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Abstract The lack of practicable nonlinear elastic contact 
models frequently compels the inappropriate use of Hertzian 
models in analyzing indentation data and likely contributes to 
inconsistencies associated with the results of biological ato­
mic force microscopy measurements. We derived and valida­
ted with the aid of the finite element method force-indentation 
relations based on a number of hyperelastic strain energy 
functions. The models were applied to existing data from 
indentation, using microspheres as indenters, of synthetic 
rubber-like gels, native mouse cartilage tissue, and engi­
neered cartilage. For the biological tissues, the Fung and 
single-term Ogden models achieved the best fits of the data 
while all tested hyperelastic models produced good fits for 
the synthetic gels. The Hertz model proved to be acceptable 
for the synthetic gels at small deformations (strain < 0.05 
for the samples tested), but not for the biological tissues. 
Although this finding supports the generally accepted view 
that many soft materials can be assumed to be linear elastic at 

small deformations, the nonlinear models facilitate analysis 
of intrinsically nonlinear tissues and large-strain indentation 
behavior. 

Keywords Indentation · Elasticity · Hyperelasticity · 
Mechanical properties 

1 Introduction 

In numerical simulations or uniaxial and biaxial tests, the 
mechanical response of polymer gels and biological tissues 
are often described successfully using linear elasticity theory 
at small strains and rubber elasticity theory at both small 
and large strains. For polymer gels subjected to conventional 
mechanical modes of loading (e.g., uniaxial and equibiaxial 
tests), various models have been developed and applied—see, 
e.g., review by Horkay and McKenna (2007). For measure­
ment of elasticity at micron and submicron length scales, the 
prevalence of atomic force microscopy in materials research 
has established micro- and nanoindentation as two of the 
leading techniques. In particular, the unique capabilities of 
the AFM (e.g., concurrently imaging and probing samples 
of minute size submerged in liquid) have made it an indis­
pensable tool in the study of biological materials. Howe­
ver, despite advancements in instrumentation and analysis 
methods, its application to soft matter is still complicated 
by tip-sample interactions and the lack of practical nonlinear 
contact mechanics models. It is common practice to rely on 
models based on the classical Hertz theory, with its assump­
tions of linear elasticity and infinitesimal strains, to analyze 
force curves. Consequently, errors are frequently incurred by 
applying these representations beyond their validity range or 
at the small-strain range where the indentation process is 
most prone to noise. 

mailto:lindavid@mail.nih.gov


346 D. C. Lin et al. 

Lin et al. (2007b) had previously developed an approxi­
mate relation for the spherical indentation of rubber-like, 
Neo-Hookean and Mooney-Rivlin materials. Assuming that 
the contact radius varies in the Hertzian manner with indenta­
tion depth, a force–indentation relationship was formulated 
and validated for the AFM microindentation of poly(vinyl 
alcohol) (PVA) gels. In this work, we refine the approach and 
extend it to other non-Hookean constitutive laws including 
the two-term reduced polynomial (Mooney 1940), single-
term Ogden (1972), Fung (Fung 1967; Fung et al. 1979), 
Gaylord and Douglas (1987, 1990), Tschoegl–Gurer (Gurer 
and Tschoegl 1985; Tschoegl and Gurer 1985), and van der 
Waals (Kilian 1985) models. We begin by introducing the 
various hyperelastic strain-energy potential functions and 
describing the theoretical framework for deriving contact 
mechanics equations based upon them. Next, the use of finite 
element analysis (FEA) to validate and further improve the 
closed-form force–indentation relationships is discussed. We 
then reanalyze literature data obtained from the large-strain 
AFM indentation of swollen PVA gels and cartilage samples 
in terms of each model. Strategies developed previously (Lin 
et al. 2007a) were utilized in the automated analysis and 
evaluation of the performance of the different theoretical 
approaches. The models found to be most suitable for rubber­
like gels and biological extracellular matrices and cells are 
identified. We propose the use of these models when analy­
zing data from the AFM indentation of soft materials at large 
strains. 

2 Theory 

2.1 Contact mechanics 

Hertz’s seminal treatise on the contact of ellipsoidal bodies 
remains the analytical basis for the majority of indentation 
experiments. In spherical indentation, the Hertzian relation­
ship between the applied force (F) and the resulting inden­
tation (δ) is (Johnson 1985) 

4E R1/2δ3/2 
F = 

3(1  ν2) 
(1)−

where E and ν are Young’s modulus and Poisson’s ratio of 
the indented material, respectively, and R is the radius of the 
rigid indenter. The contact radius (a) varies with δ according 
to 

R1/2 1/2a = δ (2) 

Because the Hertz formalism is based on the theory of linear 
elasticity, it must be possible to define measures of stress 
and strain that satisfy a Hookean relationship. The concept 
of an analogy between uniaxial compression and spherical 
indentation was first explored by Tabor (1948, 1951) for  

the elastic-plastic indentation of metals and has since been 
extended to other classes of materials (Briscoe et al. 1998; 
Fischer-Cripps and Lawn 1996; Hochstetter et al. 2003; Iwa­
shita et al. 2001; Swain and Hagan 1976). Widely accepted 
definitions of indentation stress (or mean pressure, σ ∗) and 
strain (ε ∗) are given by  

F∗ σ = 
πa2 

(3)a∗ ε = 0.2 
R 

The strain prefactor of 0.2 was empirically determined by 
Tabor (1951) and has since been verified by other investiga­
tors (Field and Swain 1995; Herbert et al. 2001; Taljat et al. 
1998). Thus defined, indentation stress and strain are similar 
to their counterparts in uniaxial loading. In fact, indentation 
is essentially a compressive process since only the edge of the 
contact region experiences tension (Johnson 1985). Dividing 
stress by strain and substituting Eqs. (1) and (2) for Hertzian 
indentation, the following linear (i.e., Hookean) relationship 
is obtained: 

20E∗ ∗ σ = ε (4)
3π(1 − ν2) 

From the parallels between indentation and uniaxial com­
pression, it stands to reason that non-Hookean, uniaxial 
stress–strain relations can be extended to non-Hertzian 
contact. Table 1 lists the hyperelastic strain energy functions 
and corresponding uniaxial stress (σ )–stretch (λ) equations 
used in this study and described in more detail in the next 
section. By substituting the definitions of σ ∗ and  ε ∗ given in 
Eq. (3) for stress and strain, respectively, the uniaxial rela­
tions are transformed into contact equations in terms of force 
and contact radius. In most instrumented indentation tests, 
however, the contact radius is not a measurable quantity. 
Instead, the variation of indentation depth with increasing 
magnitude of the applied force is monitored directly or indi­
rectly; an expression such as Eq. (2) relating a and δ is the­
refore necessary. Assuming material incompressibility and 
that the contact radius varies with indentation depth accor­
ding to Eq. (2), Lin et al. applied an alternative definition 
of strain, ε ∗ = a/R (Briscoe et al. 1998; Hochstetter et al. 
2003; Iwashita et al. 2001; Mesarovic and Fleck 1999; Swain 
and Hagan 1976), to the Mooney-Rivlin Lagrangian uniaxial 
engineering stress–stretch equation to arrive at the contact 
relation (Lin et al. 2007b) 

  
a5 − 3Ra4 + 3R2a3 

F = π B1
Ra2 − 2R2a + R3  

a5 − 3Ra4 + 3R2a3 

+ π B2 (5)−a3 + 3Ra2 − 3R2a + R3
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Table 1 Hyperelastic strain energy functions and corresponding uniaxial stress–strain equations a

Name Strain energy potential (W) Uniaxial stress (σ)−stretch (λ) 
equation Initial shear modulus (G0) 

Mooney-Rivlin, Neo-Hookean (Mooney 1940; Treloar 1975) W = C1 (I1 − 3) + C2 (I2 − 3) ; C2 = 0 for Neo-Hookean model 
2 3

( ))(
σ = 2C1 λ − λ− + 2C2 1 − λ−

G0 2 (C1 C2) Fitting parameters: C1, C2 = + ;
Reduced polynomial (Mooney 1940) 

 
W = N 

1 Ci (I1 − 3 i )i=( ) ( )
2 N i 1

σ = 2 λ − 2 1 λ− λ1 iCi + 2λi
− − 3

−
=

G0 = 2C1; Fitting parameters: Ci 

Ogden (1972) 
 ( )

