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Abstract—Diffusion tensor magnetic resonance imaging 
(DT-MRI) provides a statistical estimate of a symmetric, 
second-order diffusion tensor of water, , in each voxel within 
an imaging volume. We propose a new normal distribution, 
( ) exp( 1 2 : : ), which describes the variability 

of in an ideal DT-MRI experiment. The scalar invariant, 
: : , is the contraction of a positive definite symmetric, 

fourth-order precision tensor, , and . A correspondence is 
established between : : and the elastic strain energy density 
function in continuum mechanics—specifically between and 
the second-order infinitesimal strain tensor, and between and 
the fourth-order tensor of elastic coefficients. We show that 
can be further classified according to different classical elastic 
symmetries (i.e., isotropy, transverse isotropy, orthotropy, planar 
symmetry, and anisotropy). When is an isotropic fourth-order 
tensor, we derive an explicit analytic expression for ( ), and for 
the distribution of the three eigenvalues of , ( 1 2 3 ), which 
are confirmed by Monte Carlo simulations. We show how can 
be estimated from either real or synthetic DT-MRI data for any 
given experimental design. Here we propose a new criterion for an 
optimal experimental design: that be an isotropic fourth-order 
tensor. This condition ensures that the statistical properties of 
(and quantities derived from it) are rotationally invariant. We also 
investigate the degree of isotropy of several DT-MRI experimental 
designs. Finally, we show that the univariate and multivariate 
distributions are special cases of the more general tensor-variate 
normal distribution, and suggest how to generalize ( ) to treat 
normal random tensor variables that are of third– (or higher) 
order. We expect that this new distribution, ( ), should be 
useful in feature extraction; in developing a hypothesis testing
framework for segmenting and classifying noisy, discrete tensor 
data; and in designing experiments to measure tensor quantities. 

Index Terms—Covariance, distribution, experimental design, 
fourth-order, Gaussian, normal, precision, probability, random 
variable, second-order, strain-energy, tensor. 

NOMENCLATURE 

Vector random variable.
 
Second-order symmetric tensor random variable.

Precision matrix.
 
Fourth-order symmetric precision tensor.
 
Quadratic function (form) of elements of . 

Quadratic function of elements of . 
Normal probability density function (pdf) of . 
normal pdf of .
 
Mean tensor of . 

(written as a vector).
Lamé constant and scalar parameter used in
 
isotropic .
Shear modulus and scalar parameter used in
 
isotropic .
Kroneker delta (3 3), and isotropic second 
order tensor. 
th eigenvalue of . 
th eigenvalue of (3 1). 

“whitened” th eigenvalue of . 
th eigenvalue of precision matrix.
 

Experimental error covariance matrix.
 
b-matrix summarizing effects of pulse gradients
 
on nonmagnetic resonance (NMR) signal.
 
NMR signal intensity for given b-matrix.
 
Design matrix for DT-MRI experiment.
 

I. INTRODUCTION 

D IFFUSION tensor magnetic resonance imaging 
(DT-MRI) [1] provides a measurement of a sym­

metric second-order translational diffusion tensor of water, 
, for each voxel within an imaging volume. Recently, it was 

shown that in an ideal DT-MRI experiment, noise in the esti­
mate of diffusion tensor element data is distributed according 
to a multivariate Gaussian distribution [2], [3]. In this analysis, 
second-order symmetric diffusion tensors were written as 6
1 vector random variables. 

However, writing a tensor as a vector fails to preserve certain 
intrinsic algebraic relationships among its elements and their 
geometric relationships with the laboratory coordinate system in 
which the tensor elements are measured. For example, algebraic 
operations naturally performed on (e.g., decomposing it into 
its eigenvalues and eigenvectors), or geometric operations (e.g., 
projecting it along a particular direction, or applying an affine 
transformation to it), are unwieldy when is written as a vector. 

Additionally, the vector form of the estimated covariance (or 
precision) matrix of tensor elements offers no insights into the 
way noise or features of the experimental design affects their 
distribution or that of other estimated tensor-derived quantities. 
The democratic way in which the vector representation treats 
tensor components makes it difficult to appreciate their unique 
roles. 

The new tensor-variate normal distribution we propose here 
preserves the algebraic form and geometric structure of the 
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tensor random variable and, thus, our ability to perform various
algebraic and geometric operations on it. 

The key idea motivating this work is intuitive. Just as vector-
valued data are written in vector form in the exponent of a 
multivariate normal distribution [4], second- (and higher) order 
tensors should be written in tensor form in the exponent of a 
tensor-variate normal distribution. 

