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We propose an echo planar imaging (EPI) distortion correctionmethod (DR-BUDDI), specialized for diffusionMRI,
which uses data acquired twice with reversed phase encoding directions, often referred to as blip-up blip-down
acquisitions. DR-BUDDI can incorporate information from an undistorted structural MRI and also use diffusion-
weighted images (DWI) to guide the registration, improving the quality of the registration in the presence of
large deformations and in white matter regions. DR-BUDDI does not require the transformations for correcting
blip-up and blip-down images to be the exact inverse of each other. Imposing the theoretical “blip-up blip-
down distortion symmetry” may not be appropriate in the presence of common clinical scanning artifacts such
as motion, ghosting, Gibbs ringing, vibrations, and low signal-to-noise. The performance of DR-BUDDI is evaluated
with several data sets and compared to other existing blip-up blip-down correction approaches. The proposed
method is robust and generally outperforms existing approaches. The inclusion of the DWIs in the correction pro-
cess proves to be important to obtain a reliable correction of distortions in the brain stem.Methods that do not use
DWIs may produce a visually appealing correction of the non-diffusion weighted images, but the directionally
encoded color maps computed from the tensor reveal an abnormal anatomy of the white matter pathways.

© 2014 Elsevier Inc. All rights reserved.
Introduction

In the past couple of decades, Diffusion Tensor Imaging (DTI) (Basser
et al., 1994; Pierpaoli et al., 1996) and high angular resolution diffusion
imaging (HARDi) (Wedeen et al., 2000; Tuch, 2002, 2004; Tuch et al.,
1999; Frank, 2002; Jansons and Alexander, 2003) have been extensively
used to investigate the architecture of the human brain. Diffusion-
weighted images (DWIs) required for these MRI techniques are gener-
ally acquired with echo planar imaging (EPI) (Turner and Le Bihan,
1990). EPI has the advantage of being a very efficient acquisitionmodal-
ity, with excellent signal-to-noise per time. However, a well-known
problem in EPI is the presence of geometric distortions along the
phase-encode direction caused by B0 field inhomogeneities (Jezzard
and Balaban, 1995) and concomitant fields (Du et al., 2002). In addition,
local compression due to these distortions cause “signal pile-ups”
whereas expansions cause a decrease in signal intensities. These EPI
sics and Biomimetics, National
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distortions are different fromeddy current distortions,which are caused
by the rapid switching of the diffusion sensitizing gradients.While eddy
current distortions affect the diffusion-weighted images significantly
more than the images acquired without diffusion sensitization (so
called b = 0 s/mm2 images), all images are affected by EPI distortions
in the same manner. Negative effects of EPI distortions in diffusion
MRI have been reported (Wu et al., 2008; Irfanoglu et al., 2012).
Although most diffusion MRI processing pipelines include correction
strategies for eddy current distortions, correction of EPI distortion is
still rarely performed.

The correction of EPI distortions generally requires the acquisition of
additional data. Jezzard and Balaban (1995) proposed to map the static
magnetic field (or B0) and use this information to perform the EPI
correction. Numerous other methods based on B0 mapping have been
proposed (Reber et al., 1998; Lee et al., 2004; Pintjens et al., 2008;
Techavipoo et al., 2009). Correction methods that do not require B0
field maps but other data types, such as dedicated T1 or T2 weighted
structural targets, have also been proposed (Kybic et al., 2000; Wu
et al., 2008; Tao et al., 2009; Irfanoglu et al., 2011). In their work, Wu
et al. (2008) showed that their registration-based correction method
performs similarly to B0 mapping methods.

Even though both B0 mapping and image registration based correc-
tion methods have been shown to improve geometric distortions (Wu
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et al., 2008; Irfanoglu et al., 2012), they are inadequate in the presence
of extreme signal pile-up. Essentially, in regions of the distorted image
with signal pile-ups, the resulting voxel signal is a superposition of sig-
nals from several voxels in the undistorted image, and the question of
how to redistribute this signal back to its corresponding locations is an
under-determined (one-to-many) problem and cannot be solved with
typical EPI plus B0 maps or EPI plus structural information settings.