W = N	 2Ci αi αi αi= 2 λx + λy + λi 1	 z − 3
αi ( )N	 2C = i αi −1 − −αi /2λi

−1σ = λ1 αi 

G N
0 = 1 C= i Fitting parameters: Ci , αi ; i

Fung (Fung 1967; Fung et al. 1979) W = C {exp [b (I1 − 3)] − 12b ( ) }
σ = C λ − −2λ exp [b (I1 − 3)] 

G0 C Fitting parameters: C, b = ;

Van der Waals (Kilian) (Kilian 1985) 
{ [ ( / ) / ] ( )3/2

W = C − (I I1 3 I1 3 2 I1 3
1m − 3) ln 1 − I1 3 + 

m

−
I1m

− b− −3 − 3 2 
−

}
 	(    −1 / ( )

σ = − 2+2 −1−3 2λ λ +2λ−1
C −3λ λ−2 1 − λ

2 1 b 
λ +2λm

− − 2m −3

G0 = C; Fitting parameters: C, b 

λm is the limiting tensile stretch; I1m is the corresponding first invariant ( )
Gaylord–Douglas (1987,1990), Tschoegl–Gurer (Gurer and Tschoegl 

1985; Tschoegl and Gurer 1985) 

(
W = (C1/2) (I b 

1 3 2) 2C b b 
2/b λx	 λy λz 3(	 ) [ ] − + + + −)

2 b b 2σ = C λ − λ− + (2C2/b) λ − λ− /
1

G0 = C1 + C2; Fitting parameters: C1, C2 

Gaylord–Douglas: b = 1 Tschoegl–Gurer: b 0.34 =
aAssuming material incompressibility, in uniaxial loading in the x-direction, I1: first strain invariant  =  2 λ + 2 λy + 2

x λz ; I2: second invariant = 

= 1λ−2 + −2 2λ + λ− , σ  = λ (∂W/∂λ) , λ λ, λ = λ = λ− /2 
x y z x y z and strain ε = λ − 1

where B1 and B2 are fitting parameters related by 

4E0
B1 + B2 =	 (6)

9π(1 2ν ) 

equa­
in which E0 denotes the initial or infinitesimal Young’s modu­
lus. Here, we apply Tabor’s definition of strain given in
tions (3) and implement the following approach: 

1. The general form of the uniaxial stress–stretch relations 
shown in Table 1 can be expressed as 

σ = f (Ci , λ); i = 1, 2, 3, . . . 	  (7) 

where the stress σ is some function f of the fitting coef­
ficients Ci and the stretch ratio λ, which is related to 
uniaxial strain ε by λ = 1 + ε. 

2. It is necessary at this point to resolve differences in 
sign convention between the standard engineering nota­
tion employed by Eq. (7) and that commonly used in 
indentation. In engineering notation, stresses and strains 
are positive in tension and negative in compression. 

However, in general force-indentation equations, both 
force and indentation are taken to be positive. As a result, 
both σ* and ε* are also positive despite being essentially 
compressive in nature. In transforming equation (7) into  
a relation between σ* and ε*, we therefore redefine the 
stretch ratio as 

∗ λ = 1 − ε	 (8) 

and replace σ with −σ*. Equation (7) becomes 

∗ σ ∗ = − f (Bi , 1 − ε )	 (9) 

where Ci has been replaced with Bi . 
3. Dividing Eq. (9) by ε *, we obtain 

σ ∗ f (Bi , 1 − ε ∗ )= − 	  (10) 
ε ∗ ε ∗

4. As its name implies, the initial or infinitesimal 
shear modulus G0 (equal to 1/3 of the initial Young’s 
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modulus E0 for incompressible materials) found in 
Table 1 is equivalent to the modulus in the linear elastic 
regime (i.e., as ε → 0 or  λ → 1). Hence, if we take the 
limit as ε* → 0 in Eq. (10), the left-hand side is equal 
to the proportionality constant in Eq. (4) while the right-
hand side tends toward some value Bi βi , where βi are 
constants: 

20E0 = Bi βi	 (11)
3π(1 − ν2) 

5. Applying the definitions of σ* and ε* given by Eqs. (3) 
to Eq. (9) yields 

F = − f (Bi , 1 − 0.2a/R)	 (12)
πa2 

6. A relationship between a and the indentation δ is neces­
sary to complete the derivation. Equation (2) applies in 
the case of Hertzian contact, but it is not known whether 
it applies to hyperelastic contact. For the general case, 
we search for a function of the form 

δya = Rx− δz	 (13) 

where x, y, and z are constants. As will be shown, the 
finite element method is a powerful tool for determining 
this relationship. 

Using the above procedure, the resulting force-contact 
radius relations corresponding to the strain energy functions 
from Table 1 are listed in Table 2. Note the similarity 
between the Mooney-Rivlin equation (5) and that shown in 
Table 2. 

2.2 Hyperelastic models 

Following the pioneering works of Treloar, Rivlin, and 
Mooney that resulted in the Neo-Hookean, Mooney-Rivlin, 
and polynomial mathematical descriptions of material beha­
vior, a number of other hyperelastic models have been deve­
loped. Each is based on a strain energy density function that 
relates the energy stored in a material to the deformation, and 
can be categorized as being molecular or phenomenological 
in nature according to the basis for its formulation (Aklonis 
and MacKnight 1983; Treloar 1975). In this study, we com­
pare a subset of models representing different approaches. 

Molecular models are generally premised on the statistical 
thermodynamics of the underlying macromolecular structure 
of the network. These models consider the discrete struc­
ture of the material by focusing on a characteristic unit cell 
with a certain number of constituent chains. The chains are 
randomly oriented and connected at junction points, which 

in networks are the covalent cross-links between the mole­
cules. The Neo-Hookean form is the most well known and 
mathematically simple of all the hyperelastic models. 
Treloar (1947) presented a summary of its derivation, which 
assumes the network to be consisted of freely jointed chains 
that obey Gaussian statistics. Non-Gaussian statistics were 
applied subsequently to account for the finite extensibility 
of the polymer molecules. Treloar (1975) derived the 
free energy of chains using Langevin statistics, which 
incorporates the finite extensibility effects of network defor­
mation. A historical overview of the theoretical framework 
established by Flory, James, Guth, Kuhn, Mark, Treloar, 
Wall, and others can be found in texts that cover the sub­
ject (Aklonis and MacKnight 1983; Sperling 2001; Treloar 
1975). Although the Neo-Hookean stored energy function 
appears to be a special case of the Mooney-Rivlin equation, 
the latter was derived from different principles. 

Efforts to include a more rigorous molecular represen­
tation of polymer gels have yielded many functions more 
advanced than the Neo-Hookean form. Concepts from the 
field of rheology have been adopted to develop new models 
based on the force equilibration principle of viscoelastic 
deformation. Different models (tube models, constraint junc­
tion fluctuation model, slip-link model, etc.) employ different 
treatments of entanglement effects (Horkay and McKenna 
2007). Here we consider the Gaylord–Douglas tube model 
(1987,1990), which incorporates contributions to the net­
work free energy change of deformation from the chain 
connectivity of the polymer segments and the restrictions on 
chain configurations due to entanglements. As pointed out by 
Gaylord and Douglas, their model is consistent with the conti­
nuum mechanics approach used in deriving the Tschoegl– 
Gurer equation. Other molecular formulations include the 
Arruda–Boyce non-Gaussian, eight-chain model (Arruda and 
Boyce 1993). 