In this paper, we propose the form of a normal distribution 
for a symmetric second-order tensor random variable, , in  
which we introduce a positive definite symmetric fourth-order 
precision tensor, , as a parameter. We apply symmetry ar­
guments to simplify the form of , and suggest how to clas­
sify according to different classical elastic symmetries (i.e., 
isotropy, transverse isotropy, orthotropy, planar symmetry, and 
anisotropy). The case in which is an isotropic fourth-order 
tensor is of particular importance, since it implies that the sta­
tistical properties of are independent of the choice of the 
coordinate system in which the tensor components are mea­
sured. For this case, we derive explicit expressions for , and 
for the distribution of the three eigenvalues of , , 
which are confirmed by Monte Carlo (MC) simulations. We also 
propose an expression that can be used to obtain sample esti­
mates of , which one can calculate from data. Using MC 
simulated DT-MRI experiments, we generate sample estimates 
of for typical values of found in gray matter, white matter, 
and cerebrospinal-fluid-filled regions of the brain. Finally, we 
show how this statistical framework can be used to aid in the 
design of optimal DT-MRI experiments. 

II. THEORY
 

The scalar exponent of a multivariate normal pdf, , con­
tains a quadratic form, , of an -dimensional normal 
random vector, , and the precision (or inverse covariance) ma­
trix,

(1) 

where is the determinant of the matrix, . In tensor par­
lance, is a scalar contraction—a linear operation that re­
duces one or more higher order tensors to a zeroth-order tensor 
(or scalar). In this case, 1 

1We use the Einstein summation convention in which indexes that are re­
peated in the expression are summed over the range of their allowable values. 
So, for example, ; l ; means ; l ; . 

above is a scalar contrac­
tion of a second-order precision tensor,2 

2lll is usually referred to as a matrix, but it actually transforms as a second-
order tensor. 

, and the first-order 
tensor, . The result is a linear combination of quadratic func­
tions formed from the products of the elements of , , and 
the corresponding elements of , . 

In generalizing the multivariate normal distribution to a 
tensor-variate normal distribution, we seek a tensor analog 
to the quadratic form above containing terms that are 
products of the elements of , . The most general 

scalar function that contains all possible linear combinations of 
these tensor elements is 

(2) 

In this case, is a scalar contraction of the fourth-
order tensor, , and a second-order tensor, . The result is a 
linear combination of quadratic functions formed from products 
of the elements of , , each weighted by the corre­
sponding elements of , . 

We propose the normal distribution for a second-order tensor 
random variable, , of the form 

(3) 

where is a fourth-order precision tensor and is the normal­
ization constant to be determined below. 

A. Analogies Between and the Elastic Strain 
Energy Density 

The exponent in (3), has the same form 
as the strain energy density, , (e.g., see [5]) that appears in the 
theory of linear elasticity.3 

3v measures the amount of internal energy stored as a homogeneous elastic 
body deforms.

Specifically, there is a direct analogy 
between and the infinitesimal strain tensor, and between
and the fourth-order tensor of elastic coefficients. 

In the theory of elasticity must be positive definite to ensure 
that the material is elastically stable, i.e., that stresses developed 
within the sample always act to return the object to its equilib­
rium configuration [6]. In this statistical application, the same 
requirement must apply to ensure that the variances of the com­
ponents of are all positive. 

The fourth-order precision tensor, , shares other proper­
ties with the tensor of elastic coefficients. also possesses 
symmetries, which are reflected by its value being unaltered 
by the exchange of certain pairs of indexes. For example, 
since the product of two elements of the second-order tensor 
commutes in (i.e., ), the 
corresponding coefficients of should also be the same 
(i.e., ). Moreover, since is symmetric (i.e., 

and ), we require that 
and , respectively.4 

4It is known that a fourth-order tensor possessing these symmetry properties 
given above is self-adjoint (e.g., see [7]). 

Owing to these symmetry 
conditions, there are at most 21 independent elements of that 
we must specify a priori [8], or estimate from sample data. 

In the theory of elasticity, these symmetry conditions arise 
because should be independent of the coordinate system in 
which the components of the strain tensor are measured (e.g., 
see [8]). This requirement applies equally well to . The 
probability that a particular tensor arises is an intrinsic property 
that should be independent of the coordinate system in which 

is written. This requirement, that is a rotationally 
invariant quantity, also ensures that is a fourth-order tensor, 
by a simple application of the Quotient Rule Theorem [9]. 

