Targeted point mutagenesis of mouse *Kcnq1*: phenotypic analysis of mice with point mutations that cause Romano-Ward syndrome in humans

Mathew C. Casimiro, Bjoern C. Knollmann, Ebenezer N. Yamoah, Liping Nie, Jay C. Vary Jr., Syevda G. Sirenko, Anne E. Greene, Alexander Grinberg, Sing Ping Huang, Steven N. Ebert, Karl Pfeifer

*Laboratory of Mammalian Genes and Development, NICHD/National Institutes of Health, Building 6B Room 2B-206, 9000 Rockville Pike, Bethesda, MD 20892, USA
Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20007, USA
Center for Neuroscience, Department of Otolaryngology, University of California at Davis, 1544 Newton Court, Davis, CA 95616, USA
Howard Hughes Medical Institute–NIH Research Scholar Program, Bethesda, MD 20872, USA

Received 23 February 2004; accepted 9 June 2004

Abstract

Inherited long QT syndrome is most frequently associated with mutations in *KCNQ1*, which encodes the primary subunit of a potassium channel. Patients with mutations in *KCNQ1* may show only the cardiac defect (Romano-Ward syndrome or RWS) or may also have severe deafness (Jervell and Lange-Nielsen syndrome or JLNS). Targeted disruption of mouse *Kcnq1* models JLNS in that mice are deaf and show abnormal ECGs. However, the phenotype is broader than that seen in patients. Most dramatically, the inner ear defects result in a severe hyperactivity/circling behavior, which may influence cardiac function. To understand the etiology of the cardiac phenotype in these mice and to generate a potentially more useful model system, we generated new mouse lines by introducing point mutations associated with RWS. The A340E line phenocopies RWS: the repolarization phenotype is inherited in a dominant manner and is observed independent of any inner ear defect. The T311I line phenocopies JLNS, with deafness associated with inner hair cell malfunction.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Romano-Ward syndrome; RWS; JLNS; Long QT; Kcnq1; Mice; Genetics; Deafness

Long QT syndrome (LQTS) is an abnormality in cardiac ventricular repolarization characterized by QT interval prolongation and abnormal T-waves on an electrocardiogram (ECG). LQTS patients are susceptible to polymorphic ventricular tachycardia and torsades de pointes. These can cause syncopal episodes and sudden death in young, otherwise healthy individuals. The past several years have heralded dramatic progress in understanding the molecular biology of LQTS and have led to the notion that LQT is a channelopathy caused by mutations in genes coding for ion channels important in cardiac function [1,2].

To date six genes have been identified in inherited LQT patients[3–8]. The most common cause of inherited LQTS is mutation of the *KCNQ1* gene (LQT1), which encodes the primary channel-forming α-subunit of a voltage-gated potassium channel [9]. KCNQ1 can associate with β-subunits of the KCNE family. To date, the KCNE family consists of five members (KCNE1–KCNE5) [6,10–14], each of which is capable of associating with KCNQ1 and forming K⁺ channels with distinct electrophysiological properties predicted to be involved in diverse roles in different tissues. For instance, when KCNQ1 pairs with KCNE1, the channel is transformed into producing the slowly activating time-dependant potassium current, Iₖs, found in cardiac myocytes and specialized epithelial cells of the inner ear [15–17].
Mutations in KCNQ1 (LQT1) and KCNE1 (LQT5) are associated with two clinical forms of LQTS, Romano-Ward syndrome (RWS) and Jervell Lange-Nielsen syndrome (JLNS). JLNS is characterized by profound sensorineural deafness in association with a more severe cardiac phenotype that causes a higher incidence of sudden death [18]. Genotype/phenotype correlations in LQTS patients reveal a complex inheritance pattern: the deafness is inherited in a recessive fashion; however, the LQT phenotype in the two syndromes is usually inherited as a dominant trait with varying degrees of penetrance [19].

Insight into why JLNS patients are deaf came from postmortem studies, which revealed inner ear morphology changes that are consistent with the lack of endolymph in the membranous labyrinth of the inner ear [20]. Endolymph is a K+-rich fluid that bathes the hair cells in the vestibular and auditory compartments and is essential for inner ear function. The stria vascularis of the cochlea and dark cells in the vestibular apparatus are known to be responsible for the production of endolymph fluid. Both Kcnq1 and Kcne1 have been localized to these regions and I_Ks is a candidate for endolymph secretion [17,21–24]. A requirement for I_Ks is further supported by the deafness and vestibular defects found in Kcnq1^−/− and Kcne1^−/− mice [25–27].

We previously published work on the targeted disruption of the mouse Kcnq1 gene that produced a model for JLNS. In vivo ECG analysis revealed that, like JLNS patients, the Kcnq1^−/− mice display long QT intervals and altered T-wave morphology [25]. The mice are deaf, and histological analyses revealed gross morphological anomalies of the inner ear due to a drastic reduction in the volume of endolymph [25,26]. However, the mice also displayed defects not found in human JLNS patients. The ECG phenotype included P-wave changes and an increase in QRS amplitude. Furthermore, the inner ear dysfunction causes a hyperactive behavioral defect (shaker/waltzer) characterized by almost continual circling and rapid head bobbing. This behavioral phenotype is specific to mice and is not displayed by JLNS patients with equally profound defects in inner ear function. Presumably, humans have more robust compensatory mechanisms. Finally, the stomachs of Kcnq1^−/− mice were grossly enlarged due to gastric hyperplasia [26].

We were particularly struck with the shaker/waltzer phenotype since it seemed plausible that some of the cardiac phenotypes might be secondary to the pronounced hyperactivity of these mice. In this study, we attempt to separate the ECG phenotype from the inner ear by taking advantage of the extensive human genetic studies. Specifically, we have engineered point mutations into mouse Kcnq1 that we hypothesized would generate a RWS mouse and thereby allow us to examine the cardiac defect without the added complexity of the inner ear phenotype. We report here on the construction and analysis of three novel lines with point mutations in Kcnq1 that cause RWS in humans. Mice carrying the A340E mutation have normal hearing but a long QT and therefore model patients with RWS. This mouse demonstrates that the long QT phenotype in our models is independent of an inner ear defect. Mice homozygous for T311I display shaker/waltzer, deafness, and balance problems. Histological examination revealed that the auditory and vestibular defects are caused by collapse of the membranous labyrinth and degeneration of the sensory epithelium. The Kcnq1^T311I/T311I mice exhibit a long QT, increased QRS amplitude, and mild T-wave area changes and therefore resemble patients with JLNS. Together these mice suggest that the QRS amplitude changes are likely a consequence of the hyperactivity associated with inner ear dysfunction.

Results

Generation of T311I, A340V, and A340E Kcnq1 mice

Mouse and human KCNQ1 proteins are highly similar across their entire length [28]. We chose to mutagenize amino acids T311 and A340 (previously called T247 and A276) of mouse Kcnq1. These residues are present in the pore domain and S6 transmembrane domain, respectively [7,15] (Fig. 1). Our changes mimic missense mutations found in human RWS patients, T312I, A341V, and A341E [7,29–32].

We generated these mice via a two-step process so that the neomycin cassette used for positive selection in cell culture was removed prior to analysis of the mice (Fig. 2). Mice heterozygous for each mutation were bred to obtain Kcnq1^{+/+}, Kcnq1^{pt/+}, and Kcnq1^{prept} progeny (Fig. 2D). Heterozygous and heterozygous T311I, A340V, and A340E mice were each present at normal Mendelian frequencies at weaning and at 4 months of age. Similar
levels of mRNA were detected in wild-type, heterozygous, and homozygous T311I, A340V, and A340E mice, indicating that the mRNA expression from the three mutated alleles is comparable to that from the wild-type allele. A representative Northern blot is depicted in Fig. 2E. Finally, sequencing of amplified cDNAs from these mice confirmed the presence of the mutation in correctly spliced mRNA (data not shown).

Behavioral analysis

When the mice were examined at postnatal day 30, Kcnq1+/T311I mice and the heterozygous and homozygous A340E and A340V mice appeared normal and exhibited startle in response to a hand clap (Preyer’s reflex). However, the Kcnq1T311I/T311I mice exhibited hyperactivity characterized by rapid head bobbing and intermittent bidirectional circling. This behavior, which mimics that of the Kcnq1−/− mice, is symptomatic of inner ear defects and usually referred to as shaker/waltzer phenotype. Kcnq1T311I/T311I mice did not show Preyer’s reflex, indicating that their hearing was impaired.

Auditory and vestibular analysis

A series of auditory and vestibular analyses was performed to evaluate more precisely the inner ear function in these mice. Specifically, we evaluated mice carrying the T311I allele, which caused shaker/waltzer syndrome when homozygous, and the A340E mutation, which appeared at first glance to have no inner ear phenotype. We did not do a complete characterization of the other phenotypically silent mutation, A340V, because preliminary cardiac studies suggested that even mice homozygous for this mutation lacked a significant cardiac-related phenotype (see below) and therefore these mice were not good phenocopies of human RWS.

We first evaluated audition by performing auditory brain-stem recordings (ABR). Consistent with their normal Preyer’s reflex, the ABR of A340E mice is indistinguishable from that of their wild-type littermates (Figs. 3A and 3B). In contrast there were no characteristic ABR waveforms detected from Kcnq1T311I/T311I mice even at 100-dB clicks and 8-, 16-, and 32-kHz pure tones (representative trace in Fig. 3C). Fig. 3D summarizes ABR thresholds in T311I.
mice and demonstrates that every $Kcnq1^{T311I/T311I}$ mouse was deaf at all frequencies tested.

Since ABR data alone are not sufficient evidence to categorize the defect as specific to hair cell malfunction, we initiated a series of distortion product otoacoustic emission (DPOAE) studies. DPOAEs are acoustic measurements of outer hair cell activity. Fig. 3E shows DPgrams from homozygous $A340E$ and $T311I$ mice and demonstrates that $Kcnq1^{A340E/A340E}$ and wild-type mice exhibited similar DPs. The DPgrams from $Kcnq1^{T311I/T311I}$ mice were similar to recordings from the noise floor. Combining the data from both ABR and DPOAE techniques indicates the auditory defect in $Kcnq1^{T311I/T311I}$ mice is caused by cochlea defects.

To assess vestibular function in the point-mutant mice a swim test was conducted. Heterozygous and homozygous $A340E$ mice behaved like wild-type mice (Fig. 3F). However, all the $Kcnq1^{T311I/T311I}$ mutant mice showed abnormal swimming behavior associated with lack of orientation: when placed in water, the mutants spiraled underwater in a corkscrew fashion and had to be rescued immediately from drowning. As an alternative assay, mice were placed on a cylinder connected to a variable-speed motor that runs from 0 to 15 rpm and each animal’s ability to balance on both the stationary and the rotating cylinder was scored (Fig. 3F). $Kcnq1^{A340E/A340E}$ mice behaved like wild-type mice; however, $Kcnq1^{T311I/T311I}$ mice performed so poorly that often they failed to balance on the cylinder while stationary.

Finally, morphological examination of the inner ear was done to determine whether anatomical differences would account for impaired hearing and vestibular function. Midmodular sections of the cochlea from adult animals revealed that in $Kcnq1^{T311I/T311I}$ mice Reissner’s membrane had completely collapsed, lying against the lateral wall and on top of the spiral limbus and tectoral membrane of the organ of Corti (Fig. 4A). In addition we observed degeneration of the inner and outer hair cells. The morphology of the cochlea from $Kcnq1^{A340E/A340E}$ mice and wild-type mice appeared normal (Figs. 4B and 4C). The vestibular apparatus is composed of the semicircular canals, which detect angular acceleration, and two sac-like swellings, utricle and saccule, which are sensitive to linear acceleration. Sections of the utricle from $Kcnq1^{T311I/T311I}$

Fig. 3. (A) Representative ABR waveforms from $Kcnq1^{A340E/A340E}$ mice compared to wild-type littermates. (B) Average ABR threshold for heterozygous ($n = 19$) and homozygous ($n = 19$) $A340E$ mice versus age-matched wild-type mice ($n = 19$). (C) Representative ABR waveforms from $Kcnq1^{T311I/T311I}$ mice compared to wild-type littermate. (D) Representative ABR waveforms from $Kcnq1^{T311I/T311I}$ mice compared to wild-type littermate. (D) Average ABR thresholds for $Kcnq1^{T311I/T311I}$ ($n = 16$) mice compared to wild-type littermates ($n = 16$). $Kcnq1^{T311I/T311I}$ mice showed no response. (E) DPgrams for wild-type and homozygous $T311I$ and $A340E$ mice. The DPOAE levels for $Kcnq1^{T311I/T311I}$ mice are indistinguishable from background (noise floor). (F) To test gross vestibular function of point-mutant mice, a balance test was performed. Mice were generated as described under Methods and assayed at 8 to 10 weeks of age.
mice revealed that the membranous labyrinth had collapsed onto the sensory epithelium (Fig. 4D), while the Kcnq1A340E/A340E mice look normal (Figs. 4E and 4F). In addition we observed hair cell degeneration in the sensory epithelium of the saccule, utricle, and semicircular canals. This evidence corroborates previous histological data from Kcnq1/C0/C0 and Kcne1/C0/C0 mice and further supports the notion that IKs is essential to inner ear homeostasis. In sum, our analyses show that mice homozygous for T311I show severe inner ear defects in structure and function, while mice that are either heterozygous or homozygous for the A340E mutation cannot be distinguished from wild-type littermates.