Deformations of soft tissues as well as synthetic poly­
mers involve complex mechanisms that are not fully unders­
tood. On the basis of macroscopic experimental observations 
“phenomenological” models have been developed with the 
objective of describing the elastic response of the materials. 
These models are generally based on continuum theories. 
Mooney (1940) first proposed that a general strain energy 
function could be obtained by an infinite series expansion in 
terms of the first and second strain invariants. The polynomial 
and reduced polynomial models are therefore generalizations 
of a number of other functions. The Mooney-Rivlin model 
was introduced as one specific case of the polynomial form 
(Mooney 1940); it was also studied by Rivlin in a series of 
papers on large elastic deformations (Rivlin and Saunders 
1951) and is widely used in fitting experimental data. Howe­
ver, an important limitation of the Mooney-Rivlin model is 
that it is not able to predict large strain behavior (Han et al. 
1999). Moreover, the Mooney-Rivlin constants determined 
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Table 2 Force-indentation relations for the hyperelastic strain energy functions 

E0 is the initial Young’s modulus and R is the radius of the indenter 
a is the contact radius and is a function of indentation, e.g., Eq. (2) 

Name Force (F)−indentation (δ) equations 

Mooney-Rivlin, Neo-Hookean 
) ( )(

= 2

2 3 + 5
B a5−15Ra4+75R2a3 4 3 

F  1π 2  B a 15Ra 75R a
2π5Ra −50R a+125R a

− +
− 3+15Ra2−75R2a+125R3 

20E0B1 + B2 = ; B2 = 0 for Neo-Hookean model 
9π(1 ν2)

2-term reduced polynomial a5 Ra4 R2a3−15 +75F = B1π 
5Ra2−50R2a+125R3 ( ) ( )

a5−15Ra4+75R2a3 a3−15Ra2 + B2π 
5Ra2 50R2a 125R3 25R2a 125R3 

20E0B1 = 
9π(1−ν2) 

Ogden 
2 −α/2−1 α−1Bπa a aF = 1 − 0.2 − 1 − 0.2 R R 

= −
40E0B  

9 (1 2) ( 
π ν

Fung 
) [ ( )]

a5−15Ra4+75R2a3 a3−15Ra2
F  Bπ exp b

5Ra2 50R2a 125R3 25R2a 125R3 

20E0B = 
9π(1 ν2) 

Van der Waals (Kilian) 

( ) ( / )−1 
a5−15Ra4+75R2a3 a3−15Ra2 εm −1F = Bπ 1 −

5Ra2−50R2a+125R3 25R2a−125R3 · ε3 −3ε2 
m m/ ]

a3−15Ra2
 b

50R2a 250R3 

20E0B = ;εm is the limiting tensile strain 
9π(1−ν2)

Gaylord–Douglas, Tschoegl–Gurer a5−15Ra4+75R2a3
F = B1π 

5Ra2−50R2a+125R3 

2 
[( )−b/2−1 ( )b−1

]
+ B2πa a a1 − 0.2 − 1 − 0.2b R R 

40E02B1 + B2 = 
9π(1 ν2) 

Gaylord–Douglas: b = 1 Tschoegl–Gurer: b = 0.34 

from one deformation type have limited value for predicting 
behavior in other deformation types. It should be noted that 
the Neo-Hookean model has similar limitations. 

Although biological tissues and synthetic polymer net­
works exhibit several common features (in both cases the pri­
mary building blocks are long polymer chains held together 
by chemical or physical cross-links, van der Waals bonds, 
etc.), in general, biopolymers are much stiffer than synthe­
tic polymers. One of the most successful phenomenological 
models that has been applied to soft tissues is that of Fung 
(Fung 1967; Fung et al. 1979). It describes the strain stif­
fening behavior as an exponential relation in terms of the 
first strain invariant. Another widely used constitutive model 
developed by Ogden (1972) also predicts large strain beha­
vior well. The Ogden general strain energy formulation is 
a linear combination of an algebraic power dependence of 
strain invariants. Like the polynomial models, fitting of expe­
rimental data is usually performed by retaining up to several 
terms in the summation. The Tschoegl–Gurer model (Gurer 
and Tschoegl 1985; Tschoegl and Gurer 1985) combines the 
Neo-Hookean strain energy function with one based on alge­
braic power dependence similar to the single-term Ogden 
function (Blatz et al. 1974). 

Several attempts were made to combine molecular and 
phenomenological approaches by developing so-called 
“hybrid” models. We mention the van der Waals strain energy 

function proposed by Kilian (1985) that accounts for finite 
chain extensibility and draws on the analogy between the 
phenomenological van der Waals equation of state for ideal 
gases and the equation of state of rubber elasticity. In the 
Gent model (1996), the strain energy density is a logarithmic 
function of the first strain invariant and involves two material 
parameters: the shear modulus and a constant defined by the 
limiting chain extensibility. 

3 Materials and methods 

3.1 Finite element modeling 

The indentation was simulated as contact between a rigid 
sphere ( R = 5 mm) and an elastic slab (1 mm diameter, 
0.25 mm thick) in an axisymmetric model using a commercial 
FEA package (Abaqus, Dassault Systèmes). Models were 
executed for either 1mm (small displacement) or 5mm (large  
displacement) of indentation in 250 ms. Although no vis­
coelastic effects were assumed, this displacement rate was 
chosen to be comparable to that from the AFM experiments 
(see below). The mesh size was graded to be more refined in 
the vicinity of the sphere and coarse at the model extremes 
(see Fig. 1). The bottom and side of the slab were fixed in 
space, and both the rigid sphere and axis of symmetry for 
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the slab were only permitted to move in the vertical direc­
tion. Contact between the sphere and slab was assumed to 
be frictionless. Three material models were simulated, each 
with an effective shear modulus of 10.2 kPa and Poisson’s 
ratio of 0.499: a linear elastic model (properties as above), 
a Mooney-Rivlin hyperelastic model (C1 = 4.702 kPa, and 
C2 = 0.47 kPa), and an Ogden hyperelastic model (G0 = 
10.2 kPa,  α = 0.81). From the simulations, the relationship 
between contact radius and indentation depth was extracted. 

Fig. 1 Finite element displacement magnitude map at the maximum 
displacement of 5 mm. The radius of the sphere is also 5 mm. The grada­
tion of mesh size and the point at which the contact radius is measured 
are clearly seen 

3.2 Synthetic gels 

We cast PVA gel cylinders (1 cm diameter, 1 cm height) and 
films (>2 mm thick) for macroscopic displacement-
controlled compression and AFM nanoindentation, respecti­
vely (Lin et al. 2007a). The polymer concentration was ∼6% 
by weight. Aqueous PVA solutions (MW 70,000–100,000) 
were crosslinked with glutaraldehyde at pH ∼1.5, with an 
appropriate amount of crosslinker (one unit per 100 monomer 
units) to ensure that all polymer chains were attached to a 
continuous network structure. All samples were equilibrated 
with water prior to testing. The Young’s modulus of these 
gels is approximately 20 kPa, which is within the range of 
many biological soft tissues. 

A bench top materials testing system (Stable Micro Sys­
tems, UK) was used to perform displacement-controlled com­
pression of the cylinders at a ramp speed of 1 mm/s. Volume 
change and barreling were visually monitored and found to 
be negligible during the test. The shear modulus was deter­
mined by fitting the engineering stress–stretch data with the 
uniaxial hyperelastic equations given in Table 1. Assuming 

material incompressibility, the infinitesimal Young’s modu­
lus was then calculated by multiplying the shear modulus by 
a factor of three. Triplicate samples, each tested three times 
to ascertain elasticity, were used. 

3.3 Mouse articular cartilage 

Sixty-micrometer thick cartilage samples were transversely 
sectioned from the femoral heads of one-day old wild-type 
mice using a microtome. Samples were lightly fixed in 3% 
formaldehyde, rinsed thoroughly in PBS, and frozen in 
embedding medium prior to sectioning. Slices were imme­
diately transferred to glass slides, where the embedding 
medium was allowed to dry and bond the tissue samples 
to the glass surface. The samples were then rinsed several 
times with a buffer solution (10 mM HEPES, 2 mM CaCl2, 
150 mM NaCl; pH 7.5) and equilibrated to room tempera­
ture. AFM imaging and microindentation were performed 
with the samples submerged in the buffer. 

3.4 Tissue-engineered cartilage 

Preparation of the tissue-engineered constructs have been 
detailed elsewhere (Horkay et al. 2005). In brief, chondro­
cytes harvested from chick embryo sternum were statically 
seeded on PVA hydrogel disks and cultured under static 
conditions for up to five weeks. The samples used for the 
measurements presented here were removed from the sur­
face of the gel scaffold after 19 days, sectioned to a thickness 
of approximately 1 mm, glued to a glass slide using a small 
amount of cyanoacrylate adhesive, rinsed and immersed in 
PBS, and frozen until testing. 