The theory of elasticity also provides us with a scheme to 
classify fourth-order tensors of elastic coefficients according 
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to the number, types, and degrees of symmetries they possess. 
The most general linear constitutive law of an elastic solid 
corresponds to anisotropy (or aeolotropy), requiring all 21 
constants to specify the form of the tensor of elastic coefficients 
[5]. Other models of elastic behavior require fewer constants 
(e.g., see [5]). These include the cases of planar symmetry, 
requiring 13 elastic coefficients; orthotropy, requiring nine 
elastic coefficients; transverse isotropy, requiring five elastic 
coefficients; and isotropy, requiring only two elastic coefficients. 
Below, we analyze the most tractable and important case in 
detail, isotropy. 

B. Relationship Between the Fourth-Order Precision Tensor, 
, and the 6 6 Precision Matrix, 

The scalar contraction, , above can also be 
recast as a quadratic form, , in which the random 
second-order tensor, , is rewritten as a six-dimensional (6-D) 
column vector, , and 

is a 6 6 symmetric matrix. An important result that is 
often used in continuum mechanics, and which we also exploit 
here, is that any fourth-order tensor, , satisfying the symmetry 
properties given in the previous section, can be mapped to a 
6 6 symmetric matrix . Both and contain the same 
21 independent coefficients (e.g., see [5], [7], and [10]). This 
correspondence allows us to construct a 6 6 precision ma­
trix, , from any fourth-order precision tensor, and, thus, 
to construct a corresponding multivariate normal distribution 
directly from a tensor-variate normal distribution. Below, we 
use this correspondence to calculate the normalization constant 
for the tensor-variate distribution using the mathematical ma­
chinery developed for multivariate distributions. 

C. Normalization Constant for the Tensor-Variate Normal 
Distribution 

We obtain the normalization constant of the tensor-variate 
normal pdf by integrating the distribution over the entire range 
of all six independent elements of the symmetric tensor, . This 
integration is carried out in the following way. We require that 

(4) 

Here, the tensor dot product “:” denotes the contraction of 
second-order tensors with the fourth-order precision tensor.5 

5In the case of tensor products between tensors of unequal order, such as DDD 
and AAA, we use the definition, DDD : AAA =  D A b b = D A . 

If 
the random tensor has a nonzero mean tensor, , we can al­
ways center the distribution about its mean using . 
Then, the distribution becomes 

(5) 

The exponent in the integrand can be rewritten as a quadratic 
form, where the coefficients of the quadratic terms in are 
contained in the matrix,

(6) 

where and (7)
holds. 

(7) 

, shown at 
the bottom of page, The integral in (6) is known from the 
theory of multivariate normal distributions (e.g., see [11]); the 
normalization constant is readily obtained from

(8) 

By writing as four (3 3) square block matrices, as shown 
in (7), and by noting that the diagonal block matrices are sym­
metric (i.e., and ), we can write in (8) 
simply in terms of these four block matrices 

(9) 

So, the tensor-variate normal distribution with precision tensor, 
, and mean tensor, , is  

(10) 

The distribution in (10) possesses the basic form and prop­
erties of a normal distribution. Since is positive definite, 

is always nonnegative, and . Also, 
the exponent in (10) is a quadratic function of the random vari­
able (in this case, a tensor random variable) whose mean and 
precision tensors appear in the exponent in an analogous way to 
the mean vector and precision matrix of the multivariate normal 
distribution. 



In fact, we can exploit the formal correspondence between 
the tensor-variate normal distribution in (10) and the multi­
variate normal distribution in (1) to obtain many properties of 
the tensor-variate normal distribution by using mathematical 
tools and approaches that have already been developed to 
analyze multivariate distributions (e.g., see [11]). 

D. when is a General Isotropic Fourth-Order Tensor 

We now derive the explicit form of for the case in which 
is a general isotropic fourth-order tensor, . In this context, 

isotropy means that the precision tensor is rotationally invariant, 
i.e., its form is unchanged under any proper rotation, reflection, 
or inversion of coordinates in which the components of are 
measured.

When is a symmetric tensor, the most general form of
is (e.g., see [8] and [10]) 

(11) 

where and are as yet undetermined constants,6 

6In continuum mechanics, . and/ correspond to the Lamé constant and shear 
modulus of the isotropic material, respectively. 

and is
the second-order isotropic tensor. This choice, also 
corresponds to the tensor of elastic coefficients for a general 
isotropic linearly elastic solid. 

The scalar contraction of the exponent of the tensor-variate 
normal distribution, , becomes 

(12) 
In Appendix A, we show that this expression reduces to a linear 
combination of two scalar invariants of , i.e., 

(13) 

The distribution must assume the same form under any 
proper rotation, reflection or inversion of laboratory coordinates 
because it depends only on functions of that are rotationally 
invariant, and . Thus, we find that isotropy 
of implies rotational invariance of .


If
 is a tensor whose mean is , it is also easy to show that 
the tensor contraction in (13) becomes 

(14) 

so that is also rotationally invariant in this more 
general case. 

