Isoproterenol Exacerbates a Long QT Phenotype in Kcnq1-Deficient Neonatal Mice: Possible Roles for Human-Like Kcnq1 Isoform 1 and Slow Delayed Rectifier K⁺ Current

Bjorn C. Knollmann, Mathew C. Casimiro, Alexander N. Katchman, Syevda G. Sirenko, Tilmann Schober, Qi Rong, Karl Pfeifer, and Steven N. Ebert

Department of Pharmacology, Georgetown University Medical Center, Washington, DC (B.C.K., A.N.K., S.G.S., T.S., Q.R., S.N.E.); and Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (M.C.C., K.P.)

ABSTRACT

To determine whether the neonatal mouse can serve as a useful model for studying the molecular pharmacological basis of Long QT Syndrome Type 1 (LQT1), which has been linked to mutations in the human KCNQ1 gene, we measured QT intervals from electrocardiogram (ECG) recordings of wild-type (WT) and Kcnq1 knockout (KO) neonates before and after injection with the β-adrenergic receptor agonist, isoproterenol (0.17 mg/kg, i.p.). Modest but significant increases in JT, QT, and rate-corrected QT (QTc) intervals were found in KO neonates relative to WT siblings during baseline ECG assessments (QTc = 57 ± 3 ms, n = 22 versus 49 ± 2 ms, n = 28, respectively, p < 0.05). Moreover, JT, QT, and QTc intervals significantly increased following isoproterenol challenge in the KO (p < 0.01) but not the WT group (p = 0.57). Furthermore, whole-cell patch-clamp recordings show that the slow delayed rectifier K⁺ current (Iₖs) was absent in KO but present in WT myocytes, where it was strongly enhanced by isoproterenol. This finding was confirmed by showing that the selective Iₖs inhibitor, L-735,821, blocked Iₖs and prolonged action potential duration in WT but not KO hearts. These data demonstrate that disruption of the Kcnq1 gene leads to loss of Iₖs, resulting in a long QT phenotype that is exacerbated by β-adrenergic stimulation. This phenotype closely reflects that observed in human LQT1 patients, suggesting that the neonatal mouse serves as a valid model for this condition. This idea is further supported by new RNA data showing that there is a high degree of homology (>88% amino acid identity) between the predominant human and mouse cardiac Kcnq1 isoforms.

Long QT Syndrome is a human disorder characterized by delayed cardiac repolarization and increased risk of developing potentially fatal ventricular arrhythmias known as “Torsades de Pointes” (Roden and Spooner, 1999). Mutations in the human KCNQ1 (formerly KvLQT1) gene account for the most common form (LQT1) of congenital Long QT Syndrome. The KCNQ1 gene encodes for a six-transmembrane domain voltage-gated K⁺ channel that, when co-expressed with a β-subunit encoded by the single-transmembrane domain product of the KCNE1 (formerly minK) gene, recapitulates the slow component of the cardiac-delayed rectifier K⁺ current, Iₖs (Barhanin et al., 1996). Consistent with the results from heterologous expression experiments, Iₖs is absent in neonatal ventricular myocytes of Kcne1 null mice (Drici et al., 1998). A direct link between KCNQ1 and native cardiac Iₖs has not yet been proven, although adenoviral native cardiac Iₖs has been shown to interfere with Iₖs in isolated ventricular myocytes (Li et al., 2001).

Exercise and/or stress, which are associated with sympathetic stimulation, appear to be particularly arrhythmogenic in LQT1 patients (Ackerman et al., 1999; Ali et al., 2000; Schwartz et al., 2001). In accordance, Iₖs is significantly enhanced by β-adrenergic stimulation in ventricular myocytes (Walsh and Kass, 1988; An et al., 1999) via a mechanism that appears to require phosphorylation of the KCNQ1 channel by protein kinase A (PKA) (Marx et al., 2002). Thus,

ABBREVIATIONS: LQT1, long QT 1 form of Long QT Syndrome; Iₖs, repolarizing K⁺ current; PKA, protein kinase A; ECG, electrocardiogram; QTc, rate-corrected QT interval; PCR, polymerase chain reaction; RT, reverse transcription; APD, action potential duration; WT, wild type; KO, knockout; bp, base pair(s); MAP, monophasic action potential.
the absence of \(I_{Ks}\) may compromise ventricular repolarization primarily during sympathetic activation.