3.5 AFM microindentation 

For the synthetic gels, general-purpose silicon nitride tips 
with 5.5 mm glass or 9.6 mm polystyrene beads attached 
were used for the AFM measurements, performed using a 
commercial AFM (Bioscope I with Nanoscope IV control­
ler, Veeco). Polystyrene beads of 5 and 9.6 mm were used  
for the native and engineered cartilage, respectively. The 
spring constants of the cantilevers were measured by the 
thermal tune method while bead diameters were measured 
from images acquired during the attachment process. A raster 
scanning approach (“force-volume”) was applied to automa­
tically perform indentations over an area of ∼20×20 mm, 
at a resolution of 16×16 (256 total indentations) for the 
PVA gels and over an area of ∼30×30 mm at a resolution 
of 32×32 (1,024 indentations) for the native cartilage. In all 
measurements, a tip velocity of approximately 814 nm/s was 
applied. For the mouse cartilage, surface topography images 
were used to determine whether each measurement location 
corresponded to the extracellular matrix or to the cells. In 
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the case of the engineered tissue, the dataset consisted of 
individual indentations acquired at random locations over 
the sample. 

Code written in Matlab was used to automatically process 
each dataset and extract values of Young’s modulus using 
an optimization-based approach. Because the AFM is not 
capable of directly measuring force and indentation depth, 
these values must be inferred from directly measurable quan­
tities, the cantilever spring constant kc, and knowledge of the 
point of contact. The directly measured values are typically 
the bending position of the cantilever (d) and the position of 
the cantilever base (z), the zero points of which are usually 

arbitrary. It is necessary to determine the reference values 
or the values at the contact point, of the deflection (d0) and 
position (z0). In terms of the reference values, force (F) and 
indentation (δ) in the absence of attractive or repulsive inter­
actions are 

F = kc(d  − d0) (14) 

δ = (z − z0) − (d − d0) (15) 

Fitting the force-indentation equations in Table 2 to an AFM 
dataset of (z, d) pairs necessitates identifying the contact 

Fig. 2 FEA results for the Mooney-Rivlin and Ogden hyperelastic 
materials. a Theoretical equation (2) and FEA-derived, Mooney-Rivlin 
contact radii as functions of the indentation. Both contact radius and 
indentation are normalized by the radius of the sphere. The least squares 
fit of the large displacement FEA data was performed using Eq. (13); 
the unit of length is nm. Note that since Eq. (13) has three fitting para­
meters, this solution is not unique. Data for the Ogden case is virtually 
identical. b Comparison of Eq. (2) and FEA-derived, Mooney-Rivlin 

contact radii at small displacement. For this case, differences between 
Mooney-Rivlin, Ogden, and Hertz models were negligible. c Indenta­
tion stress–strain curves using the definitions in Eqs. (3). FEA and the 
theoretical Ogden model from Table 2 both indicate significant nonli­
nearity. d Vertical strain field in the Ogden material at maximum inden­
tation (δ = R). The maximum compressive strain of ∼46% occurs 
at the point of initial contact, but the average value is in line with the 
definition ε ∗ = 0.2a/R 
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point (z0, d0) and solving the regression problem for the fit­
ting coefficients. 

4 Results 

The dependence of the contact radius on the indentation as 
evaluated by nonlinear FEA is shown in Fig. 2a and b. A gene­
ralized relationship between a and δ in the form of Eq. (13) 
was used to fit the large displacement FEA data (Fig. 2a). For 
both the large and small displacement cases, a comparison 
is made between the FEA solution and Eq. (2). In Fig. 2c, 
the indentation stress–strain response predicted by the FEA 
is compared to the theoretical model from Table 2. The pre­
dicted strain field is presented in Fig. 2d. 

From the compression tests, the means and standard devia­
tions of the initial Young’s modulus E0 of the PVA gel, obtai­
ned using a Hookean relationship at limited strain (0 < ε <  
0.05, where compressive strains are taken to be positive) and 
the various hyperelastic models, are summarized in Table 3. 
A representative dataset fit with the Mooney-Rivlin uniaxial 
equation is shown in Fig. 3. Also listed in Table 3 are the 
corresponding values obtained from the AFM microindenta­
tion of three different samples (256 indentations per sample). 
The mean coefficient of determination (r2) is also listed for 
each model. In the case of the Mooney-Rivlin equation, pre­
viously reported results using Eq. (5) (Lin et al. 2007b) are  
also listed for comparison. 

Table 3 Young’s modulus (mean ± st. dev.) of PVA gels from two methods and various models 

Model Macro. compressiona AFM indentationb 

E0 (kPa) Mean r2 E0 (kPa) Mean r2 

Hookean/Hertzian (Hz) – – 24.13 ± 3.56 0.9926 

Small strain Hookean/ Hertzian (sHz)c 20.49 ± 2.67 0.9846 21.36 ± 3.61 0.9978 

Neo-Hookean (NH) 20.74 ± 0.76 0.9994 21.92 ± 2.88 0.9967 

Mooney-Rivlin (MR) 20.26 ± 1.00 0.9997 20.96 ± 2.75 0.9975 

18.23 ± 2.38d – 

2-term reduced polynomial (2p) 20.30 ± 0.90 0.9998 18.05 ± 4.84 0.9997 

Fung (Fu) 20.31 ± 0.90 0.9998 18.63 ± 4.49 0.9997 

Ogden (Og) 19.85 ± 1.23 0.9998 22.95 ± 4.23 0.9997 

van der Waals (vdW)e 20.12 ± 1.12 0.9998 21.32 ± 2.85 0.9974 

Gaylord–Douglas (GD) 19.77 ± 1.30 0.9998 21.69 ± 2.82 0.9969 

Tschoegl–Gurer (TG) 19.86 ± 1.21 0.9998 21.54 ± 2.80 0.9971 

a Macroscopic compression: 3 samples, 3 loading cycles/sample 
b AFM indentation: 3 samples, 256 indentations/sample 
c Data limited to strains < 0.05 
d Values using Eq. (5), applied to two samples (Lin et al. 2007b) 
e Limiting tensile strain of εm = 4 was used 

Figures 4 and 5 show datasets representative of the inden­
tation response of mouse cartilage matrix and chondrocytes, 
respectively. Fits to the data using the Fung and Mooney-
Rivlin models are compared in Fig. 4 while the Ogden and 

Tschoegl-Gurer models are compared in Fig. 5. In Fig.  6, the  
full results of analyzing a complete force–volume set of data 
(1,024 indentations) using the Fung model are presented in 
the form of an elastic modulus map. Ten random datasets each 
from the extracellular matrix and the chondrocytes, selected 
with the aid of five AFM topography images such as shown in 
Fig. 6, were also analyzed using each model. We chose points 
near the centers of cells and near the middle of the intercel­
lular spaces. The results are tabulated in Table 4 along with 
those from the indentation of the engineered cartilage. 

Finally, Fig. 7 shows a comparison of the extent of line­
arity among the mouse cartilage matrix, cells, and the PVA 
gel. The data are represented by their respective fits using the 
Fung model. 

5 Discussion 

The finite element method proved to be a powerful tool for 
validating and establishing the limit of the contact radius rela­
tionship given by Eq. (2). Figure 2a and b indicate that Eq. (2) 
holds for a/R below ∼0.4 or indentation strains of less than 
8%. We expect this limit to hold for each hyperelastic model 
studied. Beyond a/R = 0.4, the relationship given in Fig. 2a 
or one that is similar can be used. Computational modeling of 
indentation by FEA therefore serves the additional, integral 
purpose of extending the applicability and accuracy of the 
analytical force–indentation equations beyond this limit. It 
should be pointed out that we did not attempt to numerically 
validate the a–δ relationship for each model. Since the nor­
malized indentation δ/R never exceeded 0.2 (and hence, a/R 
never exceeded 0.4 according to Fig. 2b) in the indentation 
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Fig. 3 Sample compressive engineering stress–strain behavior of a 
PVA gel cylinder. Every tenth data point is plotted. Compressive stresses 
and strains are taken to be positive for consistency with the convention 
used in indentation. The solid curve is the best fit (r2 = 0.9999) to the 
data using the uniaxial Mooney-Rivlin equation (see Table 1). The ana­
lysis was limited to the deformation range 0 < ε < 0.3. For this particu­
lar case, E0 = 20.69 kPa and the fitting parameters are C1 = 3.214 kPa 
and C2 = 0.235 kPa. The quality of fit is virtually indistinguishable 
among the various hyperelastic models 

