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Solving 2D Fredholm Integral from Incomplete Measurements Using
Compressive Sensing∗

Alexander Cloninger†, Wojciech Czaja†, Ruiliang Bai‡, and Peter J. Basser§

Abstract. We present an algorithm to solve the two-dimensional Fredholm integral of the first kind with tensor
product structure from a limited number of measurements, with the goal of using this method
to speed up nuclear magnetic resonance spectroscopy. This is done by incorporating compressive
sensing–type arguments to fill in missing measurements, using a priori knowledge of the structure of
the data. In the first step we recover a compressed data matrix from measurements that form a tight
frame, and establish that these measurements satisfy the restricted isometry property. Recovery can
be done from as few as 10% of the total measurements. In the second and third steps, we solve
the zeroth-order regularization minimization problem using the Venkataramanan–Song–Hürlimann
algorithm. We demonstrate the performance of this algorithm on simulated data and show that our
approach is a realistic approach to speeding up the data acquisition.
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1. Introduction. We present a method of solving the two-dimensional (2D) Fredholm
integral of the first kind from a limited number of measurements. This is particularly useful
in the field of nuclear magnetic resonance (NMR), in which making a sufficient number of
measurements takes several hours. Our work is an extension of the algorithm in [56] based on
the new idea of matrix completion; cf. [10, 29, 52].

A 2D Fredholm integral of the first kind is written as

g(x, y) =

∫ ∫
k1(x, s)k2(y, t)f(s, t)dsdt,
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where k1 and k2 are continuous Hilbert–Schmidt kernel functions and f, g ∈ L2(R2); cf. [27].
2D Fourier, Laplace, and Hankel transforms are all common examples of Fredholm integral
equations. Applications of these transformations arise in any number of fields, including
methods for solving PDEs [31], image deblurring [4, 38], and moment generating functions
[40]. This paper specifically focuses on Laplace-type transforms, where the kernel singular
values decay quickly to zero.

To present the main idea of the problem, the data M is measured over sampling times τ1
and τ2 and is related to the object of interest F(x, y) by a 2D Fredholm integral of the first
kind with a tensor product kernel,

M(τ1, τ2) =

∫ ∫
k1(x, τ1)k2(y, τ2)F(x, y)dxdy + ε(τ1, τ2),

where ε(τ1, τ2) is assumed to be Gaussian white noise. In most applications, including NMR,
the kernels k1 and k2 are explicit functions that are known to be smooth and continuous a
priori. Solving a Fredholm integral with smooth kernels is an ill-conditioned problem, since
the kernel’s singular values decay quickly to zero [34]. This makes the problem particularly
interesting, as small variations in the data can lead to large fluctuations in the solution.

For our purposes, F(x, y) represents the joint probability density function of the variables
x and y. Specifically in NMR, x and y can be the measurements of the two combination
of the longitudinal relaxation time T1, transverse relaxation time T2, diffusion D, and other
dynamic properties. Knowledge of the correlation of these properties of a sample is used to
identify its microstructure properties and dynamics [6].

This paper focuses on the discretized version of the 2D Fredholm integral,

M = K1FK ′
2 +E,(1.1)

where our data is the matrix M ∈ R
N1×N2 , matrices K1 ∈ R

N1×Nx and K2 ∈ R
N2×Ny

are discretized versions of the smooth kernels k1 and k2, and the matrix F ∈ R
Nx×Ny is

the discretized version of the probability density function F(x, y) which we are interested in
recovering. We also assume that each element of the Gaussian noise matrix E has zero mean
and constant variance. And since we have assumed that F(x, y) is a joint probability density
function, each element of F is nonnegative.

Venkataramanan, Song, and Hürlimann [56] laid out an efficient strategy for solving this
problem given complete knowledge of the data matrix M . The approach centers around
finding an intelligent way to solve the Tikhonov regularization problem,

F̂ = argmin
F≥0

‖M −K1FK ′
2‖2F + α‖F‖2F ,(1.2)

where ‖ · ‖F is the Frobenius norm.
There are three steps to the algorithm in [56] for solving (1.2).
1. Compress the data. Let the SVD of Ki be

Ki = UiSiV
′
i , i ∈ {1, 2}.

Because K1 and K2 are sampled from smooth functions k1 and k2, the singular values
decay quickly to 0. Let s1 be the number of nonzero singular values of K1, and let s2
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be the number of nonzero singular values of K2. Then Ui ∈ R
Ni×si and Si ∈ R

si×si

for i = 1, 2, as well as V1 ∈ R
Nx×s1 and V2 ∈ R

Ny×s2 .
The data matrix M can be projected onto the column space of K1 and the row space
of K2 by U1U

′
1MU2U

′
2. We denote this as M̃ = U ′

1MU2. The Tikhonov regularization
problem (1.2) is now rewritten as

F̂ = argmin
F≥0

‖U1M̃U ′
2 − U1U

′
1K1FK ′

2U2U
′
2‖2F + ‖M‖2F − ‖U1M̃U ′

2‖2F + α‖F‖2F(1.3)

= argmin
F≥0

‖M̃ − (S1V
′
1)F (S2V

′
2)

′‖2F + α‖F‖2F ,(1.4)

where (1.4) comes from U1 and U2 having orthogonal columns, and the second and

third terms in (1.3) being independent of F . The key note here is that M̃ ∈ R
s1×s2 ,

which significantly reduces the complexity of the computations.
2. Optimization. For a given value of α, (1.4) has a unique solution due to the second

term being quadratic. We shall detail the method of finding this solution in section 4.
3. Choosing α. Once (1.4) has been solved for a specific α, an update for α is chosen

based on the characteristics of the solution in step 2. Repeat steps 2 and 3 until
convergence. Again, this is detailed in section 4.

The approach in [56] assumes complete knowledge of the data matrix M . However, in
applications with NMR, there is a cost associated with collecting all the elements of M ,
namely, time. With the microstructure-related information contained in the multidimensional
diffusion-relaxation correlation spectrum of the biological sample [49, 22, 25, 20, 35, 54] and
high-resolution spatial information that magnetic resonance imaging (MRI) techniques can
provide, there is a need to combine the multidimensional correlation spectra NMR with 2D/3D
MRI for preclinical and clinical applications [21]. Without any acceleration, however, it could
take several days to acquire this data.

In practice, the potential pulse sequences for the combined multidimensional diffusion-
relaxation MRI would be single spin echo (90◦–180◦ acquisition and spatial localization) with
saturation, inversion recovery, driven-equilibrium preparation to measure T1-T2 correlation,
and diffusion weighting preparation for D-T2 measurements. With these MRI pulse sequences,
a single point in the 2D T1-T2 or D-T2 space is acquired for each “shot,” and the total
time for the sampling of the T1-T2 or D-T2 space is determined directly by the number of
measurements required to recover F from (1.2). A vastly reduced number of sample points in
M , together with rapid MRI acquisition techniques, which can include, e.g., parallel imaging
[50], echo planar imaging (EPI) [24], gradient-recalled echo [36], and sparse sampling with
compressed sensing [45], could reduce the total experiment time sufficiently to make this
promising technique practicable for preclinical and clinical in vivo studies.

Notice that, despite collecting all N1 × N2 data points in M , step 1 of the algorithm
immediately throws away a large amount of that information, reducing the number of data
points to a matrix of size s1 × s2. M̃ is effectively a compressed version of the original M ,
containing the same information in a smaller number of entries. But this raises the question
of why all of M must be collected when a large amount of information is immediately thrown
away, since we are interested only in M̃ .

This question is what motivates the introduction of a compressive sensing–type approach.
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The task is to undersample signals that are “compressible,” meaning that the signal is sparse
in some basis representation [12, 11, 23]. The problem of recovering M falls into a subset of
this field known as low-rank matrix completion; see [10, 29, 14].

An n×n matrix X that is rank r requires approximately nr parameters to be completely
specified. If r � n, then X is seen as being compressible, as the number of parameters needed
to specify it is much less than its n2 entries. It is less clear how to recover X from a limited
number of coefficients efficiently. But the results of [10] showed that it is possible to recover X
from, up to a constant, nr log(n) measurements by employing a simple optimization problem.
These findings were inspired, at least in part, by [12, 11]. Also, the types of measurements
we utilize in this paper, operator bases with bounded norm, originated via quantum state
tomography [30].

Compressive sensing has been used in various forms of medical imaging for several years.
The authors of [45] originally proposed speeding up MRI acquisition. The authors of [47]
introduced group sparsity into consideration for accelerating T2-weighted MR. Finally, the
authors of [55, 39] both introduced basic ideas of compressive sensing into the NMR framework
and attained promising results, but the results did not utilize the matrix completion aspect
of the physical problem and did not introduce any theoretical guarantees for reconstruction.

This paper develops an alternative to [56] which incorporates matrix completion in order

to recover M̃ from significantly fewer measurements. It is organized as follows. Section 2
examines how recovery of M̃ fits into existing theory and shows that data from the 2D Fred-
holm integral can be recovered from 10% of the measurements. Section 3 covers the practical
considerations of the problem and discusses the error created by our reconstruction. Section 4
covers the algorithms used to solve the low-rank minimization problem and invert the 2D
Fredholm integral to obtain F . Section 5 shows the effectiveness of this reconstruction on
simulated data. Appendix A contains a detailed proof of the central theorem of this paper.

2. Data recovery using matrix completion.

2.1. Background for matrix completion. The problem of matrix completion has been in
the center of scientific interest and activity in recent years [10, 26, 29, 51, 5, 9, 13, 7]. The
basic problem revolves around trying to recover a matrix X0 ∈ R

n1×n2 from only a fraction of
the N1 × N2 measurements required to observe each element of M . Without any additional
assumptions, this is an ill-posed problem. However, there have been a number of attempts
to add natural assumptions to make this problem well-posed. Other than assuming that X0

is low rank, as we mentioned in section 1, there are assumptions that X0 is positive definite
[28, 42], or that X0 is a distance matrix [2], or that X0 has a nonnegative factorization [57].
A survey of some of these other methods can be found in [37].

For our purposes, we shall focus on low-rank matrix completion, as that is the most natural.
Let X0 be rank r. Consider a linear operator A : Rn1×n2 → R

m. Then our observations take
the form

y = A(X0) + z, ‖z‖2 ≤ ε,(2.1)

where z represents a noise vector that is typically white noise, though not necessarily.
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The naive way to proceed would be to solve the nonlinear optimization problem

min rank(Z)
such that ‖A(Z)− y‖2 ≤ ε.

(2.2)

However, the objective function rank(Z) makes the problem NP-hard. So instead we define
the convex envelope of the rank function.

Definition 2.1. Let σi(X) be the ith singular value of a rank r matrix X. Then the nuclear
norm of X is

‖X‖∗ :=

r∑
i=1

σi(X).