To obtain the form of using in (11), we again 
write as a vector, , 
and rewrite the scalar contraction in (13) as a quadratic form, 

. Then, the precision matrix, , from (7) becomes 

(15) 

Clearly, since the block matrix, , is not diagonal, the three 
diagonal elements of are mutually correlated. However, the 
structure of implies that coupling among , , and 
is independent of their size and of the particular choice of the 

, , and axes in the laboratory coordinate frame. Since
, diagonal elements of are not correlated with off-diagonal 

elements of . However, since , where is the 3 
3 identity matrix, the three off-diagonal elements of are 

mutually uncorrelated, and have equal variances. 
Using (15), simplifies to 

(16) 

where 

(17a) 

and 

(17b) 

where it is assumed that the mean of is given by in the 
distributions above. 

Thus, a meaningful distinction between the new 
tensor-variate and multivariate normal distributions is the 
way in which their covariances are characterized. While , 
given in (11), is an isotropic fourth-order tensor, the corre­
sponding matrix for the multivariate distribution, given in 
(15) has a nonintuitive block form, which is clearly not a 6-D 
isotropic precision matrix. Only in the special case in which 

, when all elements of are independently distributed, 
is a diagonal matrix. Even then, all of its diagonal ele­
ments are still not equal. Clearly, the relationship between the 
tensor-variate and multivariate normal distributions is not a 
trivial one. 

In the subsequent sections, we will use the new tensor-variate 
distribution for to obtain an analytical expression for 
the distribution of the eigenvalues of , and to design optimal 
DT-MRI experiments. 

E. The Distribution of the Eigenvalues of for

For in (12) we can immediately obtain the joint 
probability distribution of , , and , the three eigenvalues 
of . The distribution, is a special case of 
in (17a) and (b), obtained by performing a principal coordinate 
transformation in which the three diagonal elements of are 
mapped to the three eigenvalues of . Integrating over all pos­
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sible values of the off-diagonal elements, and substituting , 
, and for , , and in the distribution above, we 

obtain 

(18) 

where , , and are the three mean eigenvalues. Equiva­
lently, we can obtain the result in (18) by substituting the expres­
sions, and
into (13), and by collecting terms.7 

7N.B. The theoretical distribution, ph' , '  , '  ), may not always conform to 
an empirical distribution obtained, e.g. by using MC simulations, because of the 
well-known sorting artifact that occurs when one orders calculated eigenvalues. 

The joint distribution of the eigenvalues of is character­
ized by only two parameters, and . While the eigenvalues 
are correlated, their coupling is independent of their order or 
assignment (which is not the case for eigenvalues of random 
matrices described by a Wishart distribution [4]). This finding 
follows because with its exponent given in (13), depends 
only on and , scalar invariants of , 
which are inherently insensitive to the order of the eigenvalues. 
Thus, permuting the eigenvalue order will always leave this dis­
tribution unchanged. 

We can uncorrelate or “whiten” by diag­
onalizing in (15) and (18) using its three eigenvalues, 

, , and ; and its three 
corresponding normalized eigenvectors, , 

, and . In the principal 
frame of , is simply the product of three inde­
pendent univariate normal distributions 

(19) 

when we use the transformed random variables 

or 

(20) 

Interestingly, is proportional to , which mea­
sures the average size of the isotropic part of . The other 
two variables, and , characterize the anisotropic part 
of . Specifically, measures the difference between the 
predominant eigenvalue and the average of the two remaining 
eigenvalues, while measures the difference between the two 
latter eigenvalues. Together, , , and represent novel 
parameters with which to characterize the size and shape of the 
probability ellipsoid 8 

8Surfaces of constant probability are obtained for the distribution of the eigen­
values of DDD above by setting the exponent to a constant, e.g., 

2p+ , , , ' 

h' , '  , '  ) , 2p+ , , ' = l. 

, , 2p+ , ' 

This quadratic form can be represented by a cylindrically symmetric, pancake-
or cigar-shaped, three–dimensional ellipsoid (e.g., see [12]) whose three prin­
cipal axes are r , r , and r . 

one can construct from .
 
More importantly, the coefficients
 and in the isotropic 

fourth-order precision tensor can easily be related to the vari­
ances of in (19) 

(21) 

Above, the variances, and , correspond roughly to the 
“Trace” and the “Skewness” of the uncertainty of , respec­
tively, as in (20). Since and can be estimated statistically 
from sample data, and can now be expressed in terms of 
measurable parameters,9 

9N.B. In order for the exponent of the tensor-variate cumulative distribution 
to be unitless, p and , must be in units that are the inverse square of the eigen­
values’ units, consistent with p and , being inverse variances. To ensure pos­
itive definiteness of the covariance matrix, we also require that p � 0 and 
, � 02p/3. 

and

(22) 

This result allows us to write in (12) explicitly in terms of 
and 

(23) 
Note that in deriving , we make no explicit assump­
tion that all eigenvalues are positive, i.e., that is positive 
definite. This condition could be added as a constraint to the 
tensor-variate distribution but the distribution would no longer 
be Gaussian. As an aside, provides no explicit information 
about the distribution of eigenvectors of when . 

F. MC Simulations of

In Fig. 1, we plot MC estimates of and versus their 
theoretical values obtained from (21). First, MC estimates of 

are generated from a multivariate normal distribution with 
the precision matrix given in (15). Then, the eigenvalues, , 

, and are computed for each , and an empirical dis­
tribution, , is constructed, from which and
are estimated. Agreement between the analytical distribution in 
(18) and MC simulated data is excellent. Values of and are 
chosen randomly within their allowable range (as described in 
footnote 9), but so that the distributions of distinct eigenvalues 
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do not overlap, thus avoiding a known “sorting” artifact that 
would bias the estimates of and (see [13]). 

Fig. 1. Three-hundred points from MC simulations of second-order tensor, 
DDD, with (- , - , - ) = (l200, 700, 200), typical of brain white matter. The 
precision of MC estimates was 0.2%. This figure indicates that (19) precisely 
and accurately predicts the uncertainty of the estimated eigenvalues of DDD. 

G. Optimal Experimental Design—The Rotational Invariance 
Principle 

Several groups have proposed methods for optimally 
designing DT-MRI experiments in which independent experi­
mental variables, such as the number of gradient acquisitions, 
the gradient directions, and gradient strengths, are chosen to 
minimize some objective or performance measure [15]–[19]. 
Skare et al. have proposed minimizing the condition number of 
the covariance matrix of the estimated diffusion tensor elements 
[15], while Jones and Papadakis minimize the orientational 
dependence of the variance of the fractional anisotropy (FA) 
[16]–[19]. 

Here, we propose that a necessary condition for an optimally 
designed DT-MRI experiment is that be an isotropic fourth-
order tensor, of the form given in (11). Since describes 
the observed variations of due to background noise in 
the measurements, this condition will ensure that , and 
consequently all tensor-derived quantities (e.g., FA, Trace, and 
the relative anisotropy), have orientationally invariant statistical 
properties. Certainly, the constraint that be an isotropic 
fourth-order tensor can be used in conjunction with other 
objective functions or performance measures. 

To analyze different DT-MRI experimental designs we first 
consider the log-linear form of the basic model relating the 
NMR signal to the diffusion tensor [20] 

(24) 

where is the measured echo intensity, s are the 
elements of the symmetric b-matrix constructed from all applied 
gradient waveforms. The predicted form of the precision matrix 
for this model is given by 

(25) 

where is the error covariance matrix, and is 
the experimental design matrix whose ith row, 

, contains the b-matrix el­
ements associated with the ith gradient acquisition [20]. 

It is reasonable to assume that experimental variances are 
uncorrelated in the MR experiment, so that is diagonal 
[20]. However, Batchelor further assumes that all experimental 
variances are equal.10 

10It is important to note that this assumption was not made in [20], 
in which a first-order correction was applied to account for the effect of 
the log-linear transformation on the variance of the measured signal. 

Then, (25) becomes , and 
. Moreover, it is sometimes possible to 

design MR sequences in which , where and 
represent the peak magnetic field gradients (diffusion gradients) 
applied along the jth and kth coordinate directions, and , 
respectively.11 

11This assumes that there are no cross-terms arising from imaging gradients 
[21]. 

In the special case in which all gradients used 
in an experiment have the same magnitude (i.e., ) 
then . Under these restricted assumptions, 
is proportional to the mean normal matrix ( ) used by 
Batchelor [22]. 12 

12lll = (l/o )B B � llNlNllNlN where N is the number of 
acquisitions. 

To compare our predictions with those of 
Batchelor, we will first consider experimental designs in which 
all these simplifying assumptions have been applied. 

Batchelor proposed that an MR acquisition scheme in which 
diffusion gradients were oriented at vertices of an icosahedron 
possessed orientationally (i.e. rotationally) invariant statistical 
properties of the estimated diffusion tensor by showing that the 

for this scheme is the same as the obtained 
when using a gradient sampling scheme with an infinite number 
of gradient vectors that are uniformly distributed on the surface 
of a unit sphere [22]. 