Previously, we have shown that targeted disruption of the murine \(Kcnq1\) gene produces a model of Jervell and Lange-Nielsen Syndrome, a disorder characterized by bilateral deafness and long QT interval (Casimiro et al., 2001). Extracellular factors appeared to contribute to the Long QT phenotype in \(Kcnq1\)-deficient mice since isolated perfused \(Kcnq1^{-/-}\) and \(Kcnq1^{+/+}\) hearts had similar ECG profiles at baseline. We subsequently showed that sympathetic stimulation can induce a Long QT phenotype in \(Kcnq1\)-deficient mouse hearts since challenge with sympathomimetic drugs such as nicotine, isoproterenol, or epinephrine produced this phenotype in the isolated perfused adult mouse heart preparation (Tosaka et al., 2003).

These data notwithstanding, characterization of cardiac phenotypes in adult \(Kcnq1^{-/-}\) mice remains complicated by the fact that \(Kcnq1^{-/-}\) mice have behavioral and other abnormalities due to loss of \(Kcnq1\) expression in the inner ear and other noncardiac tissues (Lee et al., 2000; Casimiro et al., 2001). Furthermore, it is not clear which current(s) \(Kcnq1\) contributes to in the adult mouse heart since little or no \(I_{Ks}\) have been observed in adult mouse myocytes (Wang et al., 1996; Marx et al., 2002). In contrast, fetal and neonatal mouse ventricular myocytes clearly have \(I_{Ks}\) (An et al., 1996; Drici et al., 1998), and neonatal \(Kcnq1^{-/-}\) mice have not yet developed the behavioral phenotypes observed in adult \(Kcnq1^{-/-}\) mice. Thus, we initiated the present study to determine whether \(Kcnq1\) expression is necessary for \(I_{Ks}\) in cardiac myocytes and to evaluate the cardiac phenotypes of neonatal \(Kcnq1^{-/-}\) and \(Kcnq1^{+/+}\) mice. In addition, we used RNase protection assays to more precisely characterize the 5’ end of the murine \(Kcnq1\) gene. These latter studies were undertaken specifically to determine whether the major mouse isoforms include the amino acid sequences demonstrated to be critical for \(\beta\)-adrenergic induced up-regulation of human KCNQ1 activity.

Materials and Methods

Drugs and Chemicals. The rapidly activating delayed rectifier K\(^+\) current-selective blocker, E-4031 (Sanguinetti and Jurkiewicz, 1990) and the \(I_{Ks}\)-selective blocker, L-735,821 (Selnick et al., 1997; Lengyel et al., 2001; Lynch et al., 2002) were generously provided by Eisai Co., Ltd. (Tsukuba, Japan) and Merck Research Labs (West Point, PA), respectively. All other drugs and chemicals were obtained from Sigma-Aldrich (St. Louis, MO).

Animals. \(Kcnq1^{-/-}\) and \(Kcnq1^{+/+}\) mice were generated and housed as previously described (Casimiro et al., 2001). All experiments were conducted in strict concordance with the guidelines provided by the Georgetown University Animal Care and Use Committee and the National Institutes of Health.

Recording Electrocardiograms (ECGs) from Neonatal Mice. ECG measurements and analyses were as described (Casimiro et al., 2001). In brief, neonatal mice (postnatal days 2–4) were anesthetized with 0.02 ml (i.p.) of 2.5% tribromoethanol solution per pup. ECGs were recorded by placing the mice in a temperature-controlled chamber immersed in a circulating water bath (37°C) and applying needle electrodes to limb regions representing leads I and II. Baseline ECGs were recorded for 3 min followed by injection with isoproterenol (0.17 mg/kg, i.p.) and an additional 5 min of continuous recording. For each lead, ECG parameters were measured from a signal-averaged (30-s record) beat using custom-built analysis software as described (Casimiro et al., 2001). The larger value from each lead was used for statistical analysis. Rate-corrected QT values (QTC) were derived using the formula QTC = QT/SQRT(RR/100) (Mitchell et al., 1998).

Ventricular Action Potential Recordings from Isolated Neonatal Mouse Heart. Ventricular action potentials were recorded from isolated perfused mouse hearts harvested from 3-day-old neonatal mice using a miniaturized monophasic action potential catheter as previously described for the adult mouse heart (Knollmann et al., 2001). In brief, after thoracotomy and heart removal, the aorta was cannulated using polyethylene tubing (size 10) pulled to match the size of the aorta. Retrograde perfusion was carried out at a constant perfusion pressure of 80 mm Hg at 37°C. The heart was then placed in a bath filled with the perfusion medium, where it rested horizontally in a small Perspex cradle. Krebs-Henseleit buffer containing the following: 118 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl\(_2\), 1.2 mM MgSO\(_4\), 0.5 mM Na-EDTA, 25 mM NaHCO\(_3\), 1.2 mM KH\(_2\)PO\(_4\), and 11 mM glucose was prepared at the time of the experiment and equilibrated with a mixture of 95% O\(_2\) and 5% CO\(_2\) for 1 h to achieve a pH of 7.4 and a P\(_{O2}\) of at least 500 mm Hg. Ventricular action potentials were recorded using a “miniaturized” contact electrode with a tip diameter of 0.25 mm specifically developed and validated for ventricular action potential recordings in mouse heart (Knollmann et al., 2001). MAP recordings were preamplified with a DC-coupled, isolated preamplifier with offset control (model 2000; EP Technologies, Inc., San Jose, CA). The preamplified signals were digitized at 2-kHz sampling rate and stored with the use of a commercially available data acquisition system (PowerLab; ADInstruments Pty Ltd., Castle Hill, Australia). After a stabilization period of 30 min, all hearts were perfused with Krebs-Henseleit solution containing the following: isoproterenol (200 nM) for 15 min, isoproterenol (135–821 pmol) for 15 min, and isoproterenol for 15 min. During the last 5 min of each intervention, monophasic action potentials were recorded from four to six different epicardial sites and averaged for each heart. Great care was taken to obtain measurements from corresponding sites for each intervention.

Voltage-Clamp Recordings of Cardiac Myocytes from Neonatal Mice. Murine ventricular myocytes were isolated on postnatal days 2 to 4, purified, and cultured as previously described (Song et al., 2002). After 2 to 3 days in culture, recordings were performed using the whole-cell patch-clamp technique (Hamill et al., 1981) with the Axopatch 200B amplifier. PCLAMP 8.0 was used for data acquisition and analysis. Time-dependent, depolarization-activated outward K\(^+\) currents were recorded using a single-step protocol from a holding potential of ~40 mV in response to an 8-s depolarizing step pulse to 70 mV. Tail currents were measured under voltage clamp to 0 mV for 2 s. Pipettes had tip resistances of 2 to 3 M\(\Omega\) for 15 min, and isoproterenol for 15 min. During the last 5 min of each intervention, monophasic action potentials were recorded from four to six different epicardial sites and averaged for each heart. Great care was taken to obtain measurements from corresponding sites for each intervention.

Plasmids Used to Produce Riboprobes. MC1, MC2, and MC3 were produced by PCR from bacterial artificial chromosome clone 118L22 (Gould and Pfeifer, 1998) and cloned into the pCRII vector (Invitrogen, Carlsbad, CA) to produce the plasmids pCRII/MC1, pCRII/MC2, and pCRII/MC3. The sequences of primers used in the PCR were designed against mouse GenBank accession no. JN258135. Primers used for MC1 (5’-GTCAAGGGGTCTTCTCTGGC-3\’) and 5’-CCGACTGGTAGATGGAGACC-3’ yielded a product of 305 bp.
Primers used for MC2 (5'-GGCTTGCCGACAGTGTAACC-3' and 5'-GGACGAGGGCCTGTCCATG-3') yielded a product of 269 bp. Primers used for MC3 (5'-CTGGGCTCGGCTCGTCCG-3' and 5'-CGATGGGCGCATAGACCGTG-3') yielded a product of 231 bp. pC1-neo/MC4 was constructed by cloning a 225-bp EcoRI-Sall fragment from pCRII/MC1 into the pC1-neo mammalian expression vector (Promega, Madison, WI) together with a 518-bp SalI-PvuI fragment from pCRII/MC1 into the pC1-neo mammalian expression vector (Promega, Madison, WI) to obtain the antisense riboprobes 1 to 4. The riboprobes were gel-purified and the RNase protection was assessed by comparison with a 100-bp RNA ladder produced from the RNA Century Marker Template Set (Ambion) according to the manufacturer’s protocol.

In Vitro Transcription. The plasmids pCRII/MC1, pCRII/MC2, pCRII/MC3, and pC1-neo/MC4 were linearized with an appropriate restriction enzyme and used for in vitro run-off transcription using an RNA labeling Kit (Ambion, Austin, TX) in the presence of 32P-CTP and used for in vitro runoff transcription using an appropriate restriction enzyme and used for in vitro runoff transcription using an RNA labeling Kit (Ambion, Austin, TX) in the presence of 32P-CTP

Results

Kcnq1-/- Neonatal Mice Exhibit a Long QT Phenotype. To determine whether Kcnq1 plays a role in cardiac repolarization, we evaluated ECG recordings from anesthetized wild-type (WT) and Kcnq1 knockout (KO) neonates before and after isoproterenol injection (0.17 mg/kg, i.p.). The ECG tracings (lead II) were signal-averaged over the 30-s period immediately preceding isoproterenol injection (Baseline) and again in the same pup approximately 3 min postinjection (Iso). Mean RR (±S.E.M.) values are indicated for each tracing shown (inset).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>WT (n = 28)</th>
<th>KO (n = 22)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR (ms)</td>
<td>131 ± 4</td>
<td>127 ± 3</td>
<td>0.49</td>
</tr>
<tr>
<td>PR (ms)</td>
<td>45 ± 1</td>
<td>46 ± 2</td>
<td>0.73</td>
</tr>
<tr>
<td>P-wave amplitude (mV)</td>
<td>0.34 ± 0.01</td>
<td>0.32 ± 0.02</td>
<td>0.38</td>
</tr>
<tr>
<td>P-wave area (mV.ms × 10⁻³)</td>
<td>15 ± 0.7</td>
<td>15 ± 0.9</td>
<td>0.92</td>
</tr>
<tr>
<td>QR duration (ms)</td>
<td>6.8 ± 0.2</td>
<td>7.2 ± 0.2</td>
<td>0.18</td>
</tr>
<tr>
<td>QR amplitude (mV)</td>
<td>1.5 ± 0.1</td>
<td>1.6 ± 0.1</td>
<td>0.27</td>
</tr>
<tr>
<td>JT (ms)</td>
<td>49 ± 2</td>
<td>57 ± 3</td>
<td>0.02</td>
</tr>
<tr>
<td>QT (ms)</td>
<td>55 ± 2</td>
<td>65 ± 3</td>
<td>0.008</td>
</tr>
<tr>
<td>QTc (ms)</td>
<td>49 ± 1</td>
<td>57 ± 2</td>
<td>0.003</td>
</tr>
<tr>
<td>T-wave area (mV.ms × 10⁻³)</td>
<td>62 ± 3</td>
<td>83 ± 7</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Fig. 1. Representative ECG recordings from anesthetized wild-type (WT) and Kcnq1 knockout (KO) neonates before and after isoproterenol injection (Iso). Mean RR (±S.E.M.) values are indicated for each tracing shown (inset).
TABLE 2
β-Adrenergic challenge exacerbates the long QT phenotype of Kcnq1^{−/−} mice