Fig. 4 Sample deflection-position data showing every tenth data point 
from the AFM indentation of the extracellular matrix of mouse cartilage. 
The data is plotted twice, with the two sets shifted apart for clarity. 
The solid curves are the best fits using the Fung (fitting parameters 
B = 19.59 kPa and b = 196.5, E0 = 20.78 kPa) and Mooney-Rivlin 
(fitting parameters B1  2.289 10−5 kPa and B2  149.35 kPa, E0 = × = =
158.36 kPa) force-indentation equations (see Table 2). The points of 
contact are indicated by the filled circles. Also shown are the coefficient 
of determination and mean-squared-error (MSE) for each fit. These 
values are also listed for the fit using the older form of the Mooney-
Rivlin equation given by Eq. (5) 

Fig. 5 Sample deflection-position data showing every tenth data point 
from the AFM indentation of a mouse cartilage chondrocyte. The data is 
plotted twice, with the two sets shifted apart for clarity. The solid curves 
are the best fits using the Ogden (fitting parameters B = 25.41 kPa and 
α = 115.4, E0 = 13.47 kPa) and Tschoegl-Gurer (fitting parameters 
B1 = 6.804 × 10−6 kPa and B2  = 430.8 kPa,  E0 = 77.65 kPa) force-
indentation equations (see Table 2). The points of contact are indicated 
by the filled circles. Also shown are the coefficient of determination and 
mean-squared-error (MSE) for each fit 

tests regardless of the size of the bead used, it was possible 
to apply Eq. (2) in conjunction with the equations in Table 2 
to fit the AFM deflection-position data. 

As shown by Fig. 2c and d for the representative Ogden 
hyperelastic material, FEA also verified Tabor’s empirical 
definitions of stress and strain given by Eqs. (3). The simu­
lated stress–strain response is in reasonable agreement with 
the theoretical relationship found in Table 2. Moreover, the 
strain field supports that theoretical prediction of the exis­
tence of tensile strains solely at the edge of contact (Johnson 
1985). 

Chemically crosslinked PVA in swelling equilibrium with 
water is known to be rubber elastic and obeys the simple 
Neo-Hookean constitutive model under uniaxial loading 
(Horkay and Nagy 1980). The results shown in Fig. 3 and 
Table 3 indicate that each of the hyperelastic models exami­
ned in this study capably describes rubber elastic behavior 
(i.e., both the initial linear elastic response and the strain 
stiffening are accurately captured by the mathematical fits). 
This is not true when applied to the indentation of the carti­
lage samples. In fact, only the Fung and Ogden models were 
found to be viable for both native and engineered tissues, as 
seen by comparing the average coefficients of determination 
(r2) in Table 4 and illustrated by the representative data-
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Fig. 6 Young’s modulus map and surface plot of a 30 × 30 mm region of mouse cartilage. Moduli were computed using the Fung model. Mean 
coefficient of determination of the 1,024 fits: 0.999 

sets shown in Figs. 4 and 5. In analyzing the indentation of 
cartilage and the PVA gels, the single-term Ogden model 
often yielded elastic moduli that slightly exceeded 
those obtained from the Fung model. We surmise that this 
discrepancy may be related to retaining only one term in the 
Ogden strain energy potential. 

The suitability of the Fung and Ogden hyperelastic models 
for the indentation of cartilage and cells is not unexpected 
since they have been applied successfully to a number of 
other soft biological tissues. Fung formulated the exponen­
tial strain energy function based on mechanical testing of 
mesentery and arterial tissues (Fung 1967; Fung et al. 1979); 
his model is widely used in describing blood vessel elasticity 
(Pandit et al. 2005; Schulze-Bauer et al. 2002). The single-
term Ogden model has been found to be capable of accura­
tely representing the elastic response of the vocal fold (Zhang 
et al. 2006), spinal cord (Bilston and Thibault 1996), brain 
tissue (Prange and Margulies 2002), and dura mater from 
the brain and spinal cord (Maikos et al. 2008). Use of these 
models in biological indentation should allow enhanced sen­
sitivity in detecting spatial variations in elastic moduli and 
promote greater accuracy of tissue elasticity maps. Figure 6 
indicates that when an appropriate fitting function is applied, 
even a relatively large spherical probe is capable of delinea­
ting differences in stiffness within a cell’s perimeter (i.e., the 
elastic modulus map reveals that the cells are softer close to 
their centers and stiffer near their edges). We note the possi­
bility that some models not included in our list may perform 
as well as the Fung and Ogden equations. Even disregarding 
those that were eliminated by necessity (e.g., higher order 
polynomials with more than two fitting parameters), it was 
not our intent to conduct a comprehensive comparison of 
hyperelastic models. Other indentation equations can easily 
be derived from strain energy functions using the approach 
described. 

In the macroscopic compression tests, limiting the strain 
in the Hookean analysis to 5% still ensured that an adequate 
number of data points remained such that the effects of ran­
dom noise were essentially obviated. Because the indenta­
tion strain does not scale linearly with δ, limiting  ε ∗ to a 
similar range leaves a smaller portion of the data for analy­
sis; at the 5% strain level, each truncated dataset contained 
approximately one tenth of the total points in the contact 
regime. For the soft tissue samples, onset of stress–strain 
nonlinearity prior to ε ∗ = 0.05 and the presence of higher 
levels of noise in the vicinity of initial contact rendered the 
Hertzian approach nonviable. Figure 7 shows that the car­
tilage extracellular matrix and cells exhibited highly nonli­
near elasticity when indented, with the nonlinear response 
of the matrix already pronounced at an indentation strain of 
3%. The poor results we obtained when attempting to fit our 
experimental results with the Hertz equation (see Table 4) 
are consistent with the findings of Costa and Yin (1999), 
who conducted finite element studies on the indentation of 
materials whose behavior conformed to the Mooney-Rivlin, 
two-term reduced polynomial, or Fung strain energy func­
tions. In their simulations of finite indentation with a conical 
tip, large errors were incurred in the estimated elastic moduli 
when using linear elastic models to fit the data except in the 
case of the Mooney-Rivlin material. Hence, it was concluded 
that linear elastic models are inappropriate for fitting AFM 
indentation data at the deformations applied in typical tests. 

The pronounced nonlinearity of the cartilage and chon­
drocytes in comparison to the response of the PVA is likely 
associated with the innately more complex structure of the 
biological materials. Furthermore, unlike PVA, cartilage 
is not expected to obey rubber-like elasticity since the 
majority of its constituents are rigid. Although the effects 
of finite chain extensibility are expected to be important 
contributors to strain stiffening, interactions in the cartilage 
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Table 4 Young’s modulus (mean ± st. dev.) of cartilage matrix and cells from the models 

Modela Eng. cartilageb,c Mouse matrixb Mouse Cellsb 

E0 (kPa) Mean r2 E0 (kPa) Mean r2 E0 (kPa) Mean r2 

Hz 0.81–5.08 0.9359 97.79 ± 16.78 0.8755 45.64 ± 12.46 0.9025 

sHz 0.45–3.59 0.9635 56.69 ± 15.54 0.9291 19.39 ± 4.74 0.9725 

NH 0.68–4.39 0.9528 99.92 ± 19.08 0.8982 41.81 ± 12.27 0.9098 

MR 0.60–4.04 0.9584 95.21 ± 18.50 0.9215 39.18 ± 11.76 0.9153 

2pd Failed – Failed – Failed – 

Fu 0.46–3.03 0.9962 19.64 ± 2.30 0.9996 11.05 ± 2.01 0.9997 

Og 0.54–3.97 0.9976 19.71 ± 3.40 0.9995 12.47 ± 2.44 0.9996 

vdW 0.62–4.12 0.9573 96.33 ± 18.64 0.8871 39.79 ± 11.88 0.9141 

GD 0.66–4.31 0.9540 98.79 ± 18.93 0.8847 41.18 ± 12.14 0.9110 

TG 0.65–4.25 0.9548 98.02 ± 18.84 0.8854 40.76 ± 12.06 0.9118 

a Abbreviations from Table 3 
b Ten randomly selected samples 
c Range of values shown rather than mean ± standard deviation since measurements for matrix and cells could not be separated 
d Two-term polynomial model failed to produce viable fits in the majority of cases 

Fig. 7 Indentation stress versus strain (0.2 a/R) for representative 
microindentations of the PVA gel, mouse cartilage extracellular matrix, 
and chondrocytes. Data are from the Fung fit of sample AFM data­
sets (PVA E0 = 19.1 kPa,  matrix  E0 = 20.7 kPa, chondrocyte E0 = 
12.2 kPa). The stress–strain response of the PVA gel appears linear (due 
to the scaling, nonlinearity is not obvious) while the cartilage compo­
nents are highly nonlinear. Inset shows the relationship up to 2% strain 

extracellular matrix between the collagen and glycosamino­
glycan networks as well as the presence of fixed and mobile 
charges must also be considered. The cellular cytoskeleton 
and cytoplasm can be viewed as parts of an even more intri­
cate network. It is not surprising, therefore, that none of the 
molecular models, which cannot possibly account for such 
structural features, proved capable of fitting the experimen­
tal data. For the measurement of elastic properties, pheno­
menological models are viable alternatives to complicated 
constitutive laws such as Mow’s biphasic theory of cartilage 
(Mow et al. 1980) and the molecular theory of semiflexible 
biopolymer networks proposed by Janmey and coworkers 
(Storm et al. 2005). 

