 
By comparing Eq. [4] with Eq. [5], the weighting func­
tion of WLLS can therefore be defined as wWLLS(i) 

1 sin(ai) 
2

= . 
u2

i 
(1 - E1cos(ai)

)
Here, we have established the theoretical connection 

between the nonlinear and proposed weighted linear 
methods based on the approach used in Ref. 18. The pro­
posed WLLS method is equivalent to the NLS method in 
principle because Eq. [5] is derived directly from Eq. [2], 
and no transformation or approximation is applied during 
the rearrangement. 

We now want to minimize Eq. [5] with respect to a and 
b. However, the occurrence of b (F E1) in the denominator 
of Eq. [5] makes the task of fitting considerably harder. An 
iterative least-squares fitting approach can be used here to 
find the optimal solution (19), and the GLLS method can 
be used as an initial solution. There are strategies for fitting 
a line in this situation (17,20,21), any of which can be 
applied here. We use Brent’s method as described in Refs. 
22 and 23, which is a reasonable strategy for minimizing a 
general one-dimensional function so that the minimiza­
tion with respect to b is also minimized with respect to a. 

MATERIALS AND METHODS 

Numerical Simulations 

We evaluated the accuracy and precision of different fit­
ting algorithms in several experimental conditions by per­
forming Monte Carlo simulations. Noise-free SPGR signals 
were generated using Eq. [1] given a fixed TR value, mul­
tiple flip angles, a single expected value of the equilibrium 
longitudinal magnetization M0, and various expected val­
ues of T1. Different SNR (SNR0) levels were simulated by 
adding Gaussian noise (snoise) in quadrature with zero 
mean and variable SD, u, to the noise-free SPGR signals, 
i.e., sspgr = (snoise-free-spgr + snoise1)2 + snoise2 � (24). The noise 
level is defined as M0 divided by the signal SD, i.e., SNR0 F 
M0/u. We calculated T1 by fitting the synthetic SPGR sig­
nals using the GLLS, WLLS, and NLS fitting approaches. 
The results reported in the next section are computed with 
TR F 10 ms, M0 F 3000, and T1 F 600, 800, 1000, 1200,
1600, or 2000 ms. The two optimal flip angles for the 
chosen T1 were computed according to the formula in 
Refs. 10 and 14. For example, given T1 F 1000 ms, TR F 
10 ms, and M0 F 3000, the optimal flip angles are 3.35° and 
19.38°. Six SPGR images were used in simulations with 
repeated experiments of the two optimal angles without 
averaging. Noise levels were tested with SNR0 ranging 
from 30 to 300. Each set of parameters was repeated 
131,072 times. 
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Human Brain Simulation 

A separate set of simulations was aimed at assessing the 
accuracy of estimated T1 for experimental conditions com­
patible with clinical studies of the human brain at 1.5T. 
We collected a high-quality SPGR dataset of the brain of a 
healthy male volunteer. Images were acquired with a DES­
POT1 sequence (7) in axial view with 0.9375-mm2 in-
plane resolution, 2-mm slice thickness, TR F 8 ms, and 20 
different flip angles. The scan time was about 20 min 
(1 min per flip angle). This high-quality SPGR dataset was 
used to compute a T1 and an M0 map using the NLS 
method, and the values obtained in each voxel of the brain 
were assumed to be error-free. From these “gold standard” 
T1 and M0 maps, and a given set of TR and flip angles, we 
then generated synthetic noise-free SPGR images by com­
puting the signal intensity in each voxel using Eq. [1]. 
Gaussian noise in quadrature with zero mean and a given 
SD, u F 100, was added to the noise-free synthetic SPGR 
images as described in the previous paragraph. In the 
resultant SPGR brain images that have SNR0 F M0/u rang­
ing from 90 to 150 throughout most areas of the brain 
tissue, we then computed the T1 map by fitting these 
synthetic human brain data with GLLS, WLLS, and ILLS 
methods. This procedure was repeated 500 times and an 
averaged T1 map was created by taking the mean value of 
T1 from the 500 repeats on a voxel-by-voxel basis. The 
results reported in the next section are computed using 
TR F 10 ms and six SPGR images, with the flip angles in 
each image equal to 3°, 6°, 9°, 12°, 15°, and 18°, respec­
tively. 

RESULTS 

Figure 1 demonstrates the behavior of T1 bias when esti­
mating T1 from SPGR signals using the GLLS method. 
Figure 1a shows that the distributions of T1 obtained with 
GLLS are biased, with the bias more pronounced at low 
SNR0 since the distribution of T1 is shifted more to the 
right when the M0/u ratio is lower (group B in Fig. 1a). The 
precision of estimated T1 from GLLS and NLS is similar 
since the distributions under the same SNR0 are similar. 
Figure 1b shows the bias as a function of T1 and SNR0. For 
a given SNR0, the relative error of T1 is found to be pro­
portional to the value of T, although the accuracy of T1 is 
relatively unaffected by the value of T1 in a high SNR0 

regime (>200). When given the same T1, the relative error 
of T1 was found to be inversely proportional to SNR0. The 
precision of estimated T1 from GLLS and NLS is also 
similar (data not shown). 

