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ABSTRACT 

AFM micro- or nanoindentation is a powerful technique for mapping the elasticity of 

materials at high resolution. When applied to soft matter, however, its accuracy is equivocal. 

The sources of the uncertainty can be methodological or analytical in nature. In this paper, we 
address the lack of practicable nonlinear elastic contact models, which frequently compels the 

use of Hertzian models in analyzing force curves. We derive and compare approximate force

indentation relations based on a number of hyperelastic general strain energy functions. These 

models were applied to existing data from the spherical indentation of native mouse cartilage 

tissue as well as chemically crosslinked poly( vinyl alcohol) gels. For the biological tissue, the 

Fung and single-term Ogden models were found to provide the best fit of the data while the 
Mooney-Rivlin and van der Waals models were most suitable for the synthetic gels. The other 

models (neo-Hookean, two-term reduced polynomial, Fung, van der Waals, and Hertz) were 

effective to varying degrees. The Hertz model proved to be acceptable for the synthetic gels at 
small strains ( <20% for the samples tested). Although this finding supports the generally 

accepted view that many soft elastic materials can be assumed to be linear elastic at small strains, 

we propose the use of the nonlinear models when evaluating the large-strain indentation response 

of gels and tissues. 

INTRODUCTION 

In numerical simulations or uniaxial and biaxial mechanical tests, polymer gels and 
biological tissues are often modeled successfully using linear elasticity theory at small strains 

and rubber elasticity theory at large strains. For measurement of elasticity at micron and 

submicron length scales, the prevalence of atomic force microscopy in materials research has 

established nanoindentation as one of the leading techniques. However, despite advancements in 

instrumentation and analysis methods, its application to soft matter is still complicated by tip

sample interactions and the lack of practical nonlinear contact mechanics models. Many 
investigators rely on models based on the Hertz theory to analyze force curves. Consequently, 

errors are frequently incurred by applying these linear elastic representations beyond their 
validity range or at the small-strain range where the indentation process is most prone to noise. 

We have developed approximate relations for the non-interactive, spherical indentation of 

non-Hookean materials. From the Hertz equation and various strain energy functions, force

indentation relationships were formulated in the following forms: neo-Hookean [1], Mooney
Rivlin [1], two-term reduced polynomial [2], single-term Ogden [3], Fung [4,5], and van der 

Waals [6]. In this paper, we first introduce these contact mechanics equations. Results of testing 

each model by fitting it to data obtained from the large-strain indentation of swollen poly( vinyl 

alcohol) gels and of native cartilage samples are then presented. Limiting the number of fitting 

parameters in each equation to two, we identify those models that were found to be most suitable 

for rubber-like gels and biological extracellular matrices and cells. 



 

 

 
 

 

 
 

 

 
 

 

 
 

 
  

 
  

 
  

 
  

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

THEORY  

Strain energy potentials, uniaxial stress-strain relationships, and the derived force
indentation equations are listed in Table I. The derivation approach has been described 

elsewhere [7] and will only be briefly summarized here. We define the indentation stress (a* = 
F I mi, where F is the force applied to the indenter and a the contact radius) and strain(£!'= a I 
R, where R is the radius of the indenter) such that they are linearly proportional for Hertzian 
contact. The uniaxial stress-strain relations are then transformed into force-indentation equations 

by assuming that the contact radius varies with indentation depth(  8) in the Hertzian manner. 
Tip-sample interactions are assumed to be negligible. 

Table I.  Strain energy potentials and the stress-strain and contact equations derived from them. 