Analysis using the Fung model yields a value of approxi­
mately 20 kPa for the Young’s modulus of neonatal mouse 
ECM. For comparison, we also found a maximum value of 
3 kPa for the engineered constructs (Table 4). A survey of 
the literature shows these measurements to be within the 
range typical of immature native and statically engineered 
tissue. Some relevant results are listed in Table 5. Although 
the stiffness of the engineered cartilage appears to be signi­
ficantly less than that of the native tissue, a direct compari­
son between the two types of samples is not expedient due 
to differences in preparation. It is possible that even light 
fixation of the native cartilage may have a particularly mar­
ked effect on the mechanical properties of the cells, which 
contain various macromolecules that are susceptible to cross-
linking. In fact, the average elastic modulus we measured 
for the mouse chondrocytes (Table 4, using the Fung and 
Ogden models as the basis for comparison) is relatively high 
compared to values reported in the literature using a number 
of different techniques—see, e.g., comparison by Darling 
et al (2006), where the instantaneous Young’s modulus ran-

ged from 0.29 to 8 kPa, and results listed in Table 5. Despite 
the lack of surface plots and hence, a means of segregating 
indentations of chondrocytes from those performed on the 
matrix, our measurements on the engineered tissue indicate 
that the average elastic modulus of the cells is within the 
range of values reported by other investigators. 

The elastic moduli measured in this study are instanta­
neous values calculated using the loading data and disregar­
ding the effects of loading rate. For the tip velocity applied 
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Table 5 Reported values of Young’s modulus for engineered and immature native cartilage 

Reference Source of tissue and culture conditions Technique E (kPa) 

Ficklin et al. (2007) Newborn bovine knee joint patellofemoral groove explants, 

load applied normal to articular surface 

Macro compression 22 

Klein et al. (2007) Fetal and bovine knee joints, surface region Macro compression 28 

Park et al. (2004) 4–6 month old bovine humeral heads AFM indentation (Hertz model) 45.8 

Schinagl et al. (1997) Adult bovine knee joint patellofemoral groove, 

superficial layer 

Micro compression 79 

Darling et al. (2006) Porcine chondrocytes AFM indentation, micropipette aspiration 0.6–1.2 

Guilak et al. (2005) Adult canine hip joints, pericellular matrix (PCM) Micropipette aspiration 23–24 

Guilak et al. (1999) Adult human hip joints, pericellular matrix Micropipette aspiration 1.54 

Ng et al. (2007) Bovine chondrocytes cultured in growth 

factor stimulated medium 

AFM indentation (Hertz model) 0.7–1 (cells), 

0.1–4.15 (PCM) 

Huang et al. (2008) Engineered tissue from bovine chondrocytes, 

static culture, no growth factors 

Macro tension ∼20–107 

Janjanin et al. (2008) Engineered tissue from human bone marrow derived 

stem cells, bioreactor culture 

Macro compression ∼3–12 

Mauck et al. (2003) Engineered tissue from bovine chondrocytes, static 

and dynamically loaded culture 

Macro compression ∼20–186 

in our indentation of the PVA gels and soft tissues, use of 
indenters of different radii resulted in strain rates ( ε̇∗) varying 
from 0.08–0.11 s−1. It is reasonable to assume that there 
exists a threshold of ∗ ε̇ above which viscoelastic effects 
can be considered insignificant (Cheng and Cheng 2005; 
Franke et al. 2007). At the aforementioned rates, it is likely 
that most of the stress–strain response is independent of 
fluid flow, and therefore virtually elastic. In a study using 
bovine articular cartilage (DiSilvestro et al. 2001), it was 
found that peak reaction forces were dependent on strain rate 
(ε̇∗ =  0.0001–0.01 s−1), but instantaneous Young’s modulus 
was unaffected. For studies of creep-compliance, mathema­
tical methods such as utilization of the Laplace transform to 
map the time-dependent contact solution to a corresponding 
elastic solution (Lee 1955), can be extended to the elastic 
contact models in Table 2. This method was employed in the 
spherical indentation of chondrocytes (Darling et al. 2006). 
The hereditary integral operator approach proposed by Lee 
and Radok (1960), which has been applied to the indentation 
of polymers (Kumar and Narasimhan 2004; Lu et al. 2003; 
Oyen 2005; Tweedie and Van Vliet 2006) and soft tissues 
(Mattice et al. 2006), is generally regarded as more accu­
rate since it pertains to time-varying boundary conditions 
(Lu et al. 2003). 

Conclusions 

We have demonstrated the validity of the hyperelastic force-
indentation equations introduced herein for describing the 

indentation of materials that obey simple rubber elastic beha­
vior as exemplified by the PVA gels. The equations based 
on the Fung and Ogden models also show promise in 
modeling the indentation of biological tissues beyond the 
Hertzian regime. The relative simplicity of these closed-form 
equations makes them attractive for applications in biologi­
cal indentation, where the ability to detect local variations 
in elastic properties is of significant benefit. The combined 
numerical–analytical approach of deriving force-indentation 
equations can also be applied to other nonlinear elastic, 
stress–strain constitutive laws. 

Acknowledgments This work was supported by the Intramural 
Research Program of the NIH, NICHD. The authors are grateful to 
Dr. Edward Mertz of NICHD for providing the mouse cartilage samples 
and assisting in their preparation. 

References 

Aklonis JJ, MacKnight WJ (1983) Introduction to polymer viscoelas­
ticity. Wiley, New York 

Arruda EM, Boyce MC (1993) A three-dimensional constitutive 
model for the large deformation stretch behavior of rubber elas­
tic materials. J Mech Phys Solids 41:389–412. doi:10.1016/ 
0022-5096(93)90013-6 

Bilston LE, Thibault LE (1996) The mechanical properties of the human 
cervical spinal cord in vitro. Ann Biomed Eng 24:67–74. doi:10. 
1007/BF02770996 

Blatz PJ, Sharda SC, Tschoegl NW (1974) Strain energy function for 
rubberlike materials based on a generalized measure of strain. 
J Rheol (NYNY) 18:145–161. doi:10.1122/1.549353 

Briscoe BJ, Fiori L, Pelillo E (1998) Nano-indentation of polymeric 
surfaces. J Phys D 31:2395–2405. doi:10.1088/0022-3727/31/19/ 
006 

13
 

http://dx.doi.org/10.1016/0022-5096(93)90013-6
http://dx.doi.org/10.1016/0022-5096(93)90013-6
http://dx.doi.org/10.1007/BF02770996
http://dx.doi.org/10.1007/BF02770996
http://dx.doi.org/10.1122/1.549353
http://dx.doi.org/10.1088/0022-3727/31/19/006
http://dx.doi.org/10.1088/0022-3727/31/19/006


357 Spherical indentation of soft matter beyond the Hertzian regime 

Cheng Y, Cheng C (2005) Relationships between initial unloading 
slope, contact depth, and mechanical properties for spherical 
indentation in linear viscoelastic solids. Mater Sci Eng A 409:93– 
99. doi:10.1016/j.msea.2005.05.118 

Costa KD, Yin FCP (1999) Analysis of indentation: implications for 
measuring mechanical properties with atomic force microscopy. 
J Biomech Eng 121:462–471. doi:10.1115/1.2835074 