We now proceed by attempting to solve the convex relaxation of (2.2),

min ‖Z‖∗
such that ‖A(Z)− y‖2 ≤ ε.

(2.3)

As with traditional compressive sensing, there exists a restricted isometry property (RIP)
over the set of matrices of rank r.

Definition 2.2. A linear operator A : Rn1×n2 → R
m satisfies the RIP of rank r with isometry

constant δr if, for all rank r matrices X,

(1− δr)‖X‖F ≤ ‖A(X)‖2 ≤ (1 + δr)‖X‖F .

The RIP has been shown to be a sufficient condition for solving (2.3) [52, 8, 26]. These
papers build on each other to establish the following theorem.

Theorem 2.3. Let X0 be an arbitrary matrix in C
m×n. Assume that δ5r < 1/10. Then the

X̂ obtained from solving (2.3) obeys

‖X̂ −X0‖F ≤ C0
‖X0 −X0,r‖∗√

r
+ C1ε,(2.4)

where X0,r is the best r rank approximation to X0, and C0, C1 are small constants depending
only on the isometry constant.

This means that, if the measurement operator A satisfies RIP, then reconstruction via
convex optimization behaves stably in the presence of noise. This result is very important in
the context of the 2D Fredholm problem, as inversion of the Fredholm integral is very sensitive
to noise. The bound in (2.4) guarantees that our reconstructed data behaves stably and will
not create excess noise that would cause issues in the inversion process.

2.2. Matrix completion applied to NMR. For the NMR problem, let us say that

(2.5)
M = K1FK ′

2 + E

= U1M̃0U
′
2 + E,
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where Ui ∈ R
Ni×si , M̃ ∈ R

s1×s2 , and E ∈ R
N1×N2 . This means that

M̃0 = S1V
′
1FV2S2.(2.6)

To subsample the data matrix M , we shall observe it on random entries. Let Ω ⊂
{1, . . . , N1} × {1, . . . , N2} be the set of indices where we observe M . For |Ω| = m, let the
indices be ordered as Ω = {(ik, jk)}mk=1. Then we define the masking operator AΩ as

AΩ : RN1×N2 → R
m,

(AΩ(X))k = Xik ,jk .

Recall that the goal is to recover M̃0. This means that our actual sampling operator is

RΩ : Rs1×s2 → R
m,

RΩ(X) = AΩ(U1XU ′
2).

Now the problem of speeding up NMR can be written as an attempt to recover M̃0 from
measurements

y = RΩ(M̃0) + e, ‖e‖2 ≤ ε.(2.7)

Note that [56] is assuming Ω = {1, . . . , N1} × {1, . . . , N2}, making the sampling operator

RΩ(M̃) = U1M̃U ′
2.

Then in the notation of this NMR problem, our recovery step takes the form

min ‖Z‖∗
such that ‖RΩ(Z)− y‖2 ≤ ε.

(2.8)

Now the key question becomes whether RΩ satisfies the RIP. As we said in section 2.1,
the RIP is a sufficient condition for an operator to satisfy the noise bounds of Theorem 2.3.
Without this, there is no guarantee that solving (2.8) yields an accurate prediction of M̃ . For
this reason, the rest of this section shall focus on proving that RΩ is an RIP operator.

First, we must define the notion of a Parseval tight frame.
Definition 2.4. A Parseval tight frame for a d-dimensional Hilbert space H is a collection

of elements {φj}j∈J ⊂ H for an index set J such that∑
j∈J

|〈f, φj〉|2 = ‖f‖2 ∀f ∈ H.

This automatically forces |J | ≥ d.
This definition is very closely related to the idea of an orthonormal basis. In fact, if

|J | = d, then {φj}j∈J would be an orthonormal basis. This definition can be thought of as a
generalization. Frames have the benefit of giving overcomplete representations of the function
f , making them much more robust to errors and erasures than orthonormal bases [17, 41, 15].
This redundancy is exactly what we will be taking advantage of in Theorem 2.6.

Further, we introduce a definition used in [29].
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Definition 2.5. A bounded norm Parseval tight frame with incoherence μ is a Parseval tight
frame {φj}j∈J on C

d×d that also satisfies

‖φj‖2 ≤ μ
d

|J | ∀j ∈ J.(2.9)

The paper [29] defines this type of bound on an orthonormal basis. Note that, in the case
of {φj}j∈J being an orthonormal basis, |J | = d2, reducing the bound in (2.9) to ‖φj‖2 ≤ μ/d,
as in the case of [29].

Now notice that in our problem, ignoring noise, each observation can be written as

Mj,k = (uj1)M̃0(u
k
2)

′

= 〈(uj1)′(uk2), M̃0〉,
where uj1 (resp., u

j
2) is the jth row of U1 (resp., U2). Noting that U1 and U2 are left orthogonal

(i.e., U ′
iUi = Idsi), one can immediately show that {(uj1)′(uk2)}(j,k)∈ZN1

×ZN2
forms a Parseval

tight frame for Rs1×s2 . Also, because K1 and K2 are discretized versions of smooth continuous
functions, {(ui1)′(uj2)} are a bounded norm frame for a reasonable constant μ (see further
discussion of μ in section 3.2). Thus, RΩ is generated by randomly selecting measurements
from a bounded norm Parseval tight frame.

We now have the necessary notation to state our central theorem, which establishes bounds
on the quality of reconstruction from (2.8) in the presence of noise. The theorem and proof
rely on a generalization of [44], which only assumes the measurements to be orthonormal basis
elements.

It is interesting to note that, because our measurements are overcomplete (|J | > s1s2),
our system of equations is not necessarily underdetermined. However, Theorem 2.6 still gives
guarantees on how the reconstruction scales with the noise, regardless of this detail. This is
a difference from most compressive sensing literature. Generally the goal is to show that an
underdetermined system has a stable solution. In our case we are showing that, regardless of
whether or not the system is underdetermined, our reconstruction is stable in the presence of
noise and the reconstruction error decreases monotonically with the number of measurements.

Theorem 2.6. Let {φj}j∈J ⊂ C
s1×s2 be a bounded norm Parseval tight frame, with incoher-

ence parameter μ. Let n = max(s1, s2), and let the number of measurements m satisfy

m ≥ Cμrn log5 n · log |J |,
where C is a constant. Let the sampling operator RΩ be defined for Ω ⊂ J , with Ω =
{i1, . . . , im}, as

RΩ : Cs1×s2 → C
m,

(RΩ(X))j = 〈φij ,X〉, j = 1, . . . ,m.

Let measurements y satisfy (2.7). Then, with probability greater than 1−e−Cδ2 over the choice

of Ω, the solution M̃ to (2.8) satisfies

‖M̃ − M̃0‖F ≤ C0
‖M̃0 − M̃0,r‖∗√

r
+ C1p

−1/2ε,(2.10)
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where p = m
|J | .

To prove this result, we need a key lemma, which establishes that our measurements satisfy
the RIP.

Lemma 2.7. Let {φj}j∈J ⊂ C
s1×s2 be a bounded norm Parseval tight frame, with inco-

herence parameter μ. Fix some 0 < δ < 1. Let n = max(s1, s2), and let the number of
measurements m satisfy

m ≥ Cμrn log5 n · log |J |,(2.11)

where C ∝ 1/δ2. Let the sampling operator RΩ be defined for Ω ⊂ J , with Ω = {i1, . . . , im},
as

RΩ : Cs1×s2 → C
m,

(RΩ(X))j = 〈φij ,X〉, j = 1, . . . ,m.

Then, with probability greater than 1− e−Cδ2 over the choice of Ω,
√

|J |
m RΩ satisfies the RIP

of rank r with isometry constant δ.
The proof of this lemma is found in Appendix A and follows [44], where the claim is

proved for an orthonormal basis. The main point here is to generalize the measurements to
a bounded norm Parseval tight frame (also mentioned in [48], however, not considering when
m > n2).

Proof of Theorem 2.6. We assume that Lemma 2.7 is true. Lemma 2.7 states that
√

|J |
m RΩ

satisfies the RIP. However, (2.8) is stated using only RΩ as the measurement operator.

This means we must include a scaling factor of
√ |J |

m to understand the noise bound. Let
p = m

|J | =
m

N1N2
be the percentage of elements observed. Then, to utilize the RIP, we must

try to solve the problem

min ‖Z‖∗
such that ‖p−1/2RΩ(Z)− p−1/2y‖2 ≤ p−1/2ε.

(2.12)

While scaling by a constant does not affect the result of the minimization problem, it does
help us better understand the error in our reconstruction.

Theorem 2.3 tells us that our reconstruction error is bounded by a constant multiple of
the error bound. But (2.12) means we can rewrite the error bound as

‖M̃ − M̃0‖F ≤ C0
‖M̃0 − M̃0,r‖∗√

r
+ C1p

−1/2ε,

thus attaining the desired inequality.
Remark 1. Examination of the proof of Lemma 2.7 shows that the bound on m in (2.11)

is actually not sharp. If one refers to (A.1) in Appendix A, m is actually bounded below by a
factor of logm. In (A.2) we simply overestimate this term with log |J | for simplicity. However,
in reality the bound is

m ≥ Cλμrn log5 n · logm.
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Let N = Cλμrn log5 n. This would give the bound m ≥ e−W−1(−1/N), where W−1 is the lower
branch of the Lambert W function [19]. Taking the first three terms of a series approximation
of W−1 in terms of log(1/N) and log(log(N)) [18] gives us

(2.13)

m ≥ e− log(1/N)elog(log(N))e
− log(log(N))

log(1/N)

= N log(N)e
− log(log(N))

log(1/N)

= Cλμrn log5 n · log(Cλμrn log5 n) · e
log(log(Cλμrn log5 n))

log(Cλμrn log5 n) .

Note that taking three terms is sufficient as each subsequent term is asymptotically small
compared to the previous. The bound in (2.13) is clearly much more intricate than simply
bounding by m ≥ Cλμrn log5 n log |J |, but for typical sizes of |J | in the Fredholm integral
setting, this results in m decreasing by less than 5% from its original size.

3. Numerical considerations. Section 2 gives theoretical guarantees about the error of
estimating M̃0 with the recovered M̃ . We shall address several issues related to practical
applications in this section. We shall let M̃0 be the original compressed data matrix we are
hoping to recover, and let M̃ be the approximation obtained by solving (2.8) for the sampling
operator RΩ. We consider the guarantee given in (2.4) term by term.

For the rest of this paper, we take the kernels K1 and K2 to be Laplace-type kernels with
quickly decaying singular values. For our purposes, we shall use the kernels k1(τ1, x) = 1 −
e−τ1/x and k2(τ2, y) = e−τ2/y to represent the general data structure of most multiexponential
NMR spectroscopy measurements. The same kernels shall be used in section 5 for simulations
and experiments. Also, τ1 is logarithmically sampled between 0.0005 and 4, and τ2 is linearly
sampled between 0.0002 and 0.4, as these are typical values in practice. Also for this section,
F is taken to be a two-peak distribution, namely Model 3 from section 5.

When needed, we set s1 = s2 = 20. This choice is determined by the discrete Picard
condition (DPC) [33]. For ill-conditioned kernel problems Kf = g, with {ui} denoting left
singular vectors of K and {σi} the corresponding singular values, the DPC guarantees that

the best reconstruction of f is given by keeping all σi �= 0 such that
|u∗

i g|
σi

on average decays
to zero as σi decrease. For our kernels with tensor product structure in (1.1), Figure 1 shows
the relevant singular values and vectors to keep. The s1 = s2 = 20 rectangle provides a close
estimate for what fits inside this curve, implying that at a minimum we could set s1 = s2 = 20
to satisfy the DPC. The DPC provides a stronger condition than simply keeping the largest
singular values or attempting to preserve some large percentage of the energy [32].

3.1. Noise bound in practice. Theorem 2.3 hinges on the assumption that δ5r < 1/10,
where δr is the isometry constant for rank r. This puts a constraint on the maximum size of r.
Let us denote that maximal rank by r0. If we knew a priori that M̃0 was at most rank r0, then

this term of
‖˜M0−˜M0,r‖∗√

r
would have zero contribution, as M̃0 = M̃0,r. However, because of

(2.6), M̃0 could theoretically be full rank, since S1 and S2 are decaying but not necessarily 0.
This problem is rectified by utilizing the knowledge that K1 and K2 have rapidly decaying

singular values. Figure 2 shows just how rapidly the singular values decay for a typical choice
of kernels and discretization points. This means M̃0 from (2.6) must have even more rapidly
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Figure 1. Points denote which singular values of K1 (rows of plot) and K2 (columns of plot) to keep in
order to satisfy the DPC for stable inversion.
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Figure 2. Plots of the singular value decay of the kernels. Left: K1. Right: K2.

decaying singular values, as V ′
1FV2 is multiplied by both S1 and S2. Figure 3 shows that the

singular values of M̃0 drop to zero almost immediately for a typical compressed data matrix.

This means that even for small r0,
‖˜M0−˜M0,r‖∗√

r
≤ ‖∑min(s1,s2)

i=r0+1 σi(M̃0)‖ is very close to

zero, as the tail singular values of M̃0 are almost exactly zero.

Figure 4 shows how the relative error decays for larger percentages of measurement, and
how that curve matches the predicted curve of p−1/2‖e‖2. One can see from this curve that
the rank r error does not play any significant role in the reconstruction error.

3.2. Incoherence. The incoherence parameter μ to bound the number of measurements in
(2.11) plays a vital role in determiningm in practice. It determines whether the measurements
{u′ivj} are viable for reconstruction from significantly reduced m, even though they form a
Parseval tight frame.

To show that μ does not make reconstruction prohibitive, we demonstrate on a typical
example of K1 and K2, as described at the beginning of this section.

Figure 5 shows the ‖φj‖2 |J |
n for each measurement {u′ivj} from the above description,

making μ = max ‖φj‖2 |J |
n = 89.9. While this bound on μ is not ideal, as it makes m > n2,

there are two important points to consider. First, as was mentioned in section 2.2, Theorem 2.3
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guarantees strong error bounds regardless of the system being underdetermined. Second, as
is shown in section 3.3, the estimate M̃ is still significantly better than a simple least squares
minimization, which in theory applies as the system isn’t underdetermined.

Also note from Figure 5 the fact that mean(‖φj‖2 |J |
n ) and median(‖φj‖2 |J |

n ) differ greatly

from max(‖φj‖2 |J |n ). This implies that, while a small number of the entries are somewhat
problematic and coherent with the elementary basis, the vast majority of terms are perfectly
incoherent. This implies that Theorem 2.3 is a nonoptimal lower bound on m. Future work
will be to examine the possibility of bounding m below with an average or median coherence,
or considering a reweighted nuclear norm sampling similar to [16]. Another possibility is to
examine the idea of asymptotic incoherence [1].



1786 A. CLONINGER, W. CZAJA, R. BAI, AND P. J. BASSER

0 2 4 6 8 10 12

x 10
4

0

20

40

60

80

100

Enumeration of Frame Elements

||φ
i||⋅

|J
| /

 d

Figure 5. Plot of ‖u′
ivj‖ |J|

n
for each measurement element from the NMR problem.

3.3. Least squares comparison. One could also attempt to solve for M̃0 using a least
squares algorithm on the observed measurements via the Moore–Penrose pseudoinverse. How-
ever, as we shall show, due to noise and ill-conditioning, this is not a viable alternative to the
nuclear norm minimization algorithm employed throughout this paper. As an example, we
shall again use K1 and K2 as described in the beginning of this section. The noise shall range
over various signal-to-noise ratios (SNRs).

We will consider a noisy estimate M̃ of the compressed matrix M̃0, generated through the
pseudoinverse, nuclear norm minimization, or simply the projection of a full set of measure-
ments M via U ′

1MU2. Figure 6 shows the relative error of each of these recoveries, defining
error to be

‖M̃0 − M̃‖F
‖M̃0‖F

.

Clearly, nuclear norm minimization, even for a small fraction of measurements kept, mirrors
the full measurement compression almost perfectly, as was shown in Figure 4. However, the
least squares minimization error is drastically higher. Even at 20% measurements kept, the
difference in error between least squares reconstruction and the full measurement projection
error is 4 times higher than the difference between nuclear norm reconstruction and the full
measurement projection error.

4. Algorithm. The algorithm for solving for F in (1.1) from partial data consists of three
steps. An overview of the original algorithm in [56] is in section 1. Our modification and the
specifics of each step are detailed below.

1. Construct M̃ from given measurements. Let y = RΩ(M̃0) + e be the set of observed
measurements, as in (2.7). Even though section 2 makes guarantees for solving (2.8),
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Figure 6. Relative error of least squares approximation compared to nuclear norm minimization versus
percentage of measurements kept. Left: SNR = 15dB. Center: SNR = 25dB. Right: SNR = 35dB.

we can instead solve the relaxed Lagrangian form

minμ‖X‖∗ + 1

2
‖RΩ(X)− y‖22.(4.1)

To solve (4.1), we use the singular value thresholding algorithm from [5, 46]. To do
this, we need some notation. Let the matrix derivative of the L2 norm term be written
as

g(X) = R∗
Ω(RΩ(X)− y)

= U ′
1(A∗

Ω(AΩ(U1XU ′
2)− y))U2.

We also need the singular value thresholding operator Sν that reduces each singular
value of some matrix X by ν. In other words, if the SVD of X = UΣV ′, then

Sν(X) = U Σ̃V ′,Σ̃i,j =

{
max(Σi,i − ν, 0), i = j,
0 otherwise.

Using this notation, the algorithm can then be written as a simple, two-step iterative
process. Choose a τ > 0. Then, for any initial condition, solve the iterative process

{
Y k = Xk − τg(Xk),
Xk+1 = Sτμ(Y

k).
(4.2)

The choices of τ and μ are detailed in [46], along with adaptations of this method that
speed up convergence. However, this method is guaranteed to converge to the correct
solution.
This means that, given partial observations y, the iteration scheme in (4.2) converges

to a matrix M̃ , which is a good approximation of M̃ +0. Once M̃ has been generated,
we recover F by solving

argmin
F≥0

‖M̃ − (S1V
′
1)F (S2V

′
2)

′‖2F + α‖F‖2F .(4.3)
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2. Optimization. For a given value of α, (4.3) has a unique solution due to the second
term being quadratic. This constrained optimization problem is then mapped onto an
unconstrained optimization problem for estimating a vector c.
Let f be the vectorized version of F and m be a vectorized version of M̃ . Then we
define the vector c from f implicitly by

f = max(0,K ′c), where K = (S1V
′
1)⊗ (S2V

′
2).

Here, ⊗ denotes the Kronecker product of two matrices. This definition of c comes from
the constraint that F ≥ 0 in (4.3), which can now be reformed as the unconstrained
minimization problem

min

(
1

2
c′[G(c) + αI]c− c′m

)
,(4.4)

where

G(c) = K

⎡
⎢⎢⎢⎣

H(K ′
1,·c) 0 · · · 0

0 H(K ′
2,·c) · · · 0

...
...

...
0 0 · · · H(K ′

Nx×Ny,·c)

⎤
⎥⎥⎥⎦K ′

and H(x) is the Heaviside function. Also, Ki,· denotes the ith row of K. The opti-
mization problem (4.4) is solved using a simple gradient descent algorithm.

3. Choosing α. There are several methods for choosing the optimal value of α.
• Butler–Reeds–Dawson (BRD) method. Once an iteration of step 2 has been com-

pleted, it is shown in [56] that a better value of α can be calculated by

αopt =

√
s1s2
‖c‖ .

If one iterates between step 2 and the BRD method, the value of α converges
to an optimal value. This method is very fast; however, it can have convergence
issues in the presence of large amounts of noise, as well as on real data [53].

• S-curve. Let Fα be the value returned from step 2 for a fixed α. The choice of
α should be large enough that Fα is not being overfitted and unstable to noise,
yet small enough that Fα actually matches reality. This is done by examining the
“fit error”

χ(α) = ‖M −K1FαK
′
2‖F .

This is effectively calculating the standard deviation of the resulting reconstruc-
tion. Plotting χ(α) for various values of α generates an S-curve, as shown in
Figure 7. The interesting value of α occurs at the bottom “heel” of the curve
(i.e., d logχ(α)

d logα ≈ .1). This is because, at αheel, the fit error is no longer demon-

strating overfitting as it is to the left of αheel, yet is still matching the original
data, unlike to the right of αheel. This method is slower than the BRD method;
however, it is usually more stable in the presence of noise.

For the rest of this paper, we use the S-curve method of choosing α.
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5. Simulation results. In our simulations, we shall use the kernels k1(τ1, x) = 1− e−τ1/x

and k2(τ2, y) = e−τ2/y and sample τ1 logarithmically and τ2 linearly, as was done in section 3.
Our simulations revolve around inverting subsampled simulated data to recover the density
function F (x, y). We shall test three models of F (x, y). In Model 1, F (x, y) is a small variance
Gaussian. In Model 2, F (x, y) is a positively correlated density function. In Model 3, F (x, y)
is a two-peak density, one peak being a small circular Gaussian and the other being a ridge
with positive correlation.

The data is generated for a model of F (x, y) by discretizing F and computing

M = K1FK ′
2 +E,

where E is Gaussian noise. That data is then randomly subsampled by keeping only a λ
fraction of the entries.

Each true model density F (x, y) is sampled logarithmically in x and y. τ1 is logarithmically
sampled N1 = 30 times, and τ2 is linearly sampled N2 = 4000 times. Each model is examined
for various SNRs and values of λ, and α is chosen using the S-curve approach for each trial.

Let us also define the signal-to-noise ratio (SNR) for our data to be

SNR = 10 log10
‖M‖2
‖E‖2 dB.

Note that [56] has extensively examined steps 2 and 3 of this algorithm, including the
effects of α and the SNR on the reconstruction of F . Our examination focuses on the dif-
ferences between the F generated from full knowledge of the data and the F generated from
subsampled data. For this reason, Ffull refers to the correlation spectrum generated from full
knowledge of the data using the algorithm from [56]. Fλ refers to the correlation spectrum
generated from only a λ fraction of the measurements using our algorithm.
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Figure 8. Model 1 with SNR of 30dB. Top left: True spectrum. Top right: Ffull. Bottom left: Reconstruc-
tion from 30% measurements. Bottom right: Reconstruction from 10% measurements.

5.1. Model 1. In this model, F (x, y) is a small variance Gaussian. This is the simplest
example of a correlation spectrum, given that the dimensions are uncorrelated. F (x, y) is
centered at (x, y) = (.1, .1) and has standard deviation .02. The maximum signal amplitude is
normalized to 1. This model of F (x, y) is a base case for any algorithm. In other words, any
legitimate algorithm for inverting the 2D Fredholm integral must at a minimum be successful
in this case.

Figure 8 shows the quality of reconstruction of a simple spectrum with an SNR of 30dB.
Figure 9 shows the same spectrum, but with an SNR of 15dB. Almost nothing is lost in
either reconstruction, implying that both the original algorithm and our compressive sensing
algorithm are very robust to noise for this simple spectrum.

5.2. Model 2. In this model, F (x, y) is a positively correlated density function. The
spectrum has a positive correlation, thus creating a ridge through the space. F (x, y) is centered
at (x, y) = (.1, .1), with the variance in the x + y direction being 7 times greater than the
variance in the x − y direction. The maximum signal amplitude is normalized to 1. This is
an example of a spectrum where it is essential to consider the 2D image. A projection onto
one dimension would yield an incomplete understanding of the spectrum, as neither the T1
projection nor the T2 projection would convey that the ridge is very thin. This is a more
practical test of our inversion algorithm.
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Figure 9. Model 1 with SNR of 15dB. Top left: True spectrum. Top right: Ffull. Bottom left: Reconstruc-
tion from 30% measurements. Bottom right: Reconstruction from 10% measurements.

Figure 10 shows the quality of reconstruction of a correlated spectrum with an SNR
of 30dB. Figure 11 shows the same spectrum, but with an SNR of 20dB. There is slight
degradation in the 10% reconstruction, but the reconstructed spectrum is still incredibly
close to Ffull. Overall, both of these figures show the quality of our compressive sensing
reconstruction relative to using the full data.

5.3. Model 3. In this model, F (x, y) is a two-peak density, with one peak being a small
circular Gaussian and the other being a ridge with positive correlation. The ridge is centered
at (x, y) = (.1, .1), with the variance in the x + y direction being 7 times greater than the
variance in the x−y direction. The circular part is centered at (x, y) = (.05, .4). The maximum
signal amplitude is normalized to 1. This is an example of a common, complicated spectrum
that occurs during experimentation.

Figure 12 shows the quality of reconstruction of a two-peak spectrum with an SNR of
35dB. In this instance, there is some degradation from Ffull to any of the reconstructed data
sets. Once again, there is slight degradation in the 10% model, but the compressive sensing
reconstructions are still very close matches to Ffull.

6. Conclusion. In this paper, we introduce a matrix completion framework for solving
2D Fredholm integrals. This method allows us to invert the discretized transformation via
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Figure 10. Model 2 with SNR of 30dB. Top left: True spectrum. Top right: Ffull. Bottom left: Recon-
struction from 30% measurements. Bottom right: Reconstruction from 10% measurements.

Tikhonov regularization using far fewer measurements than previous algorithms. We proved
that the nuclear norm minimization reconstruction of the measurements is stable and compu-
tationally efficient, and demonstrated that the resulting estimate of F(x, y) is consistent with
using the full set of measurements. This allows us in application to reduce the measurements
conducted by a factor of 5 or more.

While the theoretical framework of this paper applies to 2D NMR spectroscopy, the ap-
proach is easily generalized to larger-dimensional measurements. This allows for accelerated
acquisition of 3D correlation maps [3] that would otherwise take days to collect. This shall
be a subject of forthcoming work.

Appendix A. Proof of Lemma 2.7.
Let us define

U = {X ∈ C
s1×s2 |‖X‖∗ ≤ √

r‖X‖F }.
Note that the set of all rank r matrices in C

s1×s2 is a subset of U by Hölder’s inequality. For
the proof, we need some notation:

U2 = {X ∈ C
s1×s2 |‖X‖F ≤ 1, ‖X‖∗ ≤ √

r‖X‖F },
εr(A) = sup

X∈U2

|〈X, (A∗A− I)X〉|.



2D FREDHOLM INTEGRAL FROM INCOMPLETE MEASUREMENTS 1793

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
−2

10
−1

10
0

Figure 11. Model 2 with SNR of 20dB. Top left: True spectrum. Top right: Ffull. Bottom left: Recon-
struction from 30% measurements. Bottom right: Reconstruction from 10% measurements.

The RIP can be rewritten as

(1− δ)2〈X,X〉 ≤ 〈X,A∗AX〉 ≤ (1 + δ)2〈X,X〉 ∀X ∈ U,

which is implied by

|〈X, (A∗A− I)X〉| ≤ 2δ − δ2 ∀X ∈ U2.

So we need to show that εr(A) ≤ 2δ − δ2 ≡ ε.
One can then define a norm on the set of all self-adjoint operators from C

s1×s2 to C
s1×s2

by

‖M‖(r) = sup
X∈U2

|〈X,MX〉|.

The proof that this is a norm, and that the set of self-adjoint operators is a Banach space
with respect to ‖ · ‖(r), is found in [44].

We can now write εr(A) = ‖A∗A − I‖(r). For our purposes, as with most compressive
sensing proofs, we first bound Eεr(A) and then show that εr(A) is concentrated around its
mean.
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Figure 12. Model 3 with SNR of 30dB. Top left: True spectrum. Top right: Ffull. Bottom left: Recon-
struction from 30% measurements. Bottom right: Reconstruction from 10% measurements.

For our problem of dealing with tight frame measurements, let A∗A−I =
∑m

i=1 χi, where

χi =
|J |
m φ∗

iφi − I
m . Also, let χ′

i be independent copies of the random variable χi. Finally, let
εi be a random variable that takes values ±1 with equal probability. Then we have that

EΩεr(A) = EΩ

∥∥∥∑χi

∥∥∥
(r)

≤ EΩ

∥∥∥∑χi − χ′
i

∥∥∥
(r)

= EΩEε

∥∥∥∑ εi(χi − χ′
i)
∥∥∥
(r)

= EΩEε

∥∥∥∥∑ εi(φ
∗
iφi − (φ′

i)
∗φ′

i)
|J |
m

∥∥∥∥
(r)

≤ 2
n

m
EΩEε

∥∥∥∥∥
∑

εi

√
|J |
n

φ∗
iφi

√
|J |
n

∥∥∥∥∥
(r)

.

Now we cite Lemma 3.1 of [44], which is general enough to remain unchanged in the case
of tight frames.
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Lemma A.1. Let {Vi}mi=1 ⊂ C
s1×s2 have a uniformly bounded norm, ‖Vi‖ ≤ K. Let n =

max(s1, s2), and let {εi}mi=1 be independent and identically distributed uniform ±1 random
variables. Then

Eε

∥∥∥∥∥
m∑
i=1

εiV
∗
i Vi

∥∥∥∥∥
(r)

≤ C1

∥∥∥∥∥
m∑
i=1

V ∗
i Vi

∥∥∥∥∥
1/2

(r)

,

where C1 = C0
√
rK log5/2 n log1/2 m and C0 is a universal constant.

For our purposes, Vi =
√ |J |

n φi. Then

Eεr(A) ≤ 2C1
n

m
EΩ

∥∥∥∥∥
∑√

|J |
n

φ∗
iφi

√
|J |
n

∥∥∥∥∥
1/2

(r)

≤ 2C1
n

m

⎛
⎝EΩ

∥∥∥∥∥
∑√

|J |
n

φ∗
iφi

√
|J |
n

∥∥∥∥∥
(r)

⎞
⎠1/2

= 2C1

√
n

m
(E‖A∗A‖)1/2

≤ 2C1

√
n

m
(Eεr(A) + 1)1/2.

Here,

C1 = C0
√
r
√
μ log5/2 n · log1/2 m.(A.1)

If we take E0 = Eεr(A) and C = 2C1

√
n
m , then (A.1) gives us

E2
0 − C2E0 − C2 ≤ 0.

Fix some λ ≥ 1, and choose

(A.2)
m ≥ Cλμrn log5 n · log |J |

≥ λn(2C1)
2.

This makes Eεr(A) ≤ 1
λ + 1√

λ
.

The next step is to show that εr(A) does not deviate far from Eεr(A). Let A∗A− I = χ
be a random variable and χ′ be an independent copy of χ. We now note that

Pr(‖χ‖(r) > 2Eεr(A) + u) ≤ 2Pr(‖χ− χ′‖(r) > u).

Define Yi = χi − χ′
i, so that χ− χ′ = Y =

∑m
i=1 Yi. Clearly

‖Yi‖(r) ≤ 2‖χi‖(r) = 2 sup
X∈U2

∣∣∣∣ |J |m
|〈φi,X〉|2 − 1

m
‖X‖2F

∣∣∣∣ ≤ 2
nrμ+ 1

m
≤ 1

2λC2
0

.
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We now use the following result by Ledoux and Talagrand in [43].
Theorem A.2. Let {Yi}mi=1 be independent symmetric random variables on some Banach

space such that ‖Yi‖ ≤ R. Let Y =
∑m

i=1 Yi. Then for any integers l ≥ q and any t > 0

Pr(‖Y‖ ≥ 8qE‖Y‖+ 2Rl + tE‖Y‖) ≤ (K/q)l + 2e−t2/256q,

where K is a universal constant.
Now for appropriate choices of q, l, and t, and with an appropriate λ such that λ ≥ A/ε2

for some constant A, we get that

Pr(‖χ‖(r) ≥ ε) ≤ e−Cε2λ,

where C is a constant. Thus, the probability of failure is exponentially small in λ.
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