Analysis of cardiac function in point mutants

Since the primary goal of this study was to determine the relationship between the cardiac and the hyperactive defects, we were especially interested in comparing cardiac function in A340E and T311I mice. Examples of ECGs recorded from Kcnq1+/A340E and Kcnq1A340E/A340E mice compared to wild-type mice are shown in Fig. 5. Summaries of the results from multiple mice are presented in Table 1. Kcnq1+/A340E mice display long JT, QT, and QTc intervals that are a hallmark of LQTS patients (Fig. 5) (Table 1). These results show that the A340E mutation exerts a dominant negative affect on channel function. Homozygosity of the mutation had a more profound effect on channel dysfunction, leading to a longer QT and dramatically increasing the statistical significance of the changes in these mice. The cardiac phenotype in both homozygous and heterozygous mice is restricted to a defect in repolarization, as we observed no changes in P- or QRS-waves. The phenotype of the A340E mice demonstrates directly that the long QT in the mouse models is independent of the hyperactive behavior of the shaker/waltzer mouse.

In a preliminary analysis of A340V mice, neither heterozygous nor homozygous mice demonstrated any significant increase in QRS amplitude, T-wave area, or QT interval (data not shown). We surmise the heart is largely unaffected by the A340V mutation.

Finally, we examined the cardiac phenotype of T311I mice, the line that shows deafness and hyperactivity in the homozygous state. Kcnq1T311I/T311I mice are asymptomatic and look like wild-type littermate controls (Table 1). Hence the T311I mutation does not exert an observable dominant negative affect on the heart. However, analysis of the Kcnq1T311I/T311I mice revealed a prevalent cardiac phenotype. First, these mice show prolongation of the JT, QT, and QTc intervals, indicating defects in ventricular repolarization (Fig. 5) (Table 1). Second, just like the Kcnq1+/T311I mice, but unlike the A340E mice, these animals show a dramatic increase in QRS amplitude and T-wave area. These data show that the T311I mutation can phenocopy JLNS since the mice are deaf and show long QT intervals. These data also suggest that the increased QRS amplitude is associated with the hyperactivity shaker/waltzer phenotype. No arrhythmias were observed in any of the recorded mice.

Physical and anatomical analysis of the point mutants

After acquisition of the ECG data, we recorded body weight, ventricular weight, and atrial weight of each mouse, as these are each known to affect ECG parameters. The Kcnq1T311I/T311I mice are 27% lighter on average than their...
wild-type littersmates (Table 2). A gender bias in the pools did not account for the difference since it was present in both male (30 ± 3 and 27 ± 2 g for WT and Kcnq1T311I/T311I mice, respectively; \(p < 0.05\)) and female mutant mice (22 ± 3 and 19 ± 2 g for WT and Kcnq1T311I/T311I mice, respectively; \(p < 0.01\)). Both T311I and A340E mice

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>WT (n = 28)</th>
<th>+/A340E (n = 21)</th>
<th>A340E/A340E (n = 21)</th>
<th>(p) value vs Het</th>
<th>(p) value vs Homo</th>
<th>WT (n = 28)</th>
<th>+/T311I (n = 19)</th>
<th>T311I/T311I (n = 21)</th>
<th>(p) value vs Het</th>
<th>(p) value vs Homo</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR (ms)</td>
<td>103 ± 2</td>
<td>105 ± 2</td>
<td>108 ± 3</td>
<td>0.45</td>
<td>0.12</td>
<td>103 ± 2</td>
<td>108 ± 2</td>
<td>105 ± 2</td>
<td>0.7</td>
<td>0.60</td>
</tr>
<tr>
<td>(P_{amp}) (mV \times 10^{-2})</td>
<td>20 ± 1</td>
<td>21 ± 1</td>
<td>19 ± 1</td>
<td>0.22</td>
<td>0.56</td>
<td>23 ± 1</td>
<td>23 ± 1</td>
<td>24 ± 1</td>
<td>0.96</td>
<td>0.33</td>
</tr>
<tr>
<td>P-wave duration (ms)</td>
<td>11 ± 0.2</td>
<td>10 ± 0.2</td>
<td>11 ± 0.3</td>
<td>0.26</td>
<td>0.81</td>
<td>11 ± 0.3</td>
<td>11 ± 0.3</td>
<td>11 ± 0.3</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>P-wave area (V ms \times 10^{-1})</td>
<td>10 ± 1</td>
<td>11 ± 1</td>
<td>10 ± 1</td>
<td>0.95</td>
<td>1.51</td>
<td>12 ± 1</td>
<td>12 ± 1</td>
<td>13 ± 1</td>
<td>0.80</td>
<td>0.32</td>
</tr>
<tr>
<td>PR (ms)</td>
<td>32 ± 1</td>
<td>30 ± 1</td>
<td>29 ± 1</td>
<td>0.05</td>
<td>0.07</td>
<td>31 ± 1</td>
<td>32 ± 1</td>
<td>30 ± 1</td>
<td>0.70</td>
<td>0.10</td>
</tr>
<tr>
<td>QRS duration (ms)</td>
<td>8.8 ± 0.2</td>
<td>8.6 ± 0.2</td>
<td>8.6 ± 0.1</td>
<td>0.56</td>
<td>0.62</td>
<td>8.5 ± 0.2</td>
<td>8.7 ± 0.3</td>
<td>8.1 ± 0.2</td>
<td>0.40</td>
<td>0.07</td>
</tr>
<tr>
<td>QRS amplitude (V \times 10^{-2})</td>
<td>198 ± 11</td>
<td>205 ± 7</td>
<td>213 ± 12</td>
<td>0.59</td>
<td>0.33</td>
<td>195 ± 10</td>
<td>210 ± 11</td>
<td>259 ± 13</td>
<td>0.32</td>
<td><0.001</td>
</tr>
<tr>
<td>JT (ms)</td>
<td>63 ± 1</td>
<td>67 ± 1</td>
<td>70 ± 2</td>
<td>0.02</td>
<td><0.001</td>
<td>63 ± 1</td>
<td>65 ± 1</td>
<td>68 ± 1</td>
<td>0.37</td>
<td>0.02</td>
</tr>
<tr>
<td>QT (ms)</td>
<td>72 ± 1</td>
<td>76 ± 1</td>
<td>79 ± 2</td>
<td>0.03</td>
<td>0.001</td>
<td>71 ± 1</td>
<td>73 ± 1</td>
<td>76 ± 2</td>
<td>0.31</td>
<td>0.04</td>
</tr>
<tr>
<td>QTc (ms)</td>
<td>71 ± 1</td>
<td>74 ± 1</td>
<td>76 ± 1</td>
<td>0.03</td>
<td>0.003</td>
<td>70 ± 1</td>
<td>71 ± 1</td>
<td>74 ± 1</td>
<td>0.81</td>
<td>0.03</td>
</tr>
<tr>
<td>T-wave area (mV \times 10^{-1})</td>
<td>65 ± 4</td>
<td>77 ± 7</td>
<td>75 ± 9</td>
<td>0.12</td>
<td>0.23</td>
<td>69 ± 5</td>
<td>64 ± 6</td>
<td>94 ± 6</td>
<td>0.48</td>
<td>0.002</td>
</tr>
</tbody>
</table>

All data are presented as means ± standard error of the mean. Data sets from mutant mice were compared to those of wild-type mice using Student’s \(t\) test. \(p\) values <0.05 are in bold. Het, heterozygous; Homo, homozygous; WT, wild type.

Fig. 5. Representative surface ECG traces (lead II) recorded in vivo from a heterozygous (upper left trace) and a homozygous A340E mouse (upper right trace), a homozygous T311I mouse (lower left trace), and a wild-type mouse (lower right trace). The traces indicate several ECG parameters measured during analysis. Note the long QT interval for the point-mutant mice compared to the wild-type mouse and the magnitude of the QRS amplitude in the homozygous T311I mouse. The depicted tracings were selected as representative of the particular phenotype although variation from mouse to mouse was noted within each genotype as indicated in Table 1. Mice were generated as described under Methods and in the footnote to Table 1.
displayed the gastric hyperplasia noted in Kcnq1−/− mice. Thus the difference in body weight in T311I is best explained by hyperactivity, which could be viewed as an extreme form of exercise.

Discussion

We previously published a model for long QT in which disruption of Kcnq1 leads to a mouse that resembles patients with JLNS. The Kcnq1−/− mice are deaf [26] and ECG analysis revealed altered cardiac repolarization as evidenced by long QT and T-wave morphology changes [25]. The ECG abnormalities are observed both in vivo and ex vivo [33]. We noted, however, that the cardiac phenotype was pleiotropic since the mutation also increased P- and QRS-wave amplitudes, changes that have not been reported in JLNS patients. In addition to their deafness, the mice displayed an inner-ear-dependent behavioral phenotype called shaker/waltzer. To separate the ECG phenotype from the inner ear, we developed the RWS mouse model described in this report.

