Book of Abstracts
Volume 1

Society of Magnetic Resonance in Medicine

Eleventh Annual Scientific Meeting
August 8 - 14, 1992
Berlin, Germany

held jointly with the
Ninth Annual Congress
of the
European Society for Magnetic Resonance
in Medicine and Biology
Diagonal and off-diagonal components of the self-diffusion tensor: their relation to and estimation from the NMR spin-echo signal

Peter J. Basser*, James Mattiello*, Denis LeBihan†
†Biomedical Engineering and Instrumentation Program, and
Diagnosis Radiology Department, Warren G. Magnuson Clinical Center, NIH, Bethesda, MD 20892 USA

Purpose: We derive an equation relating diagonal and off-diagonal elements of the apparent self-diffusion tensor, \(D \), to echo intensity in pulsed-gradient spin-echo experiments. With it we design pulse sequences to estimate all components of \(D \). This procedure is validated by diffusion NMR spectroscopy and imaging of isotropic and anisotropic media. We suggest that errors are made in ignoring off-diagonal elements of \(D \) in anisotropic diffusion experiments.

Principles: In isotropic media (e.g. water), a scalar self-diffusivity, \(D \), is the constant of proportionality between the gradient in concentration and the corresponding flux of labeled protons, \(v_c \), and their concentration gradients in orthogonal directions. The importance of these off-diagonal elements has not been appreciated, nor have they ever been measured.

Theory: Following Stejskal [1], magnetic field gradients and their integrals are defined as:

\[
G(t) = (G_x(t), G_y(t), G_z(t))^T; F(t) = G(t') \
\]

The echo attenuation by diffusion, \(A(TE)/A(0) \), is [1]:

\[
\ln \left(\frac{A(TE)}{A(0)} \right) = -\gamma^2 \int_0^{TE} (F(t) - 2\xi(t) t f) \ D(t') (F(t') - 2\xi(t') f) dt' \tag{2}
\]

where \(\gamma \) is the proton gyromagnetic ratio; \(\xi(t) \) is the Heaviside function, \(H(t-TE/2) \); and \(f = F(TE/2) \). When \(D \) is independent of time, Eq. (2) reduces to:

\[
\ln \left(\frac{A(TE)}{A(0)} \right) = -\sum_{i=1}^{3} \sum_{j=1}^{3} b_{ij} D_{ij} \tag{3}
\]

where the bi,j that are analogs to scalar b-factors [2], are calculated numerically or analytically for each sequence using Eq. (2). The b matrix is not necessarily symmetric.

Eq. (3) linearly relates the logarithm of the signal attenuation and each component of \(D \). We use multivariate linear regression (with weighted variances) to estimate optimally all components of \(D \) from measured echo intensities that are produced by field gradients applied in different directions.

Materials and Methods: Diffusion spectroscopy and imaging of water and pork loin samples were performed with a surface coil in a 4.7 T Spectrometer-Imager (GE Omega). Pulsed-gradient spin-echo sequences, incorporating symmetric trapezoidal gradient pulses (\(TR=15 \) s; \(TE=40 \) ms; pulse duration = 4 ms; rise time = 0.2 ms; pulse separation = 22.5 ms), were applied in seven non-collinear directions: \((G_x, G_y, G_z) = ((0, 0, 1), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 0), (0, 1, 1), (1, 1, 1)) \). In each direction, three trials were performed in which gradient strength was increased from 1 to 14 or 15 G/cm in 1-G/cm increments. The total number of acquisitions, \(N \), was either 294 or 315.

Results: For water, the estimated \(D^{iso} \) ± S.E. (\(\rho^2 = 0.999999; N = 315 \)) at 14.0°C is:

\[
D^{iso} = (1.687 \pm 0.0020) \times 10^{-5} \
\]

The estimated \(D^{iso} \) ± S.E. (cm²/sec) for a pork loin sample at 14.5°C, whose grain was oriented nearly parallel to the x axis, (\(\rho^2 = 0.999999; N = 294 \)) is:

\[
D^{iso} = (10.137 \pm 0.530) \pm 0.008 \pm 0.007 \pm 0.006 \tag{5}
\]

The estimated \(D^{iso} \) ± S.E. (cm²/sec) for the same pork loin sample at 15.0°C, rotated 41° off the x axis in the x-z plane, (\(\rho^2 = 0.999999; N = 294 \)) is:

\[
D^{iso} = (-0.099 \pm 0.618) \pm 0.009 \pm 0.007 \pm 0.007 \tag{6}
\]

Discussion/Conclusion: The control experiment validates the method to estimate \(D \). Statistically significant differences among diagonal components of \(D \) demonstrate diffusion anisotropy in the pork loin sample. Small S.E. and \(\rho^2 \approx 1 \) show the multivariate linear model (Eq. (3)) fits the data faithfully; \(D \) is estimated with high significance.

In anisotropic diffusion, off-diagonal components of \(D \) vanish only when the "fiber" and "laboratory" frames of reference are coincident [3] - a condition which is rarely verifiable or satisfied. So, diagonal (and non-vanishing) off-diagonal elements of both \(b \) and \(D \) are assumed to affect the measured echo attenuation. As a corollary, at least six experiments are generally required to estimate six independent components of \(D \) in order to infer microscopic displacements of protons or tissue microstructure [3]. Omitting off-diagonal components of \(D \) in describing diffusion in anisotropic media also precludes determination of fiber orientation [3].

References: