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Abstract. We propose a novel method for deformable tensor–to–tensor 
registration of Diffusion Tensor Imaging (DTI) data. Our registration 
method considers estimated diffusion tensors as normally distributed 
random variables whose covariance matrices describe uncertainties in the 
mean estimated tensor due to factors such as noise in diffusion weighted 
images (DWIs), tissue diffusion properties, and experimental design. The 
dissimilarity between distributions of tensors in two different voxels is 
computed using the Kullback-Leibler divergence to drive a deformable 
registration process, which is not only affected by principal diffusivities 
and principal directions, but also the underlying DWI properties. We in 
general do not assume the positive definite nature of the tensor space 
given the pervasive influence of noise and other factors. Results indicate 
that the proposed metric weights voxels more heavily whose diffusion 
tensors are estimated with greater certainty and exhibit anisotropic dif­
fusion behavior thus, intrinsically favoring coherent white matter regions 
whose tensors are estimated with high confidence. 

1 Introduction 

Accurate registration of tensor fields is of great relevance in various stages of 
Diffusion Tensor Imaging (DTI) analysis [1]. Because of the complex nature of 
DTI data, cross–registration of DTI population data needed for longitudinal and 
multi–site studies, and brain atlas creation requires specialized mathematical 
tools. An accurate tensor interpolation scheme and a tensor dissimilarity metric 
reflecting the tensor’s principal diffusivities and directions and uncertainty due 
to noise are needed considering the large variability among DTI data and exper­
imental designs. Early registration approaches used derived scalar fields such as 
Apparent Diffusion Coefficients (ADC), Fractional Anisotropy (FA), or individ­
ual tensor components. Next–generation registration methods operated on the 
tensor manifolds and employed a metric to compute tensor distances such as the 
Riemannian [2] or Log-Euclidean [3]. Zhang et al. proposed a locally affine reg­
istration algorithm based on diffusion profiles, as a function of spatial direction 
[4]. Another work is from Cao et al. where the authors realize the registration by 
optimizing for geodesics on the space of diffeomorphisms connecting two diffu­
sion tensor images [5]. The use of full tensor information for registration, along 
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with metrics powerful enough to capture shape and direction information, has 
been shown to lead to better registration accuracy [6] [7]. However, all these 
approaches consider diffusion tensors as independent from the original DWIs. It 
is crucial to note that diffusion tensors are obtained through an optimization 
process on the DWIs and do not only reflect the underlying diffusion properties, 
but also depend on the noise in the DWIs and gradient information. 

In this paper, we propose a method that uses a dissimilarity metric that not 
only makes use of the full estimated tensor data, but also uses the uncertainty 
present in typical clinical DWIs. This causes the registration to favor direction­
ally more informative, more anisotropic and less noisy regions. To our knowledge, 
this property of diffusion tensors has never been investigated and employed in 
a registration procedure. For each voxel, a tensor–variate Gaussian distribution 
is constructed with a mean and a covariance matrix obtained from the tensor 
fitting function itself; the mean tensor provides the best estimate of the diffusion 
tensor while the covariance matrix quantifies the uncertainty of estimated mean 
diffusion tensors. The main contributions of this work are: 

– using the uncertainty information present in DWIs in tensor distributions to 
help the registration automatically favor brain regions with high anisotropy 
and fiber coherence forming an internal skeleton that guides the registration. 

incorporating an initial segmentation for a tissue adaptive registration. 
–– providing analytically derived error differentials for faster convergence. 

2 Registration Framework 

The Kullback-Leibler (KL) divergence dissimilarity for tensor–variate Gaussian 
distributions is used as a voxelwise dissimilarity metric in a hierarchical regis­
tration framework that starts with a coarse, rigid registration, continues with 
affine, and finishes with a finely resolved B–splines deformable registration. A 
6×6 covariance matrix is computed from the invariant Hessian of the non–linear 
tensor fitting function along with each mean estimated diffusion tensor to con­
struct a Gaussian tensor–variate distribution. Figure 1 depicts the workflow of 
the proposed framework. 