In humans, the missense mutations A341E and T312I of KCNQ1 are dominantly inherited, associated with syncope and cardiac arrest, and are linked to RWS. In vitro work demonstrates that when A341E and wild-type KCNQ1 cRNA are injected together into Xenopus oocytes the mutation dominantly negatively affects channel function, leading to a 23% decrease in I_{Ks} current [34]. When we introduce A340E into mouse Kcnq1 the mutation dominantly negatively affects cardiac repolarization and produces a long QT phenotype concordant with the clinical and in vitro data (Fig. 5 and Table 1). Both heterozygous and homozygous A340E mice showed normal inner ear function as determined by auditory and vestibular tests (Figs. 3 and 4). Thus the A340E mice model RWS and clearly demonstrate that the long QT phenotype can be observed independent of inner ear dysfunction.

We should note that the sensitivity of the inner ear to the A340E function appears to be somewhat strain dependent.

That is, we have continued to interbreed subsequent generations, we have begun to notice litters that contain circling Kcnq1A340E/A340E animals. These mice may be useful for identifying genetic modifiers of potassium recycling in the inner ear. Importantly, their existence does not detract from our argument that inner ear dysfunction/hyperactivity and ECG abnormalities can be separated.

The Kcnq1T311I/T311I mice did not phenocopy RWS but rather resemble the Kcnq1−/− mice and hence model JLNS. First, heterozygous animals are asymptomatic. Second, homozygous mice are deaf, display shaker/waltzer behavior, and show a significant lengthening of the QT interval accompanied by changes in QRS amplitude and T-wave area (Table 1). By examination of A340E mice we have ruled out hyperactivity as a necessary contributor to long QT. However, in all our mice, the increased QRS amplitude is associated with hyperactivity. We suggest that this aspect of the ECG phenotype is secondary and associated with the decrease in body weight induced by hyperactivity (Table 2). The decreased body weight of Kcnq1T311I/T311I mice may be sufficient to explain the increased QRS amplitude on ECG, since the amount of subcutaneous fat tissue is known to influence QRS amplitude in humans [35].

Our studies do not address why the T311I and the A340E mutations induce distinct phenotypes in mice. Patients heterozygous for either allele present with RWS, while only mice heterozygous for A340E display a prolonged QT interval. There are no known patients homozygous for either mutation. Mice homozygous for A340E phenocopy RWS, while animals homozygous for T311I mimic JLNS. Altogether the results suggest that the T311I allele behaves essentially as a loss-of-function mutation while A340E acts as a dominant negative. Normal cardiac function may be more sensitive to disturbances in channel gating activity as the timing of channel function is critical. In the ear, Kcnq1 may be functioning more as a simple pore for K+ extrusion. In any case, distinct and separate experiments examining structural function of the Kcnq1 channel will be required to understand the molecular basis for the phenotypes associated with each point mutation.

Table 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>WT (n = 28)</th>
<th>+/A340E (n = 21)</th>
<th>A340E/A340E (n = 21)</th>
<th>p value</th>
<th>p value Homo</th>
<th>WT (n = 28)</th>
<th>+/T311I (n = 19)</th>
<th>T311I/T311I (n = 21)</th>
<th>p value</th>
<th>p value Homo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body (g)</td>
<td>29.5 ± 1</td>
<td>29.5 ± 1</td>
<td>29.6 ± 1.2</td>
<td>0.95</td>
<td>0.94</td>
<td>29.7 ± 0.9</td>
<td>24.6 ± 1</td>
<td>21.9 ± 0.9</td>
<td>0.11</td>
<td><0.001</td>
</tr>
<tr>
<td>Ventricles (mg)</td>
<td>133 ± 5</td>
<td>131 ± 6</td>
<td>134 ± 7</td>
<td>0.79</td>
<td>0.88</td>
<td>109 ± 4</td>
<td>104 ± 4</td>
<td>100 ± 4</td>
<td>0.34</td>
<td>0.12</td>
</tr>
<tr>
<td>Heart/body ratio</td>
<td>4.5 ± 0.4</td>
<td>4.4 ± 0.1</td>
<td>4.5 ± 0.1</td>
<td>0.92</td>
<td>0.92</td>
<td>4.1 ± 0.1</td>
<td>4.2 ± 0.1</td>
<td>4.6 ± 0.1</td>
<td>0.20</td>
<td><0.001</td>
</tr>
<tr>
<td>Atria (mg)</td>
<td>7.7 ± 0.4</td>
<td>7.1 ± 0.5</td>
<td>8.2 ± 0.6</td>
<td>0.35</td>
<td>0.51</td>
<td>5.9 ± 0.4</td>
<td>4.8 ± 0.3</td>
<td>5.5 ± 0.4</td>
<td>0.03</td>
<td>0.46</td>
</tr>
<tr>
<td>Atria/body ratio</td>
<td>0.26 ± 0.01</td>
<td>0.24 ± 0.01</td>
<td>0.26 ± 0.02</td>
<td>0.19</td>
<td>0.98</td>
<td>0.22 ± 0.01</td>
<td>0.20 ± 0.01</td>
<td>0.25 ± 0.01</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>Stomach (mg)</td>
<td>164 ± 7</td>
<td>168 ± 6</td>
<td>392 ± 34</td>
<td>0.62</td>
<td><0.001</td>
<td>123 ± 4</td>
<td>144 ± 6</td>
<td>320 ± 17</td>
<td>0.005</td>
<td><0.001</td>
</tr>
</tbody>
</table>