One solution to the signal pile-up problem involves the acquisition
of the same image twicewith reversed phase-encoding gradients, as ini-
tially proposed by Chang and Fitzpatrick (1992) for images suffering
from field inhomogeneities due to imperfections in the magnet system
or magnetization of the object being imaged. This method is referred
to as “blip-up blip-down” in this work. The distortion field in the two
images is reversed: the signal “pile-up” regions in one image correspond
to regions of signal “dilution” and vice-versa. This provides the neces-
sary information for the originally under-determined system to redis-
tribute the signals to their correct locations. In their work adapting
this method to EPI, Bowtell et al. (1994) and Morgan et al. (2004) pro-
posed using the “cumulative line-integral” method, which states that
the cumulative signal along a phase-encoding line between correspond-
ing points in the up and down images should be equal and that these
points should be equidistant to the true anatomical location. They also
showed the improvements obtained with their method on diffusion
data, specifically apparent diffusion coefficient maps obtained from
three diffusion-weighted images (Morgan et al., 2000). Other groups
have reported improvements with similar blip-up blip-down strategies
for fMRI and DTI data (Voss et al., 2005a, 2005b; Embleton et al., 2010).
These methods suffer from numerical instabilities and because of their
1D nature (phase-encoding lines), the computed displacement fields
were non-smooth. In their work, Andersson et al. (2003) proposed a
different strategy,which aimed to estimate theB0map from the two im-
ages acquiredwith reversed phase encoding, using an image restoration
approach. This methodology, whichwas later released as part of the FSL
package (Smith et al., 2004) under the name TOPUP, operates on 3D
space instead of the initial method's 1D and can redistribute the signal
with a least-squares based method once the B0 map is estimated.
TOPUP has since become a popular blip-up blip-down correction meth-
odology and has been the tool of choice for the Connectome project
(Sotiropoulos et al., 2013).

Recently, Holland et al. (2010) proposed an efficient nonlinear, non-
parametric image registration based EPI distortion correction scheme,
EPIC, based on hierarchical smoothing of distorted images. This method
has been experimentally implemented in a Siemens scanner (Benner
et al., 2011) and its robustness tested under different conditions (Shin
et al., 2011). In addition to diffusionMRI, it also has been applied to per-
fusion MRI (Vardal et al., 2013). Other forms of registration-based cor-
rection algorithms, such as Demons registration and variational
optimization based methods have also been proposed in the blip-up
blip-down context (Lyksborg et al., 2012; Olesch et al., 2010), and spe-
cial deformation field regularizers to better physically model the dis-
placement field have been employed (Ruthotto et al., 2012).

Blip-up blip-down protocols have also been used for purposes other
than EPI distortion correction, such as eddy current correction for DWIs
(Bodammer et al., 2004), vibration artifact correction (Mohammadi
et al., 2012), correction of distortions due to metallic objects (Skare
and Andersson, 2005) and N/2 ghosting (Xiang and Ye, 2007). There
have also been significant developments on the acquisition front
(Bhushan et al., 2013; Gallichan et al., 2010; Chang et al., 2013).

The aforementioned blip-up blip-down distortion correction
methods significantly improve correction quality for EPI distortions,
compared with field-mapping and registration techniques. However,
there are instances in which they still perform sub-optimally. While
experimenting with existing tools on highly distorted diffusion MRI
data, we experienced less than satisfactory outcomes, possibly due to
the limitations of the underlying physical model, i.e., the “blip-up blip-
down distortion symmetry”, which assumes a constant B0 field
regardless of subject motion, magnetic field drift from heating, and
identical shimming between acquisitions. Furthermore, the presence
of imaging artifacts, such as Gibbs ringing around signal pile-ups, N/2
ghosts, hitting the noise floor in expanded regions, and signal drop-
outs, change the mass and the distribution of the cumulative signals. Fi-
nally, in the case of diffusion data, the deformation field to be used for cor-
rection is typically calculated using blip-up and blip-down b = 0 s/mm2

images. This deformation field may inadequately describe the distortion
in regions with uniform T2 and proton density contrast. In this work, we
propose a novel correction framework based on Diffeomorphic Registra-
tion for Blip-Up blip-Down Diffusion Imaging (DR-BUDDI). We will first
build the mathematical framework of the proposed method and de-
pict our entire processing pipeline, which is now part of the publicly
available TORTOISE diffusionMRI processing package (Pierpaoli et al.,
2010). We will then report DR-BUDDI's performance relative to
existing strategies and subsequently raise several questions that
can potentially affect any blip-up blip-down correction approach
and analyze their effects.

Materials and methods

The distinct properties of the DR-BUDDI framework are as follows:

• The deformation model: In our experiments with existing
registration-based blip-up blip-down correction methods, we ob-
served that with very large distortions, the performance of the cor-
rection algorithm decreases significantly. Therefore, we aimed to
use a deformation model capable of dealing with large deforma-
tions. A suitable deformation model for our framework is the sym-
metric, diffeomorphic, and time-varying velocity-based model
proposed by Avants et al. (2008).

• Two deformations: One of the main assumptions of blip-up blip-
down corrections is that the B0 field is constant between the acqui-
sitions, hence the distortions are exactly the opposite of each other,
disregarding possible inconsistencies introduced, for example, by
subject motion or magnetic field drift. Therefore in our framework,
instead of one deformation field (and its inverse), we use two co-
dependent fields that are nearly the inverse of each other but
allow flexibility to compensate for any changes in the B0 field.

• Structural image information: In the presence of very large distor-
tions or other imaging artifacts, including additional a priori
information from an undistorted target would be helpful. There-
fore, we further constrain the deformation fields to pass through
a distortion-free structural T2W image at the midtime point to im-
prove registration accuracy.

• Diffusion image information: To achieve a robust registration in re-
gions that appear homogeneous in the b= 0 s/mm2 images we hy-
pothesized that adding information from the diffusion-weighted
images would be beneficial. Therefore, the proposed method also
employs pairs of blip-up blip-down diffusion-weighted images in
addition to the b = 0 s/mm2 images.

• Anisotropic deformation regularization: Deformation regularization
is a crucial component of each diffeomorphic registration algo-
rithm. However, the scale of regularization kernels can also have
an impact on registration quality. A new form of deformation reg-
ularization is employed to prevent bleeding of small structures
into others. Instead of using traditional Gaussian or B-splines ker-
nels, this method employs a partial differential equations (PDE)
based regularization that results in locally anisotropic smoothing
of the deformation fields.

Mathematical framework for the similarity metrics

Deformation model — Metric 1 (ξ1)
Typically, a registration-based blip-up blip-down correction

algorithm uses one deformation field and its inverse to maximize the
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similarity between the Jacobian manipulated transformed images. The
similarity metric ξ is defined as:

ξ ¼
Z

Ω
CC Iup ϕ xð Þð ÞJ ϕð Þ; Idown ϕ−1 xð Þ

� �
J ϕ−1
� �� �

dΩ ð1Þ

where Iup and Idown are the blip-up and blip-down (b = 0 s/mm2)
images, φ is the forward deformation field, J ϕð Þ is the Jacobian deter-
minant of the deformation field, Ω is the image domain, and CC is the
cross-correlation metric.

To achieve the goals described in Section 2, rather than a basic regis-
tration algorithmwith one deformation, we propose using a large defor-
mation diffeomorphic model with two deformations. Avants et al.
(2008) proposed a non-linear, symmetric, time-varying velocity field
based registration algorithm, namely SyN, which quickly became very
popular in the image registration community thanks to theANTSpackage
(Avants et al., 2011). The fundamental idea behind SyN is that instead of
registering the moving image to the fixed image, it registers both the
fixed and the moving image to a middle image. It achieves this by first
parameterizing the registration space with time [as initially proposed
by Christensen et al. (1996)], with the fixed image representing the
image at time point t = 0 and the moving image, the image at time
t = 1. SyN then aims to maximize the similarity of the fixed image
at time point t = 0.5 with the moving image at time point t = 0.5,
with two deformation fields guiding each respective part. These de-
formation fields are guaranteed to be of approximately the same
norm due to constant parameterization of time and gradient step
length. The reader is referred to (Avants et al., 2008) for further de-
tails. The application of this strategy to the blip-up blip-down correc-
tion problem is particularly appealing because the undistorted EPI
image we aim to compute can be considered as the middle image
in the SyN formulation.

The first step is to define the blip up and down problem in the
framework of the SyN formulation. If we consider the blip-up
image as the image at t = 0 and the blip-down image as the
image at t = 1, the middle image at t = 0.5 should ideally be the
image free of distortions. Let ϕ1(x, t) be the time-varying displace-
ment field that maps the fixed image to the moving image and
ϕ2(x, t) be the field that maps the moving image to the fixed
image. The middle images may be defined as: Iup′ = Iup(ϕ1(x, 0.5))
and Idown′ = Idown(ϕ2(x, 0.5)). Then the original SyN formulation
from Avants et al. (2008) can be defined without the regularization
term as:

ξ1 ¼
Z

Ω
CC I0up; I

0
down;x

� �
dΩ: ð2Þ

The derivations for the displacements computed using this metric
can be found in Appendix A.1. This metric has desirable features;
however, it needs to be adapted to the context of EPI distortion cor-
rection with blip-up blip-down images. First, there is an infinite
number of middle images that is guaranteed to be of equal displace-
ment from both original images, forming a hyper-plane where our
desired undistorted image is just a point. For our purposes, we
need the registration to converge to that point. Additionally, this
metric does not take into account signal compression and expansion
that occur in EPI distortions. We address these issues as described in
the following sections:

Constraining registration with an undistorted image — Metric 2 (ξ2)
The inability to guarantee that the middle images are

distortion-free could be overcome if the time-dependent evolution
of the registration were guided by the correct anatomy at the mid-
dle time point t = 0.5. This guidance could also serve regulariza-
tion purposes in the presence of undesired artifacts. For these
reasons, we propose introducing an undistorted T2W structural
image S to the original SyN formulation of Eq. (2). The metric ξ2
can be written as:

ξ2 ¼
Z

Ω
CC Iup φ1 x;0:5ð Þð Þ;S
� �

þ CC S; Idown φ2 x;0:5ð Þð Þð Þ
� �

dΩ: ð3Þ

This metric encourages similarity between the structural and middle
images. Note that this method is different from registering the blip-up
and down images to the structural image because the displacement
fields ϕ1 and ϕ2 are of the same norm and can be interrelated as further
described in Section 2.2. Therefore, this formulation enforces the blip-up
image to go through the structural image at t = 0.5 while being regis-
tered to the blip-down image (similarly for the down image), and thus
the middle images are guaranteed to be distortion-free. However, this
metric still does not include knowledge about signal pile-ups and expan-
sions. The derivation of displacements originating from this metric can
be found in Appendix A.2.

Incorporating signal expansion and compression information using the
structural image — Metric 3 (ξ3)

As described by Bowtell et al. (1994), once a perfect correspondence
is established between the blip-up and down images, the final
distortion-corrected and signal-redistributed imageK can be computed
as the geometric average:

K ϕ1;ϕ2ð Þ ¼ 2
I0up:I

0
down

I0up þ I0down
: ð4Þ

This image itself could be used within the optimization to maximize
the similarity between the final reconstructed and the structural im-
ages:

ξ3 ¼
Z

Ω
CC K;S; xð ÞdΩ: ð5Þ

The displacement directions derived from Metric 3 can be found in
Appendix A.3. Metric 3 relates the distortion corrected EPI image with
properly redistributed signal,K, to the structural image, hence overcom-
ing the weaknesses of Metric 2. It should be noted that, with Metric 3,
proper signal redistribution is obtained only for the combined image
K without the need to produce geometrically corrected individual im-
ages Iup and Idown. Desired results in terms of both geometrical correc-
tion of individual images and signal redistribution can be achieved
when ξ2 and ξ3 are used together.

Incorporating signal compression in the absence of a structural image —

Metric 4 (ξ4)
The typical approach to include signal compression and expansion

information in a registration framework is tomodulate the transformed
images' signals with the Jacobian determinants of corresponding defor-
mation fields (Tao et al., 2009; Holland et al., 2010). For completeness,
we also include a metric incorporating this approach in the standard
SyN formulation. Because ourmodel does not assume absence ofmotion
between the blip-up and down images, the phase-encode direction of
the middle images does not have to coincide with an image axis,
hence our deformation Jacobians are full 3 × 3matrices instead of a sin-
gle scalar. Thus, the middle images are defined as:

I″up ¼ Iup ϕ1 x;0:5ð Þð Þ�jJ ϕ1 x;0:5ð Þð Þj; ð6Þ

I″down ¼ Idown ϕ2 x;0:5ð Þð Þ�jJ ϕ2 x;0:5ð Þð Þj ð7Þ
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and our similarity metric employs these modulated images as:

ξ4 ¼
Z

Ω
CC I″up; I

″
down;x

� �
dΩ: ð8Þ

This metric, although showing an improved handling of piled-up
and expanded regions, also has drawbacks. Because this metric relies
on the second order spatial derivatives of the deformation field, it is
very sensitive to noise and artifacts, such as Gibbs ringing, and the
deformation field has to be strongly regularized. Additionally, as stated
in Andersson et al. (2003), computing the correct signal using blip-up
and down images is almost always more robust than manipulating
single images with Jacobians. Finally, some of the challenges involved
with ξ1 still apply; the middle images are not guaranteed to be
distortion-free images, and further guidance for the velocity fields is
required, especially under non-ideal conditions.

In our software package TORTOISE, we give users the option to use
any combination of the proposed metrics. ξ2 and ξ3 require an anatom-
ical structural image, and ξ1 and ξ4 can be used if one is not available.

Constraints and other properties of the registration

Phase-encoding direction
EPI distortions result in displacements along the phase-encoding di-

rection ( pe�!). However, the gradient formulations in Appendix A pro-
duce free-form deformations, which need to be further constrained
along pe�! to properly model the physical problem. Let Rup and Rdown

be the rotational components of the rigid (affine or quadratic) registra-
tion that map the blip-up and down images to the structural image, re-
spectively. Assuming original phase encoding along the γ-axis for
simplicity of illustration, the newphase-encoding direction can bewrit-
ten as:

pe�!up ¼ RT
up

0
1
0

2
4
3
5 ; pe�!down ¼ RT

down

0
1
0

2
4
3
5:

Therefore, for all metrics, the gradient vectors should be projected
onto the new phase-encoding direction, so that for example for the up
data:

∂ξi
∂ϕ1

� �
pe�!up

¼ ∂ξi
∂ϕ1

� pe�!up

� �
pe�!up:

Enforcing deformation equality
Theoretically, a deformation field ϕ and its inverse ϕ−1 would map

the blip-up and blip-down images respectively onto the undistorted
image. In Section 2.1, we intentionallymodeled these two deformations
separately as ϕ1 and ϕ2. Nevertheless, it is still desirable to have control
over the degree of similarity imposed on the two deformations. For this
reason, we introduce another term to ourmetrics to softly constrain the
(inverse) similarity between the two fields:

ξ f
i ¼ ξi þ βjjϕ1−ϕ−1

2 jj ð9Þ

where || · || is the L2 norm. Then the displacements can be rewritten as:

∂ξi
∂ϕ1

f

xð Þ ¼ ∂ξi
∂ϕ1

xð Þ þ β
2

RT
upRdown

∂ξi
∂ϕ2

� �−1

xð Þ− ∂ξi
∂ϕ1

xð Þ
 !