Positive Definiteness and Distributions of Diffusion Tensors. Diffusion 
tensors are predicted to have non–negative eigenvalues, representing the real 
molecular water diffusion. However, in DTI, the diffusion tensors are obtained 
through a physical setup not only affected by real water diffusion but also the 
scan parameters. This results in generally non positive-definite tensors in typical 
DTI scans (unconstrained fitting), especially in highly anisotropic regions such 
as Corpus Callossum. In his work, Pasternak et al. considers diffusion tensors as 
Cartesian physical quantities and shows that the Euclidean space is better suited 
for diffusion tensors than affine–invariant Riemannian manifolds [8]. Pajevic et. 
al. also shows through Monte–Carlo simulations mimicking physical imaging 
setups, that tensor coefficients can be modelled with a Gaussian distribution over 
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Fig. 1. The flow of the proposed registration algorithm 

a wide range of SNR and the number of DWIs acquired. [9]. Aiming to cope with 
uncertainties such as noise and artifacts in practical settings, it was preferrable 
to use a tensor–variate Gaussian distribution in our framework, instead of a 
Wishart distribution, which conserve positive definiteness. 

3 Methodology 

3.1 Tensor Fitting and Covariance Tensor Estimation 

In a typical DTI experiment, the measured signal in a single voxel has the form 
[1],  s = S0 exp(−bgTDg), where the measured signal, s, depends on the diffu­
sion encoding vector, g, the diffusion weight, b, the reference signal, S0, and  the  
diffusion tensor D. Given n  ≥ 7 sampled signals derived from six non–collinear 
gradient directions and at least one sampled reference signal, the diffusion tensor 
estimate can be found with non–linear regression with the following objective 

function 
2

i=1

(  
1 n 7

fNLS(γ) =   si  − exp Wij γj2

[
i=1 

J)
. The  symbol γ  repre­

sents the vectorized version of diffusion tensor entries, si is the measured DW 
signal corrupted with noise, ŝ

 7 (Wj=1 ij γj )
i(γ) = e is the predicted DW signal 

evaluated at γ, and W  the experimental design matrix is presented in [10]. 
The fNLS  function in Equation introduces the variability in the signal as ex­
plained in the design matrix, W. In [11], it is shown that the diffusion ten­
sors at each voxel can be considered as a normally distributed random variable 
with the covariance matrix being a function of the Hessian matrix at the opti­
mum solution. Thus according to [11], the Hessian matrix can be computed as 

ˆ∇2fNLS(γ) = W T (S2 − RŜ)W, where  S and Ŝ are diagonal matrices whose 
diagonal elements are the observed and the estimated DW signals, respectively, 
and R = S − Ŝ. Then, the covariance matrix of a diffusion tensor can be esti­
mated as in [10]: Σ −1

γ = σ2 2
DW fNLS(γ̂) ,
[ r∇ where σ 2 

DW represents the variance 
of the noise in the DWIs [10]. 

The covariance matrix is therefore a function of DWI noise , σ2 
DW , the gradient 

magnitudes and directions (embodied in the design matrix, W) and the tissue’s 
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underlying diffusion properties. The anisotropy, the norm, and the shape of this 
6 × 6 matrix all provide insights on the reliability of the optimum diffusion 
tensor solution and the tissue properties. Figure 2 b) and  c) display maps of the 
deviations from these matrices from the pure isotropic designs of Section 3.4, 
thus displaying a measure of the shape of these matrices w.r.t. the tissue type. 

b)Slice 1 c)Slice 2

Fig. 2. Isotropic covariance structure in a) requires only 2 parameters. Deviations of 
the original covariance matrices from the isotropic form are displayed in b) and c). The 
images show that covariance matrices tend to be more anisotropic in WM regions. 
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a)Isotropic matrix form