All data are presented as means ± standard error of the mean. Data sets were compared using Student’s t test. p values <0.05 are in bold. Het, heterozygous; Homo, homozygous; WT, wild type.
In our previous report we demonstrated by startle response that $Kcnq1^{-/-}$ mice are deaf. Histological examination revealed a drastic reduction in the volume of endolympathic space and a collapse of the membranous labyrinth in the vestibular and auditory apparatus. Lee et al. [26] noted these results while examining an independent knockout of $Kcnq1$. In addition they conducted ABR to measure auditory brain-stem activity. The wild-type and heterozygous mice had a normal hearing threshold, while $Kcnq1^{-/-}$ mice showed no response to the maximum level of auditory stimulation. A complete assessment of auditory function in $Kcnq1^{T311I/T311I}$ mice presented here corroborates previous analyses. Moreover, additional testing using DPOAE demonstrates the auditory defect is a result of hair cell failure, which is likely secondary to the collapse of the membranous labyrinth. Histological analyses indicate that this failure is almost certainly caused by the inability of the stria vascularis to produce and/or maintain endolymph, which is thus the primary defect in these mutant mice. The vestibular analysis quantifies the balance defect, which was previously described only in terms of behavior. Consistent with the functional data, histology of the inner ear shows that the deafness and balance defects result from the same abnormality: collapse of the membranous labyrinth, which may ultimately lead to degeneration of the hair cells.

It appears that complete loss of $Kcnq1$ has a more profound affect on cardiac function than point mutagenesis. This is highlighted by the prevalent P-wave changes observed in $Kcnq1^{-/-}$ mice, which are absent in $A340E$ and $T311I$ point-mutant mice. The lack of P-wave changes in the hyperactive $Kcnq1^{T311I/T311I}$ mice implies that the atrial phenotype is not simply secondary to the inner ear dysfunction but suggests that $Kcnq1$ plays a role in atrial function. In humans there is growing clinical evidence that supports a role for $Kcnq1$ in atrial function. In humans there is growing clinical evidence that supports a role for $Kcnq1$ in atrial function. Kirchhof et al. [37] uncovered altered atrial electrophysiology in patients with long QT syndrome. In the mouse, $Kcnq1$ is unlikely to function through association with $Kcn2$, since there appears to be little if any $Kcn2$ present in the atria and I$_{ks}$ is undetectable in the atria during development [38,39]. However, $Kcnq1$ is capable of pairing with alternate β-subunits of the Kcn family ($Kcn2$ to $Kcn5$), thus producing a repertoire of currents with distinct electrophysiological properties [12–14,40]. Both $Kcn2$ and $Kcn3$ are expressed in the atria and could associate with $Kcnq1$ and contribute to its repolarization [39].

Mutations in mouse $Kcnq1$ phenocopy human LQT1 in their abnormal ECGs. However, we have not detected mutation-associated atrial or ventricular arrhythmias in $Kcnq1^{-/-}$ knockout mice[33]. This is not altogether surprising since in humans it is apparent that mutations in $Kcnq1$ only predispose patients to arrhythmias. Normally the heart beats with remarkable fidelity and arrhythmias are a rare occurrence; this has led to the multihit hypothesis, which suggests that additional hits (from drugs, stress, or genetic modifiers, for example) are necessary to induce cardiac arrhythmias in long QT patients [2]. The development of a mouse model with delayed ventricular repolarization in the absence of the confounding hyperactivity/circling phenotype will enable studies to look for such secondary hits in the mouse. Alternatively, such events may never be observed because of significant differences between mouse and human heart physiology.