FIG. 1. (a) Distribution of T1 using six SPGR images (three replicates 
of two flip angles) with two different noise levels (group A: M0/u F
200, group B: M0/u F 100). The true T1 value is 1000 ms. (b) Relative 
errors of T1 using the GLLS approach at different noise levels 
(SNR0 F 60, 100, 200, and 300) with the true T1 value set to 600, 
800, 1000, 1200, 1600, and 2000 ms. Relative error of T1 F 100 x 
(Estimated T1 – True T1)/True T1.

The results in Fig. 2 show that the WLLS virtually elim­
inates the T1 bias for a broad range of SNR0 and T1 values. 
Figure 2a shows that WLLS and NLS produce comparable 
accuracy of T1 at all SNR0’s tested, while GLLS overesti­
mates T1 progressively as SNR0 decreases. Figure 2b shows 
that the bias of T1 is corrected in WLLS with the relative 
error less than 5% regardless of the T1 value. T1’s esti­
mated using WLLS and NLS have similar precision; T1 

estimated using GLLS has slightly lower precision than T1 

estimated using NLS, in agreement with previous reports 
(10,12) (data not shown). 

Figure 3 shows maps of the relative error on the esti­
mated T1 in the synthetic human brain data using the 

GLLS, ILLS, and WLLS methods. The results shown in Fig. 
3 were scaled in the range of negative/positive 20% and 
the gray background corresponds to zero. The relative 
error of GLLS is consistently higher than that of WLLS in 
the brain tissue, and is positive, indicating that T1 is over­
estimated. The error of ILLS is higher than the error of 
WLLS in most of the brain tissue. Although the error of 
ILLS is generally lower than that of GLLS, it shows a strong 
dependency on T1, resulting in an undesirable tissue-de­
pendent pattern. It is also notable that the bias in the 
cerebral spinal fluid (CSF) regions is higher than the bias 
in the brain parenchyma for all three methods, with GLLS 
and WLLS showing positive bias and ILLS negative bias. 

DISCUSSION AND CONCLUSIONS 

The linear model for T1 estimation presented by Gupta (9) 
and used in many previous works (7–12) is an example of 
linearization. In general, weighted uncertainties must be 
used with linearly transformed data because the transfor­
mation distorts the experimental errors (16). However, 
Gupta’s linear regression assumes that the scatter of points 



499 Unbiased Estimation of T1 

FIG. 2. (a) Estimated T1 using GLLS, WLLC, and NLS methods 
assuming a true T1 value of 1000 ms, and (b) relative error of T1 

using GLLS, WLLS, and NLS methods with SNR0 F 100. Six SPGR 
images, consisting of three replicates of two flip angles without 
averaging, were used in both a and b. 

FIG. 3. Relative error of T1 on a selected slice of synthetic human 
brain data using the GLLS, WLLS, and ILLS methods in the fitting 
procedure. The true T1 map of the same slice is shown in the upper 
left panel for reference. 

around the line follows a Gaussian distribution and that 
the SD is the same at every data point. In this work we 
show that neglecting such adjustments to the uncertainty 
produces significant errors in the T1 estimation. The mag­
nitude of T1 bias can be related to the true T1 value, and the 
experiment design affecting SNR, such as the TR, flip 
angles, image resolution, and receiver coil. For clinical 
whole-brain SPGR data acquired at 1.5T with a single-
channel receiver coil (TR F 8 ms, 1 mm3 resolution, and 
flip angles F 2°, 3°, 14°, and 17°), the SNR0 ranges from 100 
to 200 in brain tissue; the T1 value can be overestimated by 
10–20%. 

In many applications, achieving an unbiased estimation 
of the desired parameters from transformed data is 
achieved by computing weighted uncertainties with error 
analysis and error propagation techniques. We show such 
an approach in the Appendix. Moreover, we have derived 
a new WLLS model for T1 estimation directly from the 
nonlinear model without using any transformation or ap­
proximation. This is an interesting result because convert­
ing a nonlinear model to a linear one using direct analyt­
ical derivation without approximations is not always pos­
sible. 

It is worth emphasizing that the bias of the linear model 
depends not only on the measurement errors in the ab­
scissa and the ordinate, but also on their covariance since 

the measurements in both axes are no longer independent. 
Our simulations show that using correct weights on the 
abscissa and the ordinate in Gupta’s formula will not re­
sult in unbiased estimates of T1; a covariance term must be 
included (see Appendix). 