3.2 Dissimilarity Metric 

In this work, we propose a new metric function, F , for diffusion tensor field 
registration. This metric uses the distribution of diffusion tensors obtained in 
each voxel, arising from noise and tissue properties. F is based on the symmetric 
KL divergence and can be described as: 

⎛ ⎞ 
Σ−1tr(Σ−1Σf ) + (γ; − γf )

T (γ; − γf )  m m m m1 
F (If , Im, Θ) = wp(If , Im) ⎝ + ⎠ (1)

N
p∈Ω tr(Σ−

f 
1Σm) + (γf − γ; )T Σ−

f 
1(γf − γ; )m m

In Equation 1, γf signifies γf (p), the diffusion tensor on the fixed image at a 
physical voxel location p; similarly Σf signifies the covariance at voxel location 
p, i.e., Σf (p), and Θ symbolizes the transformation parameters. For the moving 
image Im, the covariance matrix is obtained through interpolation so Σm cor­
responds to Σm(T (p, Θ)). Interpolation is done through a continuous B–splines 
approximation framework [12]. Deforming a diffusion tensor, γm(p), with a (lo­
cally) affine transformation matrix, A, involves tensor interpolation followed by 
reorientation. In this work, we follow the Finite Strain model proposed in [13]
then the interpolated and rotated diffusion tensor γm

: (p) can be found to be 
γ: (p) = R T 

m γm(T (p, Θ))R. R is the rotation component extracted from the 
affine matrix, A, and can be found to be R = (AAT )−1/2A. For the elastic 
registration case, A is not constant throughout the image and can be locally 
estimated from the displacement field, u, as  A(p) = I  + J(u(p)) where I is the 
identity matrix, and J(u(p)) is the Jacobian of the deformation field at p. 

Equation 1 is the Kullback-Leibler (KL) divergence symmetrized with re­
spect to both distributions. When the first part of the equation is examined, 
1 (tr(Σ−1Σf ) + (γ: −  

 m m γf )T Σ−1(γ: − γf ), 2 m m  it can be seen that the first term 
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in the summation, tr(Σ−1
m Σf ), measures the similarities between the two co­

variance matrices; the second term is the standard Mahalanobis distance. The 
overall metric for the registration is the weighted (wp(If , Im)) summation over 
the KL metrics on all voxels, normalized by the number of voxels used. 

3.3 Error Metric Differentials 

Registration is mainly an optimization procedure, where the optimizers gener­
ally require partial differentials of the error metric with respect to the transfor­
mation parameters. Most of the DTI registration frameworks suffer from using 
numerical approximations to these gradients [14], such as centered differences. 
The problem with this approach is that it requires two metric computations per 
transform parameter. For deformable registrations with very large parameter 
space dimensionality, this approach is infeasible and an analytical solution for 
the differential is required. In this section, we will analytically derive the error 
metric gradient so that each partial differential involved has a simple form and 
is easy to compute numerically. This way the metric evaluations are minimized 
and the gradient computations are more accurate and faster. Let us have a closer 
look at the first term of the error metric: 

1 
F = (tr(Σ−1(T (p, Θ))Σf (p))+(γ: (p)−γf (p))T Σm(T (p, Θ))−1(γ: (p)−γf (p)))m m m2 

Let f be the trace term, f = tr(Σ−1
 m (T (p, Θ))Σf (p)),

 
 and g be the Mahalanobis

term,  −   −g = (γ: (p)  γf (p))T
m Σm(T (p, Θ))−1(γm

: (p)  γf (p)). The differential can
be expressed as ∂F/Θi = ∂f/Θi + ∂g/Θi. From the chain rule, it follows that: 

   6 6 
∂tr(Σf Σ−1(T (p, Θ))) ∂Σ−1(T (p, Θ))m m ∂Tx,y,z

∂f/∂Θi = (2)
∂Σ−1 ∂Tx,y,z ∂Θij=1 k=1 m{kj} x,y,z 

– The first differential term ,
1∂tr(Σf Σm

−  (T (p,Θ)))

