Synopsis

Dynamic-contrast-enhanced MRI (DCE-MRI) has been widely used to characterize microvasculature permeability. Recently, it was shown to reveal metabolic activity using the shutter-speed pharmacokinetic paradigm (SSP), in which steady-state intra/extracellular water exchange kinetics was incorporated into DCE-MRI data analysis. Interesting insights into DCE-MRI signals come from modeling the extravascular tissue MR signal. The questions addressed here are, “When can extravascular 1H2O longitudinal magnetization recovery from inversion/saturation still be described by a single-exponential process, and when can the intra/extracellular water exchange kinetics be accurately determined?”

Purpose

Dynamic-contrast-enhanced MRI (DCE-MRI) is a widely used clinical imaging tool. A quantitative DCE-MRI protocol is a pharmacokinetic study. A paramagnetic contrast agent (CA) is injected intravenously and transiently extravasates only to the extravascular tissue spaces, a process described by Kety-Schmitt (KS) pharmacokinetic law (Figure 1). Interesting aspects of the analysis of DCE-MRI signals come from modeling the extravascular tissue MR signal. Typically, a tracer pharmacokinetic paradigm (TP) has been used, where longitudinal magnetization, M, recovery from inversion/saturation is assumed to be described by an empirical single exponential process with apparent relaxation rate, α. However, this ignores an important feature of water compartmentalization, i.e., finite steady-state exchange of intra- and extracellular water molecules. In 1999, two-site-exchange (2SX) expressions for steady-state intra/extracellular water exchange kinetics (Figure 1) were incorporated into DCE-MRI data analysis, via the shutter-speed pharmacokinetic paradigm (SSP). SSP-based analysis not only characterize microvasculature, like TP, but also reveal cellular metabolic activity. In SSP models, M is described with a bi-exponential function, which could admit two MR signals with different apparent relaxation rate constants. The questions addressed here are the conditions when M relaxation can still be described as a single-exponential process and when the intra/extracellular water kinetics can still be accurately determined under SSP.

Methods

To illustrate the effects of varying [CA] during DCE-MRI, simulations with the following 2SX parameters (Figure 1): $f = 0.80, R_{100} = 0.55$ s$^{-1}$, and $f_{10} = 3.94$ s$^{-1}$mM$^{-1}$. The values were varied from 0 to 3 s$^{-1}$, with 0.5 s$^{-1}$ steps, and the [CA] values were varied from 0 to 6 mM. The simulations were run at two different intrinsic intracellular 1H2O relaxation rate constants: $R_{1i} = 0.55$ and 2.00 s$^{-1}$. In all simulations, the small microvascular plasma (and blood) signal was ignored.

The 2SX model describes intra- and extracellular M with an empirical bi-exponential function,

$$\frac{M_0 - M(t_1)}{M_0} = (1 - \cos \alpha) \left[f_{sm}' e^{-R_{1sm}t_1} + (1 - f_{sm}') e^{-R_{1lar}t_1} \right]$$

where $M(t_1)$ is the magnetization at recovery time t_1, M_0, at equilibrium, the effective flip angle of the inversion/saturation pulse, and R_{1sm} and R_{1lar} are the small and large apparent relaxation rate constants, respectively, and f_{sm}' is the apparent fractional intensity of the signal with R_{1sm}. The analytical expressions for Eq. (1) quantities given in terms of physical quantities are described in Figure 2.

Results

The analytical 2SX solutions for f_{ls}, R_{1lm}, and R'_{1lm} as functions of $[CA_o]$ and k_{io} are illustrated in Figure 3. Without any exchange, both f_{ls} and R_{1lm} are $[CA]$-independent (horizontal dashed lines). With exchange, both parameters are strongly dependent on $[CA_o]$ and k_{io} values. For $R_{1i} - R_{1i0} = 0$ s$^{-1}$, f_{ls} is equal to 1.0 at $[CA_o] = 0$ mM for any finite k_{io} value. For $R_{1i} - R_{1i0} = 1.45$ s$^{-1}$, f_{ls} approaches 1.0 at $[CA_o] = 0.37$ mM ($R_{1i} - R_{1i0} = 0$ s$^{-1}$) for any finite k_{io} value. In both cases, the recovery time-course could be well approximated with the single-exponential expression Eq. (1) with R'_{1i}.

Discussions

Figure 3 illustrates important theoretical features of the 2SX model. The abscissa is a measure of the longitudinal shutter-speed ($k_1 \equiv |R_{1i} - R_{1i0}|$) for this system. For simulations at $R_{1i} - R_{1i0} = 0$ and 1.45 s$^{-1}$, f_{ls} approaches 0 as k_1 approaches zero. This has been traditionally called the fast-exchange-limit (FXL). However, the FXL term comes from NMR in chemistry, where reactions can be accelerated or slowed, i.e., k_{io} can be increased or decreased, respectively. Figure 3 makes clear the f_{ls} vanishing is independent of the k_{io} value at finite k_{io}. Thus, the FXL label is misleading. It is more descriptive to refer to the left ordinate as the vanishing-shutter-speed-limit (VSSL). This is important because the TP represents a special case of the SSP – in the limit of a short SS. It has been shown algebraically that as k_1 vanishes, R'_{1lm} approaches the f-weighted R_{1ls}, R_{1ls} average [\(\equiv R'_{1i} \)]. Any DCE-MRI model within the TP is the special VSSL case of the analogous shutter-speed model.

In most practical situations, ($R_{1i} - R_{1i0}$) is small in tissue but > 0 and $[CA_o]_{max}$ rarely exceeds 2 mM. In these cases, f_{ls} is very small, and its signal also likely suffers disproportionate transverse relaxation quenching (R'_{2ls} > R_{2lm}). Thus, the component can reasonably be neglected. In this very common regime, the recovery is mono-exponential, but the relaxation rate constant is R'_{1lm} (Figure 2), not R'_{1i} defined in TP model

\[
R'_{1i} = r_{1ls}[CA_o] + R'_{1ls}(2)
\]

This can be called the vanishing shutter-speed regime [VSSR]. Measurements in blood suggests the VSSR extends to $[CA_o]$ past 20 mM; most likely due to transverse quenching.8 This is important because k_{io} is only accessible in the VSSR but not the VSSL.

Acknowledgements

This work was supported by the Intramural Research Program (IRP) of the *Eunice Kennedy Shriver* National Institute of Child Health and Human Development, National Institutes of Health. Charles S. Springer, Jr. is supported by the National Institutes of Health under Awards No. U01-CA154602 and R44-CA180425

References