The previously proposed intensity-based weighting ap­
proach, ILLS, improves the accuracy of the estimated T1 in 
some brain areas. However, with this method the bias 
shows an undesirable strong dependence on the values of 
T1. In general, all linear methods—GLLS, ILLS, and 
WLLS—are least accurate in estimating T1 in regions with 
high T1, such as CSF, but GLLS and WLLS overestimate 
while ILLS underestimates. This poor performance in CSF 
has little practical relevance because accuracy in CSF is 
generally biologically less important than in brain paren­
chyma. Moreover, the estimation of T1 from SPGR data in 
regions of high T1, such as CSF, is already problematic 
given that the SD of T1 measured from SPGR signals is 
proportional to the square of T1 (10). The SPGR simula­
tions we performed in the human brain used experimental 
parameters aimed at optimizing typical values of T1 in gray 
(T1 � 950 ms) and white (T1 � 600 ms) matter, but not in 
CSF (T1 � 4500 ms), resulting in a magnification of poten­
tial problems in regions with high T1. Although the results 
of the WLLS method may be affected by rectified noise, 
which is not accounted for in all models previously stud­
ied, signal correction methods such as those of Koay et al. 
(15) and Henkelman (24) may be used to resolve this 
problem. For scanning protocols used in clinical applica­
tions, the SNR in brain parenchyma is generally high 
enough to avoid effects from rectified noise.
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T1 bias can also originate from sources that are not 
addressed here. For example, flip angle variations caused 
by B1 inhomogeneity can cause additional errors in T1 

estimation; approaches have been proposed to correct 
these inaccuracies (12,25). To get a robust estimation of T1 

from clinical SPGR signals, correcting B1 inhomogeneity or 
the flip angles should be considered in addition to using 
the proposed weighted linear method in the fitting. 

In terms of computation speed, WLLS is slower than 
GLLS since WLLS may need several iterations of linear 
regression while GLLS needs only one; however, WLLS is 
still computationally faster than NLS. For example, the 
numerical simulation (Fig. 2) we performed took 11–12 s 
for GLLS and 59 –65 s for WLLS, but 17–29 min for NLS. 
The difference in time for the same method varied due to 
different noise levels. 

WLLS and NLS are comparable in terms of both preci­
sion and accuracy in estimating T1 and M0. WLLS, how­
ever, was found to be more stable than NLS at low SNR0 

(i.e., a lower occurrence of T1 outliers such as negative T1 

values). We suspect that this instability of the NLS ap­
proach is due to the known large-residuals problem in 
nonlinear regression (26). The Newton method for nonlin­
ear fitting is known to be more robust for noisy data than 
the Levenberg-Marquardt based approaches (18). In future 
experiments we plan to systematically compare WLLS and 
NLS using the Newton method in testing the instability in 
the very low SNR regime. In general, clinical SPGR signals 
have higher SNR0 and do not have the problem described 
above. 

In this work we have shown that the relaxation time, T1, 
estimated from the SPGR signals using the widely ac­
cepted LLS model is biased. The bias stems from neglect­
ing to adjust uncertainties when transforming a nonlinear 
model into a linear one. We propose a weighting approach 
for the linear model that can be derived from the nonlinear 
model without any approximation. The proposed WLLS 
method yields estimated T1 with precision and accuracy 
comparable to that obtained from nonlinear fitting while 
reducing the computation time significantly, enabling the 
generation of robust T1 maps at the scanner console. 

APPENDIX 

Nonlinear regression is generally done without weighting 
or with constant weighting for all experimental data. For 
example, the ui values in Eq. [2] are the same for all SPGR 
data points. Giving equal weight to all data points is ap­
propriate when the experimental uncertainty is expected 
to be the same in all measurements. When transforming a 
nonlinear function into a linear function, however, we 
must use weighted (or adjusted) uncertainties ui instead of 
ui to account for the transformation of the dependent vari­
ables (16). In general, if we fit the function f(u) rather than 
u, the uncertainties in the measured quantities must be 
modified using the following formula (16): 

af(ui) 
ui = uf(ui) = uiaui

. [A1]

Note that the uncertainties should be modified in both 
abscissa and ordinate in the linear form of LLS (Eq. [3]) 

since both yi and xi are now subject to measurement errors 
on signals, si. Therefore, we have 

1 
uy

2 
i = (af(si)) 2 

ui 
2 = ( )2 

u2 [A2]
asi sin(ai)

1 
2 2 2= (ag(si)) 2 

ui = ( )2 

u . [A3] uxi asi tan(ai)

Also note that the measurement errors due to noise in the 
abscissa and the ordinate are not independent; therefore, 
the covariance term between the measurement errors of yi 

and xi should also be taken into account: 

af(si) ag(si) 1 1
2 2uxiyi = X X ui = ( )( )u2. [A4]

asi asi sin(ai) tan(ai)

When applying the correct weighted uncertainties to Gup­
ta’s linear model—which we denote as WLLS—using the 
error propagation equation described in Refs. 16 and 25, 
we use the new variance that takes the uncertainties in 
both yi and xi, and their covariance term into account: 

Var(ui) = Var(yi - bxi - a) 

1 1
2 2 = ( )2 

ui + b2( )2 

uisin(ai) tan(ai)

1 1 
2 - 2b( )( )uisin(ai) tan(ai)

= (1 - bcos(ai))2 

ui 
2 [A5]

sin(ai) 

The transformed linear equation therefore has the follow­
ing x2 objective function (16,17,20): 

n 

2 xWLLS(a,b) = nw(i)x(yi - a - bxi)
2, [A6] 

iF1 

where wWLLS

1 1 ( sin(ai)
2 

(i) = = 
Var(u ) u2

i i 1 - bcos(ai)
)

Note that ui = u is a constant and therefore can be 
factored out.
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