∂Σ−1 
f{kj}

, is just  Σf {kj} from the sym­

metry of covariance matrices and the derivative of traces w.r.t the matrices. 
Also note that the inverses of the covariance matrices are stored and used 
as images, cancelling the need for the inverse operation for the differen­
tial. Additionally, as explained in Section 3.4 the isotropic covariance matrix 
Σ−1(T (p, Θ)) m is obtained only using interpolation but not reorientation due
to rotational invariance assumption, yielding a simpler formula [9]. 

The second partial in Equation 2 represents the image gradient of the maps 
of each covariance components w.r.t. imaging directions. These gradients 
need to be computed once at the beginning of the registration. 

–– The last term ∂Tx,y,z 

∂Θi 
corresponds to the Jacobian of the transformation and

needs to be computed once per iteration. 

The Mahalanobis part of the function F , i.e., the function g, has a more compli­
cated differential due to the rotation of diffusion tensors γm(T (p, Θ)) into γ:(p) 
if an affine or deformable registration scheme is employed. Let a be  a = γm

:
 − γf ,



then the Mahalanobis part g can be rewritten as g = 
  

k ajakΣ−1 
j m{jk}. Then  

the differential can be rewritten as: 
  ∂Σ−1 

∂g ∂aj ∂ak m{jk}= akΣ−1 + aj Σ−1 + ajakm{jk} m{jk}∂Θi ∂Θi ∂Θi ∂Θij k j k j k 

The differential in the last term, 
−1 ∂Σ
m{jk}
∂Θi 

is the same as the one used in Equa­

tion 2  , i.e.,
 −1

 ∂Σm (T (p,Θ)) ∂Tx,y,z 

x,y,z ∂Tx,y,z ∂Θ . 
i 

With the finite strain model, a can be 

described as a = RT γm(T (p, Θ))R − γf . Then the first differential becomes: 
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∂ai ∂RT (T (p, Θ)) ∂R 
= γm(T (p, Θ))R + RT ∂γm

R + Rγm(T (p, Θ)) (3) 
∂Θz ∂Θz ∂Θz ∂Θz 

The second partial in Equation 3 can be found similarly to the covariance ma­
trix case and is 

 ∂γm(T (p,Θ)) ∂Tx,y,z 

x,y,z ∂T . 
x,y,z ∂Θi 

In the case of an affine transforma­
tion, where the parameters Θi corresponds to the entries in the affine matrix, 
A, the partial derivative of the rotation matrix, R, with respect to the trans­
formation parameter, Θz, comes from the chain rule, ∂R = ∂R

∂Θ ∂A . For t he elas­
tic registration case, the local affine matrix is estimated from the displacement 
field, u, and the differential becomes ∂R = 

  ∂R ∂ujk

∂u . ∂Θz j k jk ∂Θz 
For B–splines 

registration of order 3, the displacement field can be written as, u(p, β) =   
i

 
j 

 
k βijkbi,3(px)bj,3(py)bk,3(pz), where βijk are B–splines weights corre­

sponding to parameters Θ and b.,3 are 3rd order spline basis functions. Then the 
second partial derivative, ∂ujk 

∂Θz 
, is j ust  bi,3(px)bj,3(py)bk,3(pz) for Θ z = βijk. The  

first term, ∂R
∂ujk 

, can be found in in [14]. 

3.4 Covariance Matrix Dimensionality Reduction 

Independent components of diffusion tensors (6) and covariance matrices (21) 
generally yield a total of 27 dimensions, which poses problems in terms of mem­
ory and speed during registration. Being a function of the matrix W , the  co­
variance matrix’s form depends on the number of gradients and the direction of 
gradients used. In [9], it is shown that with sufficient number of diffusion gra­
dients sampling the unit icosahedron densely enough, the 4D covariance tensor 
(3 × 3 × 3 × 3) corresponding to the 2D covariance matrix tends to be isotropic 
and rotationally invariant. These isotropic covariance matrix yield a specific 6×6 
matrix structure, with the block matrix form shown in Figure 2 a). 