Name 

Strain energy potential (V) 
Uniaxial stress (σ) – stretch  (λ) equation  
Force (E) – indentation (δ) equation  
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Notes: 

h- Hertz equation: F= 4ER0.1δ2.1Z2'0-ν1(\,0 where R is the radius of the spherical tip and vis Poisson's 

ratio. 

hh- Elastic constants (C) in the potential and a-A equations are replaced by Bin the F-6equations. 

hhh- Stretch ratios in the three principal directions are represented by Ai, i= 1, 2, 3. 
hu- /1 is the first strain invariant: /1 =At + A + A ; 2 lz 3 is the second invariant: 1 = 2+ 2..1; +/t;2 

2 for

incompressible materials. 

u- Under uniaxial loading in the !-direction, A1 =A and A = A =X112•
uh- The fitting parameters a in the Ogden model and bin the Fung model are nondimensional. 

uhh- In the van der Waals model, a  is the global interaction parameter between network chains. 11m is the 

limiting value of It. Under uniaxial loading, 11m= Am+ 2/A, where An, is the maximum stretch ratio 

(limited by finite chain extensibility). 

uhhh-. E*m = 1 is the limiting value of the indentation strain E*. 

EXPERIMENT 

Macroscopic compression and AFM micro-indentation of chemically crosslinked 

poly(vinyl alcohol) gels have been described elsewhere [8]. We cast gel cylinders (1 em 

diameter, 1 em height) and films (> 2 mrn thick) for macroscopic displacement-controlled 

compression and AFM nanoindentation, respectively. Sixty-micrometer thick cartilage samples 

were transversely sectioned from the femoral heads of one-day old wild-type mice using a 

microtome. Samples were lightly fixed in formaldehyde and frozen in embedding matrix prior to 
sectioning. 

General-purpose silicon nitride tips with 5.5 )lm glass (for the synthetic gels) or 5 )lm 

polystyrene (for cartilage) beads attached were used for the AFM measurements, performed 

using a commercial AFM (Bioscope I with Nanoscope IV controller, Veeco). The spring 

constant of the cantilever was measured by the thermal tune method while bead diameters were 

measured from images acquired during the attachment process. A raster scanning approach 

("force-volume") was applied to automatically perform indentations over an area of- 30x30 )lm, 

at a resolution of 16x16 (256 total indentations) for the hydrogel and 32x32 (1024 indentations) 

for the cartilage. Code written in Matlab was used to automatically process each dataset and 
extract values of Young's modulus. For the cartilage, height images were used to determine 

whether each measurement location corresponded to the extracellular matrix or to the cells. 



RESULTS AND DISCUSSION 

 Ten random indentations were selected from the force-volume scan of the poly( vinyl 

alcohol) gel for processing using the different force-indentation equations in Table I. From the 
scan of the cartilage, ten indentations each of the matrix and cells were chosen. Mean square 

errors and extracted Young's moduli are listed in Table II. Two representative fits for the 

synthetic gel are shown in Figure 1. Likewise, representative fits for the cartilage extracellular 
matrix are presented in Figure 2 along with a sample AFM height image. 

Chemically crosslinked poly(vinyl alcohol) gels swollen in water are known to be rubber

like in their deformation behavior [9]. It is therefore not unexpected that many of the rubber 
elasticity models produced good fits of the data, as indicated by the mean square errors in Table 

II. Limiting the Hertzian analysis to different levels of indentation strain revealed a linear elastic 

limit of between 20% and 25%. When sufficient points are retained in the truncated data sets, 
this is a viable approach for determining Young's modulus. Among the hyperelastic theories, 

our results show the Mooney-Rivlin, reduced polynomial, Fung, and van der Waals models to be 

best. 

In the cartilage data, the poor fits with the Hertz equation even at limited strains of about 

15% suggested a much narrower linear regime. Further truncation of the data sets was not 

attempted due to the lack of sufficient data points. As anticipated, the van der Waals model, 
which aims to account for network effects such as finite chain extensibility [5], also results in 

poor fits of the cartilage data. The cellular cytoplasm and the collagen network structure of the 

extracellular matrix differ significantly from crosslinked polymer networks of flexible chains on 

which these particular models are based. 

Among the phenomenological theories of large strain, elastic deformations, the Fung and 

Ogden models have been applied successfully to a number of soft tissues (e.g., muscle and skin 

[ 4], arteries [5], and brain [10]). The results of this study provide further validity to the 

effectiveness of those models in describing the hyperelastic behavior of many soft biological 

materials. We attribute the discrepancy in the elastic moduli obtained using the two force

indentation relationships (Table II) to the retention of only a single term in the Ogden model. 