Within the context of the tensor-variate distribution we can 
understand Batchelor’s notion of rotational invariance: his 

has the same form as , the precision 
matrix associated with in (11) with . Choosing an 
isotropic fourth-order tensor with , we  
are able to reproduce Batchelor’s exactly for an isoc­
ahedral gradient scheme, and for a gradient sampling scheme 
with an infinite number of gradient vectors that are uniformly 
distributed on a unit sphere [22].13 

13Note, the matrix “A” used in Batchelor is a special case of the matrix “B” 
used in [20] and should not be confused with our use of AAA as a fourth-order 
tensor. 

 This is shown in Fig. 2. 
In fact, many other gradient schemes can be constructed 

that satisfy this rotational invariance requirement. The simplest 
rotationally invariant gradient scheme uses only six gradient 
directions. It consists of gradient vectors whose coordinates 
are the noncollinear vertices of an icosahedron. This scheme is 
identical to one proposed in [23], and is given in Table I. Interest­
ingly, one finds that gradient designs using the ten noncollinear 
vertices of a dodecahedron (the dual regular polyhedron of 
the icosahedron), an icosidodecahedron (polyhedron obtained 
by adding a tetrahedron on each of the faces of the dodeca­
hedron), a Buckminster “Fullerene,” as well as other patterns 
(i.e., those of Jones [16] and Muthupallai [23]) produce rota­
tionally invariant experimental designs with the same values 
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Fig. 2. Elements of the predicted precision matrix, lll , obtained 
for experimental designs whose gradient vectors lie on the vertices of an 
icosahedron, dodecahedron (the dual regular polyhedron of the icosahedron), 
an icosidodecahedron (polyhedron obtained by adding a tetrahedron on each of 
the faces of the dodecahedron), a Buckminster “Fullerene,” and the polygons 
of Jones [16] and Muthupallai [23]. This lll is also proportional to the 
lNlNlNlll  matrix obtained for the infinite uniform directional gradient sampling 
scheme described by Batchelor [29]. 

3 1 1 0 0 0

1 3 1 0 0 0

Mpredoc 
1 1 3 0 0 0

0 0 0 4 0 0

0 0 0 0 4 0

0 0 0 0 0 4

of and . for these designs is shown in Fig. 2. In 
Fig. 3, we consider the gradient scheme of Papadakis [17]. 
Interestingly, we find that it is approximately, but not strictly 
isotropic. 

TABLE I 
DIFFUSION GRADIENT VECTORS WRITTEN IN TERMS OF THEIR ;, y, AND z
 

COMPONENTS, {G ,G ,G }. THE SIX VECTORS ABOVE LIE ON AN
 

ICOSAHEDRON. ALTHOUGH IT HAS TWELVE VERTICES, THE ICOSAHEDRON
 

IS ANTIPODALLY SYMMETRIC, SO ONLY SIX DISTINCT ORIENTATIONS
 

ARE INDEPENDENT. THE QUANTITY f IS FIBONACCI’s GOLDEN RATIO,

f = (  5  1)/2  0.6180

E 0 : 3. THIS ACQUISITION SCHEME IS 

IDENTICAL TO WHAT WAS PROPOSED PREVIOUSLY IN [23] 

Gx Gv Gz 
1 fr 0 
1 - fr 0 
0 1 fr 
0 1 - fr 
fr 0 1 

- fr 0 1 

Fig. 3. lll obtained for the Papadakis scheme. This scheme has 12 
directions but they are not vertices of icosahedron, although it resembles 
it. The lll is approximately isotropic, but not exactly isotropic. It is 
obtained by minimizing the variance in the elements of DDD (Papadakis, personal 
communication). 

3.02 1.01 1 0 0 0 

1.01 2.98 1 0 0 0 

Mpred oc 
1 1 3.0 0 0 0 

0 0 0 4.04 0 0 

0 0 0 0 4.0 0 

0 0 0 0 0 4.0

The advantage of using this new tensor-variate distribution 
framework to design DT-MRI experiments is that we can 
consider gradient schemes having different numbers of gradient 
acquisitions, gradient strengths and gradient magnitudes rather 
than those with uniform gradient strength. We can also use 
this framework to show that any combination of rotationally 
invariant experimental designs (with arbitrary rotations and 
scaling factors) will produce a rotationally invariant exper­
imental design, so that these designs can be concatenated, 
producing a combined design that is also rotationally invariant. 
When combining these different designs, the constant of 
proportionality changes, but the precision matrix with
remains isotropic in form. Moreover, we are not limited to one 
particular choice of to produce a rotationally invariant 
DT-MR experiment. 

Additionally, our statistical framework also provides a natural 
way to assess the degree of rotational invariance of any exper­
imental design, or rather, the degree to which an experimental 

design deviates from statistical isotropy. One way is to measure 
the mean-squared deviation between for a particular exper­
imental design and an isotropic fourth-order precision tensor 

, but many other such measures can be contemplated. 