<table>
<thead>
<tr>
<th>Parameters</th>
<th>WT (n = 13)</th>
<th>KO (n = 15)</th>
<th>p Value</th>
<th>WT (n = 13)</th>
<th>KO (n = 15)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR (ms)</td>
<td>125 ± 7</td>
<td>116 ± 7</td>
<td>0.03</td>
<td>126 ± 4</td>
<td>117 ± 4</td>
<td>0.02</td>
</tr>
<tr>
<td>PR (ms)</td>
<td>44 ± 2</td>
<td>45 ± 3</td>
<td>0.90</td>
<td>47 ± 2</td>
<td>49 ± 3</td>
<td>0.55</td>
</tr>
<tr>
<td>QRS duration (ms)</td>
<td>7.1 ± 0.2</td>
<td>7.3 ± 0.3</td>
<td>0.50</td>
<td>7.3 ± 0.3</td>
<td>7.4 ± 0.2</td>
<td>0.82</td>
</tr>
<tr>
<td>QTc (ms)</td>
<td>38 ± 2</td>
<td>57 ± 2</td>
<td>0.80</td>
<td>64 ± 3</td>
<td>72 ± 3</td>
<td>0.02</td>
</tr>
<tr>
<td>T-wave area (mV · ms · 10<sup>−1</sup>)</td>
<td>52 ± 1</td>
<td>53 ± 1</td>
<td>0.52</td>
<td>57 ± 1</td>
<td>66 ± 2</td>
<td>0.005</td>
</tr>
</tbody>
</table>

QTc intervals and T-wave area were found in the Kcnq1^{−/−} group (Table 1). All other ECG parameters, including heart rate (RR interval), were not statistically different between these two groups of neonatal mice (Table 1).

β-Adrenergic Stimulation Exacerbates Long QT Phenotype of Kcnq1^{−/−} Neonatal Mice

To determine whether β-adrenergic stimulation could differentially influence cardiac repolarization in Kcnq1^{+/+} and Kcnq1^{−/−} mice, we evaluated ECG parameters in a subset of neonates following injection of the β-adrenergic agonist, isoproterenol. The isoproterenol challenge resulted in a robust increase of all repolarization parameters (QT, QTc, and T-wave area) of Kcnq1^{−/−} neonates but had no significant effect on repolarization parameters of Kcnq1^{+/+} neonates (see Fig. 1 and Table 2). As a consequence, isoproterenol markedly exacerbated the relatively modest baseline differences in QT, QTc, and T-wave area (p < 0.001 for each) between Kcnq1^{+/+} and Kcnq1^{−/−} neonates. None of the other ECG parameters measured (RR, PR, and QRS values) were significantly different in Kcnq1^{+/+} and Kcnq1^{−/−} neonates in the presence of isoproterenol. No ventricular tachycardias were observed in either group. At the same time, the isoproterenol challenge was effective at stimulating cardiac β-adrenergic responses in both groups of mice, as reflected by the significant heart rate increases (shorter RR interval, Table 2). In contrast, control injections with saline in 14 Kcnq1^{+/+} and seven Kcnq1^{−/−} neonates had no significant effects on any of the ECG parameters of either group (data not shown). These results demonstrate that Kcnq1 is an important contributor to ventricular repolarization principally during β-adrenergic receptor stimulation in neonatal mice.