One notable difference in cardiac physiology between the species is the lack of detectable I$_{ks}$ in the adult mouse heart. Consistent with this finding, $Kcne1$ mRNA levels become very low in the adult mouse; however, $Kcnq1$ expression remains high [41,42]. Here, we demonstrate that a long QT phenotype is readily identified in several $Kcnq1$ mutant mouse models, even in the absence of confounding behavioral abnormalities. Hence we believe that genetic and molecular analyses indicate that mouse $Kcnq1$ plays a significant role in cardiac function of the adult mouse apart from any contribution to I$_{ks}$. Future studies will use the $Kcnq1^{-/-}$ mouse as a tool to uncover currents that rely on $Kcnq1$ in vivo in adult mice and the assessment of the roles, if any, these currents might have in human cardiac biology.

Methods

Generating A340E, A340V, and T311I mice

The three targeting vectors, pJV2, pJV3, and pJV4, are essentially identical except for the single base pair changes in exon 7 (Fig. 2). To construct these vectors we isolated a 9.5-kb EcoRI fragment from bacterial artificial chromosome BAC118L22 [42]. The 3′ EcoRI site lies 4.4 kb upstream of exon 7. The 3′ EcoRI site is not in the native $Kcnq1$ gene but is actually derived from the polylinker sequences of the BAC vector. The 3′ flank includes exons 8, 9, and 10 of $Kcnq1$ in a 5.0-kb fragment (ending at a HindIII site). To introduce the point mutations into the targeting vectors, we first subcloned the 2.6-kb SexAI fragment carrying exon 7 and surrounding intronic sequences. A floxed NeoR gene was introduced at the unique BsmI site inside intron 7, 60 bp from the 3′ end of exon 7. The point mutations $T311I$ (ACC (Thr) → ATC (Ile)), $A340E$ (GCA (Ala) → GAA (Glu)), and $A340V$ (GCA (Ala) → GTA (Val)) were introduced using the Transformer Site-Directed Mutagenesis Kit (Clontech), essentially following the method of Deng and Nickoloff [43]. The entire SexAI fragment was then sequenced before being returned to its original location in the 9.5-kb EcoRI clone. Targeting vectors also each carried the *diphtheria toxin A* (DT-A) gene for negative selection and were used to generate mutant mice as described for Fig. 2. Chimeric founders were crossed with C57BL/6 females.
and Agouti animals were screened for the mutant chromosomes. Males carrying the targeted chromosome were mated with FVB/n females homozygous for a transgene insert with the Cre recombinase gene under control of the Ella promoter [44]. Progeny in which the NeoR cassette was deleted were identified by PCR and these were mated with wild-type C57BL/6. Finally, males and females positive for the point mutations were intercrossed to generate animals for this study.

RNA analysis

Kcnq1 RNA was prepared and quantified by Northern blot as previously described [42]. cDNAs were prepared using the SuperScript First-Strand Synthesis System for RT-PCR (Invitrogen). A 490-bp product was amplified using a 5'-CGATCCGCAGGGGGTA CC-3' forward and 5'-CGTGTGACTCCGAGCAGGCT-3' reverse.

Auditory brain-stem responses and distortion product otoacoustic emission

Mice were anesthetized with avertin and ABR measurements were recorded as described previously [45,46]. Cochlear function was tested via distortion product otoacoustic emissions as described by Lonsbury-Martin et al. [47]. Mice for this assay were generated as described above and tested at 8–10 weeks of age.

Histological analysis

Light microscope analyses of the cochlea and vestibular organs of the inner ear from 10-week-old mice were as described previously [45]. These mice represent a subset of those tested for ABR and DPOE responses.

Gross evaluation of vestibular functions

Mice were placed in a water bath at 37°C and allowed to swim and climb onto a dry platform. The swimming performance and the time taken to swim to the target were scored in a blind fashion. Balance was further tested using a custom-made setup as described [48]. Each animal’s ability to balance on both the stationary and the rotating cylinder was scored. These are the same mice tested for ABR and DPOE responses.

ECG analysis

ECG measurements were obtained as previously described [25]. A single observer who was blinded to the genotype analyzed all ECG parameters. For each genotype approximately equal numbers of male and female mice were generated as described above and assayed at 13 to 22 weeks of age.

Acknowledgments

This work was supported by grants to E.N.Y. (NIH-DC03828, DC04215) and B.C.K. (R01HL071670). This work was also supported by the intramural funds of the National Institute of Child Health and Human Development/NIH (K.P.).

References