H. Estimating From Simulated DT-MRI Data

Note that formalism assumes a linear relationship 
between the measured MR signal and the unknown diffusion 
tensor elements with additive Gaussian noise. In the MR 
experiment, however, this relationship is nonlinear, and, if the 
log-linear form as in (24) is used, the noise is not additive 
[24]. Thus, the actual precision matrix obtained by using the 
least-square solution will differ from . However, we 
defer these issues for another paper and here we just report MC 
simulations of DT-MRI experiments that yield an “isotropic” 

. 
We performed MC simulations [13] to synthesize noisy 

replicates of diffusion tensors, , typical of those measured 
in isotropic gray matter regions of the human brain with 
DT-MRI using experimental parameters provided in [25]. 
From these MC data, we obtained sample estimates of 
and using formulae described in Appendix B. Estimated 
precision matrices using (B.2) for simple schemes like the one 
shown in Table I, do not produce isotropic precision matrices 
as predicted by (25) due to the log-linear transformation of the 
MR signal data. However, we found that when using a large 
number of directions, we can obtain approximately isotropic 
designs, but with not necessarily equal to . Fig. 4 shows 

displayed as a 6 6 matrix with coefficients organized as 
in (7). Such a relationship holds rather well in the case of 
isotropic diffusion and a large number of gradient directions 
( 50 or more); for the data shown in Fig. 4 the number of 
directions was 60. The two matrices displayed show results for 
the cases when no nondiffusion-weighted (non-DW) images 
were used in the simulation, and where ten non-DW images 
were used. Although the actual values of and , and their 
ratio, depend on the number of non-DW images, the isotropic 
form appears to hold up to 20 non-DW images. However, in the 
case of anisotropic diffusion the log-linearization introduces a 
dependence of on the mean values of . Investigating this 
problem and other problems of optimal design will be a subject 
of another paper. 



Fig. 4. Elements of the estimated precision matrix lll , organized as in (7), and obtained using (B.2) on MC replicates of a simple acquisition scheme consisting 
of three-fold repetitions of the gradients, which are the vertices of a dodecahedron. In (a) no nondiffusion-weighted images were used whereas in (b) ten 
nondiffusion-weighted images were used in the experimental design. The elements in the lower diagonal positions equal 4 /. It is easy to see that / " 2/ in 
both cases, and .(0) " 08, .(10) �" 8; hence,
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 . + 2/ should assume values 42 and 58, respectively, which is close to the actual values of the three diagonal 
elements in the upper diagonal matrices. 

40 -8 -8 -3 0 0 56 8 8 -4 -1 -1
-8 42 -9 0 0 0 8 59 8 -1 -1 -1 

M(O)= 
-8 -9 42 1 0 0 

M(lO)= 
8 8 59 0 -1 -1

-3 0 1 97 -3 -3 -4 -1 0 97 -3 -3
0 0 0 -3 100 -3 -1 -1 -1 -3 100 -3
0 0 0 -3 -3 100 -1 -1 -1 -3 -3 100

Note that the formulae given in Appendix B can also be used 
to obtain estimates of from empirically estimated data on a 
voxel by voxel basis, using Bootstrap methods to resample the 
set of acquired diffusion weighted images [3]. 

III. DISCUSSION 

DT-MRI applications require a normal distribution for a 
tensor-valued random variable. While the multivariate normal 
distribution per se can describe the variability of individual ele­
ments of , it does not naturally yield other useful information 
[2]. Specifically, we would like to predict how the distribution 
of would change if the laboratory coordinate system were 
rotated, or if a general affine transformation were applied to 

, for example, by applying shearing or dilatation operations 
required in image warping and registration applications [26]. 
It is also of interest to know how the first and higher moments 
of the apparent diffusion coefficient behave. This quantity is 
obtained by projecting the diffusion tensor along a particular 
direction. It is also of interest to know how the principal dif­
fusivities (eigenvalues) and principal directions (eigenvectors) 
of are distributed. Moreover, we would also like to know 
the distribution of scalar invariants of (e.g., and 

that characterize the type and degree of anisotropic 
diffusion. 

On a more fundamental level, a tensor-variate distribution 
is needed because, at present no statistical model describes 
variability of second and higher-order tensors, which would 
be useful in prediction, estimation, filtering, and hypothesis 
testing applications of tensor data, and in improving the ability 
to design and interpret experiments involving tensor data. 