3.5 Tissue Segmentation 

The tensor covariance matrix provides additional information on the tissue type. 
To further use this additional information for a more robust and faster regis­
tration, we perform a classical Expectation–Maximization (EM) segmentation 
initialized with K-means clustering, with the distance function originating from 
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our KL-metric and tensor–variate distributions derived from the mean and co­
variance matrices. This procedure is used in the registration initialization. For 
each moving image, first a segmentation is carried out. The probability of a voxel 
being a WM voxel obtained from the EM segmentation is used as the weight­
ing factor wp(If , Im) in Equation 1. Additionally, the segmentation labels are 
used to build a multi–level grid for B–splines registration. A coarser B–splines 
transformation grid is placed on CSF locations to decrease the computational 
complexity, whereas a denser grid is used for WM. 

4 Experiments and Results 

We acquired data from six healthy subjects with DTI parameters, b=1000s/mm2 , 
72 diffusion gradient directions. Matrix sizes for all images were 128×157 with 114 
axial slices and 1.5mm isotropic voxel resolution. One of the images was chosen to 
be the fixed image and the other five were used as moving images. For compari­
son, we implemented a benchmark multi–channel registration algorithm with six 
channels for tensor components, including one channel for FA and one channel for 
ADC. The benchmark method followed the same vector image registration steps. 
Standard deviation maps of the FA maps were also computed from the registered 
images. For the described dataset, the proposed registration pipeline with rigid, 
affine, and B–splines transformations (maximum grid size 20 × 20 × 20), takes on 
the average 30 minutes per image on a modern computer. 

4.1 Segmentation Outputs 

We segmented a brain image by using three different levels of information: the 
isotropic covariance matrices (trace part of the error metric), only the full covari­
ance matrices, and full covariance matrices along with the diffusion tensors as 
described by the error metric. Figure 3 displays the result of these segmentations. 
The images in Figure 3 show that the tensor covariance information brings ad­
ditional information about the tissue type. With increasing complexity of the 
covariance matrix structure, tissue layers can better be discriminated . The use 
of full covariance matrix along with the diffusion tensor further improves the 
segmentation (Figure 3 (d)). 

Fig. 3. Segmentation results. (a) Fa image. (b)Segmentation with only isotropic co­
variance matrix. (c) Segmentation using full covariance matrix. Segmentation of white 
matter improves using full covariance matrix and diffusion tensor information (d). 
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4.2 Registration Results 

Figure 4 displays the output of the registration algorithm. The metric proves to 
perform well on white matter regions, as can be observed from the similarity of 
the images in the first and third columns. The difference image of the registered 
moving image and the fixed image is displayed on the fourth column, where it is 
visible that the metric performs significantly better than the benchmark method 
on the Corpus Callosum. The difference image for the benchmark method is 
displayed in the fifth column. The sixth column, displays the standard deviation 
of the FA maps of the five images registered with the proposed method. Note 
that the performance of the algorithm on white matter is clearly visible. 

Fixed Moving Registered Difference Reference 

Axial 

Sagittal 

Fig. 4. Output of the registration algorithm. The fixed, moving, registered moving, 
difference images, and FA standard deviation displayed in different columns. 

5 Discussions and Conclusions 

In this work, we proposed a novel, robust and fast approach for tensor–to– 
tensor registration for Diffusion Tensor Image data, suitable for group analysis 
and tensor atlasing problems. The proposed metric captures the uncertainty 
of the diffusion tensors with a tensor-variate Gaussian distribution. Our future 
research directions include the analysis of the shape and isotropy characteristics 
of covariance matrices and testing of the algorithm with a larger population. 
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