I_{K_{ca}} Is Absent in Kcnq1^{−/−} Myocytes. To test the hypothesis that lack of I_{K_{ca}} may have contributed to the repolarization abnormalities of Kcnq1^{−/−} mice, we attempted to record I_{K_{ca}} from voltage-clamped ventricular myocytes isolated from 3-day-old Kcnq1^{−/−} and Kcnq1^{+/+} neonatal hearts. As also reported by other groups (Nuss and Marban, 1994; Wang et al., 1996; Drici et al., 1998), I_{K_{ca}} was present only in a fraction of the cells, and its density was small. I_{K_{ca}} was frequently superimposed on a relatively large nonspecific background current (Fig. 2A, left, top row). Thus, we used the following well-established biophysical and pharmacological criteria to ascertain the presence of I_{K_{ca}}: 1) presence of time-dependent slowly activating outward current (t_{act} 1.6 s, see Fig. 2B) upon membrane depolarization to +70 mV followed by slowly deactivating tail currents during repolarization to 0 mV (Fig. 2A, left, top row), 2) enhancement of both outward and tail currents in the presence of isoproterenol (Fig. 2A, middle, top row), and 3) sensitivity of both currents to the I_{K_{ca}}-selective blocker, L-735,821 (1 μM, Fig. 2A, right). Using these criteria, clearly identifiable, L-735,821-sensitive I_{K_{ca}} (Fig. 2B) was present in 21 of 200 Kcnq1^{−/−} myocytes tested. In contrast, none of the 103 Kcnq1^{−/−} myocytes tested displayed any L-735,821-sensitive currents (Fig. 2A, bottom row) when examined similarly (p <
These results demonstrate that Kcnq1 is required for \(I_{Ks}\) in neonatal mouse myocytes.

Pharmacological Inhibition of \(I_{Ks}\) Prolongs Ventricular Action Potential in Isolated Neonatal Mouse Heart. To further confirm that lack of \(I_{Ks}\) in cardiac tissue itself was responsible for the repolarization abnormalities, we recorded monophasic action potentials from ventricular epicardium in isolated perfused hearts harvested from 3-day-old neonates. To examine the effect of \(I_{Ks}\) blockade, hearts were first perfused with solutions containing 200 nM isoproterenol to maximally stimulate \(I_{Ks}\). The addition of isoproterenol shortened RR intervals (increased heart rate) and APDs in all groups (Fig. 3, B–D). On average, the \(A_{P50}\) and \(A_{P90}\) of Kcnq1\(^{-/-}\) hearts were longer than those of heterozygous and wild-type mice, both at baseline and in the presence of isoproterenol (Fig. 3, C and D), but these differences were not found to be statistically significant in the small number of hearts evaluated here. However, in the presence of isoproterenol, pharmacological blockade of \(I_{Ks}\) with L-735,821 significantly lengthened ventricular APD\(_{90}\) in wild-type and heterozygous hearts but had no effect on ventricular APDs recorded from Kcnq1\(^{-/-}\) hearts. The prolongation of APDs induced by L-735,821 in Kcnq1\(^{+/+}\) hearts was reversible upon washout of the compound (Fig. 3, C and D). These results indicate that in the presence of isoproterenol, Kcnq1 and \(I_{Ks}\) significantly contribute to cardiac repolarization in the neonatal mouse heart.

Mapping the Major Kcnq1 Transcript. Generally, the mouse and human peptides are highly similar, as predicted by their respective cDNA sequences; however, the human KCNQ1 protein appeared to be longer at the N terminus by 64 amino acids (Yang et al., 1997). Examination of mouse genomic sequences indicated that the nucleotide sequences that would encode these 64 amino acids are immediately adjacent to those encoding the published mouse cDNA. To determine whether the mouse Kcnq1 exon1a actually extended 5’ to include these sequences, we initiated RNase protection experiments using a series of overlapping antisense riboprobes targeted to this portion of the mouse Kcnq1 gene (Fig. 4). With each probe, a single predominant band was protected (Fig. 4A). Collectively, the results from the three separate probes demonstrate that the 5’ boundary of this first exon extends beyond the published cDNA sequence to include an ATG start site in frame with the rest of the Kcnq1 coding sequence (Fig. 4B). We have confirmed this result using an additional probe that overlaps this new start site and extends further in the 3’ direction to span exons 2 to 5 (Figs. 4, C and D). The predominant transcript is the 732-bp protected fragment in Fig. 4D, which accounted for 70 ± 9% \((n = 5)\) of the total Kcnq1 mRNA in the neonatal heart. Thus, the major Kcnq1 mRNA species in both neonatal and adult mouse (data not shown) heart cell clearly extends further 5’ than previously thought and includes the newly identified upstream ATG (Fig. 4D). The new 5’ sequence of isoform 1 has been independently verified by RT-PCR experiments (data not shown) (GenBank accession no. AY331142). These results are summarized in Fig. 5, which shows the alignment of the full-length mouse and human peptide sequences for Kcnq1 isoform 1. These sequences share >88% overall amino acid identity and >91% amino acid conservation.