: ð10Þ

The formulation is similar for ϕ2 and the derivations can be found in
Appendix A.4. The parameter β is a continuous user-defined parameter
that forces ϕ1 and ϕ2

−1 to be identical when set to one, and leave them
independent when set to zero.
Incorporating diffusion-weighted imaging information
Traditionally, blip-up blip-down corrections have been performed

on b= 0 s/mm2 images. b= 0 s/mm2 images are T2⁎ and proton density
weighted. This weighting results in good discrimination betweenwhite
matter, gray matter and cerebrospinal fluid (CSF), but does not allow
the depiction of various pathways within white matter regions as they
have a homogeneous signal intensity. Therefore, the cost function of
the registration within these regions is very flat in the b = 0 s/mm2 im-
ages. Using only b = 0 s/mm2 images to estimate the deformation field
for correction may produce highly inaccurate results within white mat-
ter. Therefore, we investigated the advantage of addingDWIs to be used
in a multi-channel registration framework. DWIs intrinsically contain
diffusion anisotropy information; this information enables a better de-
piction of individual pathways in white matter regions. In such a
multi-channel registration setting, each channel provides a displace-
ment field; these fields are subsequently combined into a single field
with different possible weightings. For example, Metric 2 becomes:

ξ2 ¼
Z

Ω

XNþ1

i

αi CC I0up
i
; S;x

� �
þ CC S; I0down

i
;x

� �� �
dΩ: ð11Þ

There are several choices for the DWI weight factors αi:

• Manual weighting:Weights for each channel are enteredmanually as
parameters to the correction. This approach provides the possibility of
weighting artifactual images less than other channels.

• Equal weighting:Weights are automatically computed to be equal for
each channel.

• Signal-based weighting: Weights are computed voxelwise relative to
the signal level in the corresponding DWI, with less weighting for
low signals to avoid having the registration driven by low signal-to-
noise ratio features.

• Median weighting: Instead of a weighted average of the deformation
fields from each DWI channel, this approach chooses the median dis-
placement for each voxel and provides robustness against artifactual
results.

The number of diffusion-weighted images N to be used is a user-
defined parameter. Our default setting employs six DWIs, theminimum
number to cover all directional contrast, similar to the requirements in
diffusion tensor computations. Registration time increases linearly
with the number of DWIs.

Another issue is the use of acquired images versus synthesized im-
ages. In DR-BUDDI, users may use the real DWIs or perform a quick ten-
sor fitting for both the blip-up and down DWI data sets, then estimate
the b = 0 s/mm2 image and synthesize the DWIs from the initial diffu-
sion tensors. If the use of acquired DWIs is selected, all the b= 0 s/mm2

images are first quadratically registered to the first one and averaged,
then the first N DWIs are selected from the dataset. If the synthetic op-
tion is preferred, the b=0 s/mm2 image is estimated from tensor fitting
and N DWIs are synthesized based on a gradient scheme originating
from the electro-static repulsion method (Jones et al., 1999).

Deformation regularization
Traditionally, regularization of displacement fields has been

achieved by convolution with Gaussian or B-splines kernels. In this
work, we preferred to use an anisotropic filter to avoid blending neigh-
boring regions such as the brain stem and the surrounding cerebrospi-
nal fluid. For this purpose, the vector-valued image regularization
framework proposed by Tschumperlé and Deriche (2005) is employed.
For the details of the implementation of this filter within DR-BUDDI,
refer to Appendix A.5.

Quadratic registration-based initialization for concomitant fields
EPI distortions consist of susceptibility distortions and concomitant

field distortions (Du et al., 2002). The latter is a global distortion that



Fig. 1. The effects of quadratic registration. A b = 0 image was registered to the corre-
sponding (a)T2W structural image, (b)with rigid, (c) affine, and (d) quadratic registration.
Neither rigid nor affine registration was able to provide a good initialization due to the
global but nonlinear effects of the concomitant fields. Quadratic registration is able to cor-
rect for these distortions, and the remaining distortions can be solely attributed to local
susceptibility effects.

288 M.O. Irfanoglu et al. / NeuroImage 106 (2015) 284–299
can be corrected with transformations similar to those used for eddy-
current distortions that affect the diffusion-weighted images. Therefore,
while performing the initial registration of the blip-up and down images
to the structural image, we employ the quadratic transformation origi-
nally proposed by Rohde et al. (2004) to correct for eddy-current distor-
tions. This approach provides a better initialization for the diffeomorphic
registration and, therefore, a faster andmore robust correction. The effect
of this initialization is depicted in Fig. 1.

Integration of DR-BUDDI in a comprehensive DWI preprocessing
framework

We integrated the proposed blip-up blip-down correction algorithm
into the TORTOISE diffusion image processing software package
(Pierpaoli et al., 2010). An illustration of the complete pipeline is
depicted in Fig. 2. Processing starts with dependent motion and eddy
current distortion corrections for both the blip-up and down data sets
in the DIFFPREP tool of TORTOISE. After this step, all DWI volumes in
both data sets are aligned to their corresponding b = 0 s/mm2 images
and the B-matrices for all volumes are properly reoriented (Rohde
et al., 2004). DIFFPREP also outputs two transformation files, one for
each data set, describing the entire motion and eddy current distortions
for all volumes. These transformation files are fed into the DR-BUDDI
tool. The b = 0 s/mm2 images for both blip-up and down data are
Fig. 2. The pipeline employed in TORTOIS
then quadratically registered to the structural image within DR-BUDDI
to correct for concomitant field distortions and align both images to
the structural image's space, where blip-up blip-down correction is
then performed using both the b = 0 and diffusion-weighted images.
The resulting deformation fields are subsequently combined with each
DWI's motion and eddy current transformations to generate the overall
displacement fields, which are used along with the original DWIs to
generate the corrected blip-up and down diffusion data sets with one
interpolation step. Lastly, these two data sets are combined using geo-
metric averaging to generate the final corrected data set. Because of
the B-matrix rotation process during motion correction in DIFFPREP,
the two B-matrices of the corrected blip-up and down data sets will
most likely not be identical. As a heuristic solution, the arithmetic aver-
age of these two B-matrices is output as the B-matrix of the final
corrected data, which are ready for tensor operations in DIFFCALC. The
TORTOISE package can be downloaded from: http://www.tortoisedti.org.

Experimental setup

MRI data
Several types of data were used for the experiments of this work. The

first two sets of data were collected with parameters representative of
clinical scanning at 1.5 T and 3 T to test the performance of the algorithm
under typical distortion levels. The first set of data (Test Set 1) was col-
lected on a 1.5 Tesla scanner (GE Medical Systems) equipped with an
8-channel receive coil and consisted of five young subjects (2 males;
mean age = 36, age range 24–48 years). DWIs were acquired with a
single-shot spin-echo EPI sequence (FOV=24×24 cm, slice thickness=
2.5mm, matrix size = 96 × 96, 60, slices). No parallel imaging was used
in this case. Each diffusion experiment consisted of two image volumes
with b= 0 s/mm2 and 12 volumes with b= 1100 s/mm2. For each sub-
ject, the protocol was repeated, acquiring both phase-encoding direc-
tions, Anterior–Posterior (AP) and Right–Left (RL), with both blip-up
and blip-down, yielding four data sets per subject: APup, APdw, RLup, and
RLdw. An undistorted T2W scan was also acquired with a fast spin-echo
sequence (FOV = 24 cm, TR = 9000 ms, TE = 81.5 ms, matrix size =
256 × 256, slice thickness = 2.5mm, 60 slices).