A key attribute of using a fourth-order tensor, , to char­
acterize the covariance structure of the tensor-variate distribu­
tion—rather than rewriting it as a vector—is that it preserves 
the form of the tensor random variable, , and our ability 
to perform admissible algebraic operations on it.14 

14Algebraists say that two vector spaces of the same dimension are 
“isomorphic,” but that the isomorphism is not “canonic.” in the sense that 
the isomorphism is not uniquely prescribed. Such is the case with the 
vector and tensor-variate distributions. 

Unlike 
the multivariate distribution—whose only natural coordinate 

system is that of the covariance matrix, —the tensor-variate 
distribution refers the components of and explicitly to 
the reference or laboratory coordinate system. 

However, because we have also shown how to convert be­
tween vector- and tensor-variate Gaussian distributions, we can 
employ all of the mathematical and statistical machinery devel­
oped for multivariate Gaussian distributions (e.g., see [11]) to 
analyze tensor data without having to rederive these findings 
and results. 

The tensor formalism also allows us to view univariate and 
multivariate normal distributions as special cases of the more 
general tensor-variate distribution. The univariate distribution 
results from the contraction of two zeroth-order tensor random 
variables and a zeroth-order precision tensor; the multivariate 
distribution results from the contraction of two first-order 
random variables and a second-order precision tensor. In 
general, an th-order tensor-variate normal distribution can be 
constructed by contracting two th-order random tensors and a 

th-order precision tensor. In this way, we are able to generate 
distributions for random variables that are tensors of second 
and higher order. 

There are a number of disciplines to which this new statistical 
methodology could be applied. In imaging sciences and signal 
processing, the most obvious application is to diffusion tensor 
MRI data [1], [20]. This new framework will help us estimate 
moments of the tensor-variate distribution, and perform nu­
merous hypothesis tests for diffusion tensor-derived quantities 
in clinical, biological, and materials sciences applications. 
In the physical sciences, quantities such as the moment of 
inertia tensors, rotational or spin-diffusion tensors, and elastic 
coefficient tensors of elastic media, nematics, and crystals 
[27] are routinely measured. In some cases, they may conform 
to a normal tensor-variate distribution, especially if they are 
measured using regression methods (e.g., as in [20]). In the 
physics of continuous media, and in materials engineering, 
tensor quantities arise in constitutive equations that are used to 
describe charge, mass, momentum, and energy transport. These 
include the translational diffusion tensor, the particle dispersion 
tensor, the fabric tensor, the electrical conductivity tensor, the 
thermal conductivity tensor, and the hydraulic permeability 
tensor. These quantities are measured using a variety of 



methods, and in some cases, their individual components may 
also conform to a normal distribution that could be described 
using the formalism above. Finally, many input/output matrix 
models used in engineering and in the social sciences may have 
coefficients that are also described by this new distribution. 

IV. CONCLUDING REMARKS 

The idea of using the tensor contraction operation (in this 
case, applied to fourth- and second-order tensors) in the expo­
nent of a normal distribution appears to be novel to the theory of 
statistical distributions, and significantly extends the scope and 
applicability of the normal distribution to accommodate many 
types of high dimensional data. 

In the near term, this new tensor-variate distribution should 
improve our ability to estimate and quantities derived from 
it in DT-MRI studies. It should also lead to the development of 
hypothesis tests with which to analyze in vivo DT-MRI data. 
Finally, it should lead to improvements in the experimental de­
sign of DT-MRI studies, providing a unifying framework for 
understanding the effect of changing independent experimental 
parameters. 

APPENDIX A 
FOR AN ISOTROPIC TENSOR
 

When
 is an isotropic fourth-order tensor, the contraction 
can be written as 

(A.1) 

With a little algebra, this simplifies to15 

15If DDD is interpreted as an infinitesimal strain tensor, and its parameters are 
elastic constants, then this expression is exactly of the form of the stress of an 
isotropic solid (e.g. see [8] and [28]). Moreover, the term DDD : AAA : DDD can be 
interpreted as a strain energy function for such a material. 

(A.2) 

Now, using the definitions (see [28]) 

(A.3) 

we can rewrite the tensor contraction in (A.1) as 

(A.4) 

which is the result we set out to show. 

APPENDIX B
 
FORMULAE FOR OBTAINING SAMPLE ESTIMATES OF
 AND

Sample estimates of the mean and precision tensors for the 
tensor-variate distribution are readily obtained from simulated 
DT-MR data. 

The sample mean tensor for a sample of size is 

(B.1) 

The estimate of the fourth-order precision tensor can be 
obtained through its relationship to the precision matrix, , 
[see (7)]. The estimate of the precision matrix is the inverse of 
the unbiased estimate of the covariance matrix of the diffusion 
(column) vector, 

(B.2) 

The resulting can then be used to obtain the elements of 
using (7). 
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