Discussion

Our results demonstrate that Kcnq1 expression is essential for native \(I_{Ks}\) in ventricular myocytes, thereby confirming the conclusions from previous studies that used heterologous expression systems to show that co-expression of human KCNQ1 and KCNE1 genes yields \(I_{Ks}\)-like currents (Barhanin et al., 1996; Sanguinetti et al., 1996; Yang et al., 1997). In addition, Drici et al. (1998) showed that \(I_{Ks}\) was absent from KCN1-deficient neonatal mouse ventricular myocytes. Thus, both Kcnq1 and Kcne1 expression are required to produce native cardiac \(I_{Ks}\).

Fig. 3. Pharmacological inhibition of \(I_{Ks}\) lengthens ventricular APD in isolated neonatal mouse heart. Ventricular monophasic action potentials were recorded from the epicardial surface of three Kcnq1\(^{+/+}\) (WT), two Kcnq1\(^{-/-}\) (HET), and four Kcnq1\(^{+/-}\) (KO) isolated, Langendorff-perfused hearts harvested from 3-day-old neonates. A, representative monophasic action potentials from WT and KO hearts. Data from WT and HET were pooled for analysis. Average RR interval (B), \(A_{P50}\) (C), and \(A_{P90}\) (D) are compared at baseline, in the presence of isoproterenol (200 nM), in presence of isoproterenol and L-735,821 (1 \(\mu\)M), and after washout of L-735,821 (isoproterenol still present in the perfusate). L-735,821 significantly prolonged the \(A_{P50}\) and \(A_{P90}\) in WT/HET hearts but had no effect in KO hearts. Data are mean ± S.E.M. \(*\), \(p < 0.05\) by paired Student’s t test. Experiments were performed at 36.5°C.
Our results suggest that I_{Ks} contributes to cardiac repolarization of neonatal mice because pups lacking I_{Ks} and Kcnq1 have significantly longer “baseline” JT, QT, and QTc intervals than their wild-type siblings (Table 1). The fact that isoproterenol significantly exacerbates the differences in these repolarization parameters between Kcnq1^{−/−} and Kcnq1^{+/−} neonates is consistent with the well-established observation that I_{Ks} is dramatically enhanced by activation of β-adrenergic signal transduction pathways (Walsh and Kass, 1988; An et al., 1999; Marx et al., 2002). Our results are also consistent with previous studies showing that pharmacological block of I_{Ks} in canine ventricular “wedge” and myocyte preparations primarily affected repolarization during β-adrenergic stimulation (Shimizu and Antzelevitch, 1998; Han et al., 2001).

Enhanced I_{Ks} is likely to counter the well-established stimulatory effects of PKA on L-type Ca²⁺ channels or Ca²⁺ release channels, which would prolong cardiac action potentials. Deletion of KCNQ1 (or pharmacological block of I_{Ks}) might lead to an imbalanced response to adrenergic receptor stimulation, with the net effect of action potential prolongation, as demonstrated in Fig. 3. Interestingly, neonatal mouse action potential wave shape closely resembled action potentials recorded from dogs and humans (Franz et al., 1987), which is certainly not the case in adult mice (Knollmann et al., 2001). These findings further strengthen the utility of the neonatal mouse heart as a model for studying the electrophysiological and pharmacological consequences of Kcnq1 mutations.