Darling EM, Zauscher S, Guilak G (2006) Viscoelastic properties of 
zonal articular chondrocytes measured by atomic force micro­
scopy. Osteoarthr Cartil 14:571–579. doi:10.1016/j.joca.2005.12. 
003 

DiSilvestro MR, Zhu Q, Suh JK (2001) Biphasic poroviscoelastic 
simulation of the unconfined compression of articular cartilage: 
II—Effect of variable strain rates. J Biomech Eng 123:198–200. 
doi:10.1115/1.1351887 

Ficklin T, Thomas G, Barthel JC, Asanbaeva A, Thonar EJ, Masuda K, 
Chen AC, Sah RL, Davol A, Klisch SM (2007) Articular cartilage 
mechanical and biochemical property relations before and after in 
vitro growth. J Biomech 40:3607–3614. doi:10.1016/j.jbiomech. 
2007.06.005 

Field JS, Swain MV (1995) Determining the mechanical properties of 
small volumes of material from submicrometer spherical indenta­
tions. J Mater Res 10:101–112. doi:10.1557/JMR.1995.0101 

Fischer-Cripps AC, Lawn BR (1996) Indentation stress–strain curves 
for “quasi-ductile” ceramics. Acta Mater 44:519–527. doi:10. 
1016/1359-6454(95)00204-9 

Franke O, Durst K, Maier V, Goken M, Birkholz T, Schneider H, Hennig 
F, Gelse K (2007) Mechanical properties of hyaline and repair 
cartilage studied by nanoindentation. Acta Biomater 3:873–881. 
doi:10.1016/j.actbio.2007.04.005 

Fung YC (1967) Elasticity of soft tissues in simple elongation. Am J 
Physiol 213:1532–1544 

Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries 
and the choice of its mathematical expression. Am J Physiol 
237:H620–H631 

Gaylord RJ, Douglas JF (1987) Robber elasticity: a scaling approach. 
Polym Bull 18:347–354. doi:10.1007/BF00256236 

Gaylord RJ, Douglas JF (1990) The localisation model of rubber elas­
ticity. II. Polym Bull 23:529–533. doi:10.1007/BF00419973 

Gent A (1996) A new constitutive relation for rubber. Rubber Chem 
Technol 69:59–61 

Guilak F, Jones WR, Ting-Beall HP, Lee GM (1999) The defor­
mation behavior and mechanical properties of chondrocytes in 
articular cartilage. Osteoarthr Cartil 7:59–70. doi:10.1053/joca. 
1998.0162 

Guilak F, Alexopoulos LG, Haider MA, Ting-Beall HP, Setton LA 
(2005) Zonal uniformity in mechanical properties of the chondro­
cyte pericellular matrix: micropipette aspiration of canine chon­
drons isolated by cartilage homogenization. Ann Biomed Eng 
33:1312–1318. doi:10.1007/s10439-005-4479-7 

Gurer C, Tschoegl NW (1985) Behavior of elastomer networks in mode­
rately large deformations. 2. Determination of the parameters of 
the elastic potential from measurements in small deformations. 
Macromolecules 18:687–690. doi:10.1021/ma00146a019 

Han WH, Horkay F, McKenna GB (1999) Mechanical and swelling 
behaviors of rubber: a comparison of some molecular models 
with experiment. Math Mech Solids 4:139–167. doi:10.1177/ 
108128659900400201 

Herbert EG, Pharr GM, Oliver WC, Lucas BN, Hay JL (2001) 
On the measurement of stress–strain curves by spherical 
indentation. Thin Solid Films 398–399:331–335. doi:10.1016/ 
S0040-6090(01)01439-0 

Hochstetter G, Jimenez A, Cano JP, Felder E (2003) An attempt 
to determine the true stress–strain curves of amorphous poly­
mers by nanoindentation. Tribol Int 36:973–985. doi:10.1016/ 
S0301-679X(03)00107-5 

Horkay F, Nagy M (1980) Elasticity of swollen polyvinyl alcohol and 
poly(vinyl acetate) networks. Polym Bull 3:457–463. doi:10.1007/ 
BF00283821 

Horkay F, McKenna GB (2007) Polymer networks and gels. In: Mark 
JE (ed) Physical properties of polymers handbook. Springer, 
New York 

Horkay F, Horkayne-Szakaly I, Basser PJ (2005) Measurement 
of the osmotic properties of thin polymer films and biologi­
cal tissue samples. Biomacromolecules 6:988–993. doi:10.1021/ 
bm049332c 

Huang AH, Yeger-McKeever M, Stein A, Mauck RL (2008) Tensile 
properties of engineered cartilage formed from chondrocyte­
and MSC-laden hydrogels. Osteoarthr Cartil 16:1074–1082. doi:
10.1016/j.joca.2008.02.005 

Iwashita N, Swain MV, Field JS, Ohta N, Bitoh S (2001) 
Elasto-plastic deformation of glass-like carbons heat-treated 
at different temperatures. Carbon 39:1525–1532. doi:10.1016/ 
S0008-6223(00)00272-4 

Janjanin S, Li WJ, Morgan MT, Shanti RM, Tuan RS (2008) Mold-
shaped, nanofiber scaffold-based cartilage engineering using 
human mesenchymal stem cells and bioreactor. J Surg Res 149:47– 
56. doi:10.1016/j.jss.2007.12.788 

Johnson KL (1985) Contact mechanics. Cambridge University Press, 
Cambridge 

Kilian HG (1985) An interpretation	 of the strain-invariants in largely 
strained networks. Colloid Polym Sci 263:30–34. doi:10.1007/ 
BF01411245 

Klein TJ, Chaudhry M, Bae WC, Sah RL (2007) Depth-dependent 
biomechanical and biochemical properties of fetal, newborn, 
and tissue-engineered articular cartilage. J Biomech 40:182–190. 
doi:10.1016/j.jbiomech.2005.11.002 

Kumar MV, Narasimhan R (2004) Analysis of spherical indentation of 
linear viscoelastic materials. Curr Sci 87:1088–1095 

Lee EH (1955) Stress analysis in visco-elastic bodies. Q Appl Math 
13:183–190 

Lee EH, Radok JRM (1960) The contact problem for viscoelastic 
bodies. J Appl Mech 27:438–444 

Lin DC, Dimitriadis EK, Horkay F (2007a) Robust strategies for auto­
mated AFM force curve analysis—I. Non-adhesive indentation 
of soft, inhomogeneous materials. J Biomech Eng 129:430–440. 
doi:10.1115/1.2720924 

Lin DC, Dimitriadis EK, Horkay F (2007b) Elasticity of rubber-like 
materials measured by AFM nanoindentation. Express Polym Lett 
1:576–584. doi:10.3144/expresspolymlett.2007.79 

Lu H, Wang B, Ma J, Huang G, Viswanathan H (2003) Measure­
ment of creep compliance of solid polymers by nanoindentation. 
Mech Time-Depend Mater 7:189–207. doi:10.1023/B:MTDM. 
0000007217.07156.9b 

Maikos JT, Elias RA, Shreiber DI (2008) Mechanical properties of dura 
mater from the rat brain and spinal cord. J Neurotrauma 25:38–51. 
doi:10.1089/neu.2007.0348 

Mattice JM, Lau AG, Oyen ML, Kent RW (2006) Spherical indentation 
load-relaxation of soft biological tissues. J Mater Res 21:2003– 
2010. doi:10.1557/jmr.2006.0243 

Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT (2003) The 
role of cell seeding density and nutrient supply for articular car­
tilage tissue engineering with deformational loading. Osteoarthr 
Cartil 11:879–890. doi:10.1016/j.joca.2003.08.006 

Mesarovic SDJ, Fleck NA (1999) Spherical indentation of elastic– 
plastic solids. Proc R Soc Lond A Math Phys Eng Sci. doi:
10.1098/rspa.1999.0423 

Mooney M (1940) A theory of large elastic deformation. J Appl Phys 
11:582–592. doi:10.1063/1.1712836 

Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and 
stress relaxation of articular cartilage in compression. Theory and 
experiments. J Biomech Eng 102:73–84 