The inclusion of more terms would increase the number of fitting parameters and yield solutions 
that are no longer unique. Since the Fung model is already in closed form and contains two 

fitting parameters, we submit that it is preferable to the Ogden model. 

Due in large part to differences in technique, interpretation and modeling of test data, 

source and condition of samples, and developmental state of the samples, values of elastic 

moduli reported in the literature for chondrocytes, matrix, and bulk cartilage vary over a large 

range; comparison is therefore difficult. Noting that the stiffness of the samples used in this 
study were possibly altered by the chemical fixation process, the elastic modulus of the matrix 

using the Fung model compare most favorable with the results of Guilak et al [11], who found 

for the pericellular matrix from the middle zone of the canine knee, E = 23.2 ± 7.1 kPa. The 

elastic moduli of the chondrocytes compare most favorably with the instantaneous values 

reported by Koay et al [12], E = 8.0 ± 4.41 kPa. 



Table II.  Comparison of models' ability to fit experimental, hyperelastic force curves. 

MSE (mean square error), me (macroscopic compression), Hz (Hertz), Hz-s (Hertz, small strain), nH 

(neo-Hookean), MR (Mooney-Rivlin), rp (reduced polynomial), Og (Ogden), Fu (Fung), vdW (van der 

Waals) 

PV A, n = 10,  R = 4.8 !J.m Chondrocytes, n =  10 Cartilage Matrix, n =  10  
E (kPa)*  MSE (nm2) E (kPa)*  MSE (nm2) E (kPa)*  MSE (nm2) 

me  -20 - - - - -

Hz  22.76 ± 0.85 0.465 60.57 ± 17.93 23.19 132.31 ± 33.33 25.58 

Hz-s 19.62 ± 1.16 0.168 22.49 ± 7.40 0.515 93.94 ± 54.24 10.99 

nH 15.40 ± 0.99 0.493 33.92 ± 13.35 13.77 93.08 ± 30.21 16.85 

MR 17.35 ± 1.40 0.193 21.41 ± 7.49 10.05 67.01 ± 22.63 13.22 

rp  16.62 ± 1.14 0.219 6.12 ± 2.26 0.393 1.93 ± 2.51 0.836 

Og  15.85 ± 0.97 0.497 14.30 ± 2.44 0.138 23.21 ± 2.05 0.133 

Fu 16.65 ± 1.15 0.218 11.81 ± 1.76 0.125 19.83 ± 1.67 0.138 

vdW  17.57 ± 1.48 0.208 31.27 ± 12.51 12.83 84.87 ± 29.60 16.24 

* Mean ± standard deviation 

Figure 1. Representative full fit (left, Mooney-Rivlin model) and Hertzian fit (right) of a sample 

dataset from the indentation of the poly( vinyl alcohol) gel. Approximately 20% of data points 

are plotted; the best-fit curves and contact points are shown in red. For the Hertz fit, analysis 

was limited to 15% strain. The green curve represents the fit extended to the remainder of the 

data and clearly shows that the Hertz theory does not account for the stiffening that occurs. 



 

Figure 2. Representative poor fit (left, Mooney-Rivlin model) and good fit (center, Fung model) 

of a sample dataset from the indentation of cartilage matrix. Approximately 20% of data points 

are plotted; the best-fit curves and contact points are shown in red. The image on the right is a 

height scan of the region, with cells clearly visible. 

CONCLUSIONS 

The prevalence of nanoindentation in measuring the local elastic properties of a wide 

range of materials necessitates the development of contact models that accurately represent 
various material behaviors. Simple force-indentation relationships are especially desirable for 

automated and high-throughput applications. The contact equations presented here should 

satisfy a broad range of nonlinearly elastic soft materials, from rubber-like gels to biological 

tissues and cells. As this study has shown, extreme caution should be exercised when selecting 

an appropriate hyperelastic model in order to avoid potentially large errors. 
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