Notably, the effect of KCNQ1 deletion or pharmacological block of I_{Ks} on action potential durations measured in isolated hearts was much more modest than that on the QT interval in vivo (3–4 ms versus 6–8 ms, respectively; compare Fig. 3 and Table 2). A likely explanation for this apparent discrepancy is that action potentials were recorded only from discrete regions of the epicardial surface of the heart. Thus, action potentials of deeper tissue layers may have been affected to greater extents and could be responsible for the prominent T-wave changes and QT prolongation observed in vivo (Table 2). This point is not without merit since both Kcnq1 and Kcne1 have been shown to be expressed throughout both ventricles at comparable stages of development (Franco et al., 2001). Thus, the ECG data (JT, QT, and QTc) likely represent a more accurate general measure of cardiac repolarization, whereas the MAP data provides more specific information about repolarization at localized sites on the ventricular surface of the heart. Even so, it is clear that the ECG and MAP data tend to corroborate each other in this case, thereby supporting the notion that Kcnq1 and I_{Ks} significantly contribute to cardiac repolarization in the neonatal mouse heart, especially when β-adrenergic receptors are activated.

In contrast to our results from Kcnq1^{−/−} neonates, Kcne1^{−/−} neonates had no apparent QT prolongation relative to wild-type controls (Kupershmidt et al., 1999), despite the absence of I_{Ks} in both strains of genetically disrupted mice. Notably, the QT interval measurements of Kcne1^{−/−} neonates in the aforementioned study were significantly longer and more variable than those reported here (Table 1) and elsewhere (Wang et al., 2000). Thus, the modest differences in repolarization that we observed during baseline ECG recordings of Kcnq1^{−/−} versus Kcnq1^{+/−} neonates may
not have been apparent in the Kcne1 study. Alternatively, since Kcnq1 is capable of forming functional homomeric channels (Barhanin et al., 1996) or may associate with other Kcne-like subunits (Abbott and Goldstein, 2002), the absence of such currents could, in theory, also contribute to the long QT phenotype of Kcnq1/H11002/H11002 neonates; however, the slow activation kinetics of the L-735,821-sensitive currents recorded in the present study (Act1.6s) are consistent with those previously reported for IKs (Salata et al., 1996; Seebohm et al., 2001) and, therefore, do not support the presence of non-IKs Kcnq1-dependent currents in neonatal mouse ventricular myocytes. Nevertheless, we cannot unequivocally rule out this possibility. Future experiments that directly compare Kcne1/H11002/H11002 and Kcnq1/H11002/H11002 neonates should help to resolve this issue.

Remarkably, the mouse and human Kcnq1 peptide sequences are highly conserved, with 88% overall amino acid identity and 91% amino acid conservation for isoform 1, the predominant cardiac transcript found in both species (Yang et al., 1997; present study). All of the putative PKA and PKC phosphorylation sites are conserved, including Ser27, which was shown recently to be an important target for PKA-mediated phosphorylation of human KCNQ1 (Marx et al., 2002). Interestingly, another recent study has identified a novel S140G "gain-of-function" mutation in human KCNQ1 that is linked to a hereditary persistent form of atrial fibrillation (Chen et al., 2003). The Ser140 residue, found in the S1 transmembrane segment of KCNQ1, is also conserved in mouse Kcnq1, indicating that the mouse model may prove useful for probing the underlying molecular genetics of atrial and ventricular arrhythmias. In addition, the size of the mouse Kcnq1 protein (668 amino acids) is similar to the human KCNQ1 protein (676 amino acids), and the major isoform expressed in both human (Yang et al., 1997) and mouse hearts is isoform 1. Thus, the mouse Kcnq1 gene appears to be highly conserved with the human KCNQ1 gene in both form and function.

References

KvLQT1 and lnK (minK) proteins associate to form the IKs cardiac potassium current. *Nature (Lond)* 384: 78–80.

Address correspondence to: Dr. Steven N. Ebert, Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington, DC 20007. E-mail: eberts@georgetown.edu