13
 

http://dx.doi.org/10.1016/j.msea.2005.05.118
http://dx.doi.org/10.1115/1.2835074
http://dx.doi.org/10.1016/j.joca.2005.12.003
http://dx.doi.org/10.1016/j.joca.2005.12.003
http://dx.doi.org/10.1115/1.1351887
http://dx.doi.org/10.1016/j.jbiomech.2007.06.005
http://dx.doi.org/10.1016/j.jbiomech.2007.06.005
http://dx.doi.org/10.1557/JMR.1995.0101
http://dx.doi.org/10.1016/1359-6454(95)00204-9
http://dx.doi.org/10.1016/1359-6454(95)00204-9
http://dx.doi.org/10.1016/j.actbio.2007.04.005
http://dx.doi.org/10.1007/BF00256236
http://dx.doi.org/10.1007/BF00419973
http://dx.doi.org/10.1053/joca.1998.0162
http://dx.doi.org/10.1053/joca.1998.0162
http://dx.doi.org/10.1007/s10439-005-4479-7
http://dx.doi.org/10.1021/ma00146a019
http://dx.doi.org/10.1177/108128659900400201
http://dx.doi.org/10.1177/108128659900400201
http://dx.doi.org/10.1016/S0040-6090(01)01439-0
http://dx.doi.org/10.1016/S0040-6090(01)01439-0
http://dx.doi.org/10.1016/S0301-679X(03)00107-5
http://dx.doi.org/10.1016/S0301-679X(03)00107-5
http://dx.doi.org/10.1007/BF00283821
http://dx.doi.org/10.1007/BF00283821
http://dx.doi.org/10.1021/bm049332c
http://dx.doi.org/10.1021/bm049332c
http://dx.doi.org/10.1016/j.joca.2008.02.005
http://dx.doi.org/10.1016/S0008-6223(00)00272-4
http://dx.doi.org/10.1016/S0008-6223(00)00272-4
http://dx.doi.org/10.1016/j.jss.2007.12.788
http://dx.doi.org/10.1007/BF01411245
http://dx.doi.org/10.1007/BF01411245
http://dx.doi.org/10.1016/j.jbiomech.2005.11.002
http://dx.doi.org/10.1115/1.2720924
http://dx.doi.org/10.3144/expresspolymlett.2007.79
http://dx.doi.org/10.1023/B:MTDM.0000007217.07156.9b
http://dx.doi.org/10.1023/B:MTDM.0000007217.07156.9b
http://dx.doi.org/10.1089/neu.2007.0348
http://dx.doi.org/10.1557/jmr.2006.0243
http://dx.doi.org/10.1016/j.joca.2003.08.006
http://dx.doi.org/10.1098/rspa.1999.0423
http://dx.doi.org/10.1063/1.1712836


358 D. C. Lin et al. 

Ng L, Hung HH, Sprunt A, Chubinskaya S, Ortiz C, Grodzinsky 
A (2007) Nanomechanical properties of individual chondrocytes 
and their developing growth factor-stimulated pericellular matrix. 
J Biomech 40:1011–1023. doi:10.1016/j.jbiomech.2006.04.004 

Ogden RW (1972) Large deformation isotropic elasticity—on the cor­
relation of theory and experiment for incompressible rubberlike 
solids. Proc R Soc Lond A Math Phys Sci 326:565–584. doi:10. 
1098/rspa.1972.0026 

Oyen ML (2005) Spherical indentation creep following ramp loading. 
J Mater Res 20:2094–2100. doi:10.1557/JMR.2005.0259 

Pandit A, Lu X, Wang C, Kassab GS (2005) Biaxial elastic material 
properties of porcine coronary media and adventitia. Am J Phy­
siol Heart Circ Physiol 288:H2581–H2587. doi:10.1152/ajpheart. 
00648.2004 

Park S, Costa KD, Ateshian GA (2004) Microscale frictional response 
of bovine articular cartilage from atomic force microscopy. J Bio­
mech 37:1679–1687. doi:10.1016/j.jbiomech.2004.02.017 

Prange MT, Margulies SS (2002) Regional, directional, and age-
dependent properties of the brain undergoing large deformation. 
J Biomech Eng 124:244–252. doi:10.1115/1.1449907 

Rivlin RS, Saunders DW (1951) Large elastic deformations of isotropic 
materials. VII. Experiments on the deformation of rubber. Philos 
Trans R Soc A 243:251–288. doi:10.1098/rsta.1951.0004 

Schinagl RM, Gurskis D, Chen AC, Sah RL (1997) Depth-dependent 
confined compression modulus of full-thickness bovine articular 
cartilage. J Orthop Res 15:499–506. doi:10.1002/jor.1100150404 

Schulze-Bauer CA, Regitnig P, Holzapfel GA (2002) Mechanics of the 
human femoral adventitia including the high-pressure response. 
Am J Physiol Heart Circ Physiol 282:H2427–H2440. doi:10.1152/ 
ajpheart.00397.2001 

Sperling LH (2001) Introduction to physical polymer science, 3rd edn. 
Wiley, New York 

Storm C, Pastore JJ, MacKintosh FC, Lebensky TC, Janmey PA 
(2005) Nonlinear elasticity in biological gels. Nature 435:191– 
194. doi:10.1038/nature03521 

Swain MV, Hagan JT (1976) Indentation plasticity and the ensuing 
fracture of glass. J Phys D 9:2201–2214. doi:10.1088/0022-3727/ 
9/15/011 

Tabor D (1948) A simple theory of static and dynamic hardness. Proc R 
Soc Lond A Math Phys Sci 192:247–274. doi:10.1098/rspa.1948. 
0008 

Tabor D (1951) The hardness of metals. Oxford University Press, 
Oxford 

Taljat B, Zacharia T, Kosel F (1998) New analytical procedure 
to determine stress–strain curve from spherical indentation 
data. Int J Solids Struct 35:4411–4426. doi:10.1016/S0020­
7683(97)00249-7 

Treloar LRG (1947) The photo-elastic properties of rubber. Part I: 
Theory of the optical properties of strained rubber. Trans Fara­
day Soc 43:277–283. doi:10.1039/tf9474300277 

Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Oxford 
University Press, Oxford 

Tschoegl NW, Gurer C (1985) Behavior of elastomer networks in mode­
rately large deformations. 1. Elastic equilibrium. Macromolecules 
18:680–687. doi:10.1021/ma00146a018 

Tweedie CA, Van Vliet KJ (2006) Contact creep compliance of viscoe­
lastic materials via nanoindentation. J Mater Res 21:1576–1589. 
doi:10.1557/jmr.2006.0197 

Zhang K, Siegmund T, Chan RW (2006) A constitutive model of the 
human vocal fold cover for fundamental frequency regulation. 
J Acoust Soc Am 119:1050–1062. doi:10.1121/1.2159433 

13
 

http://dx.doi.org/10.1016/j.jbiomech.2006.04.004
http://dx.doi.org/10.1098/rspa.1972.0026
http://dx.doi.org/10.1098/rspa.1972.0026
http://dx.doi.org/10.1557/JMR.2005.0259
http://dx.doi.org/10.1152/ajpheart.00648.2004
http://dx.doi.org/10.1152/ajpheart.00648.2004
http://dx.doi.org/10.1016/j.jbiomech.2004.02.017
http://dx.doi.org/10.1115/1.1449907
http://dx.doi.org/10.1098/rsta.1951.0004
http://dx.doi.org/10.1002/jor.1100150404
http://dx.doi.org/10.1152/ajpheart.00397.2001
http://dx.doi.org/10.1152/ajpheart.00397.2001
http://dx.doi.org/10.1038/nature03521
http://dx.doi.org/10.1088/0022-3727/9/15/011
http://dx.doi.org/10.1088/0022-3727/9/15/011
http://dx.doi.org/10.1098/rspa.1948.0008
http://dx.doi.org/10.1098/rspa.1948.0008
http://dx.doi.org/10.1016/S0020-7683(97)00249-7
http://dx.doi.org/10.1016/S0020-7683(97)00249-7
http://dx.doi.org/10.1039/tf9474300277
http://dx.doi.org/10.1021/ma00146a018
http://dx.doi.org/10.1557/jmr.2006.0197
http://dx.doi.org/10.1121/1.2159433

	Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models
	Abstract
	Keywords

	1 Introduction
	2 Theory
	2.1 Contact mechanics
	2.2 Hyperelastic models

	3 Materials and methods
	3.1 Finite element modeling
	3.2 Synthetic gels
	3.3 Mouse articular cartilage
	3.4 Tissue-engineered cartilage
	3.5 AFM microindentation

	4 Results
	5 Discussion
	Acknowledgments
	References