The second set of data (Test Set 2) was collected again on a popula-
tion of five subjects (4 females, 1 male; age range 21–30 years) on a 3 T
Siemens Skyra scanner, to assess the correction performance on data ac-
quiredwith parallel imaging at highfield. DWIswere acquiredwith a 32
channel coil (FOV=22 × 22 cm, slice thickness = 2mm, matrix size =
E for blip-up blip-down correction.

http://www.tortoisedti.org
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110 × 110, 80 slices) and the GRAPPA factor was set to 2. Diffusion ex-
periments consisted of five b = 0 s/mm2 and 30 volumes with b =
1100 s/mm2 (TE/TR = 91 = 12400 ms) with no repetition. Diffusion
data for all four phase-encoding directions along with a T2W image
were collected similarly to the previously described test set.

The third set of data (Test Set 3) was collected on a single subject
with the aim of testing the algorithmon a high-quality, good spatial res-
olution and large number of gradients data set with large EPI distor-
tions. Data from the same healthy female subject were collected on
two 3 Tesla scanners, GE 750 and Siemens Skyra, with a 32-channel re-
ceive coil. DWIs were acquired with a single-shot spin-echo EPI se-
quence (FOV = 256 × 256 mm, slice thickness = 2 mm, matrix
size=128×128, 82 axial slices). No parallel imagingwas used. Each dif-
fusion experiment consisted of five image volumes with b = 0 s/mm2

and 30 volumes with b= 1100 s/mm2, yielding 10 b= 0 s/mm2 images
and 60 DWIs. Similar to the procedure with previous data sets, the diffu-
sion experiment was repeated to acquire APup, APdw, RLup, and RLdw data
sets, along with a high quality T2 weighted scan. The scans in the Skyra
scanner were repeated, introducing mild subject motion.

The fourth set of data (Test Set 4) was selected because it had severe
flow artifacts in b = 0 images, enabling us to test the robustness of the
algorithm with respect to this type of artifact. One healthy subject was
scanned with a Philips Achieva 3 T scanner at 2 × 2 × 2 mm, FOV =
22 cm, matrix size = 128 × 128, 90 slices, TR = 11.5 s, TE = 92 ms.
The diffusion experiment consisted of six b = 0 s/mm2 images, 6 b =
50 s/mm2 images, 6 b = 350 s/mm2 images, 6 b = 600 s/mm2 images,
6 b = 80 s/mm2 images and 36 b = 1100 s/mm2 images.

The last set of data (Test Set 5) was collected from an ex-vivo
mouse on a Bruker 7 T vertical scanner. The images were acquired
with both a conventional (CPMG) spin-echo (SE) sequence and EPI.
The DWIs acquired with the spin-echo sequence are not affected by
EPI distortions and can be considered as undistorted ground truth
images. Data from both sequences were acquired at 0.1 mm isotropic
resolution, 160 × 120matrix size and 100 slices. Similar to the previous
datasets, EPI data were collected using all four phase encoding direc-
tions and consisted of 32 DWIs and 6 b = 0 s/mm2 volumes. Due to
the longer acquisition time, the spin-echo sequence consisted of 10
DWIs with 2 b = 0 s/mm2 volumes.

Registration quality assessment
The proposed EPI distortion correction method was compared with

two other blip-up blip-down methods: TOPUP from the FSL package
(Andersson et al., 2003) and EPIC (Holland et al., 2010). For each meth-
od, the similarity of the corrected b= 0 s/mm2 images to the structural
image was visually inspected and voxelwise local correlation maps of
the signal intensities were also generated. Visual inspection was also
performed on the DEC maps (Pajevic & Pierpaoli, 1999).

We tested quantitatively the performance of the various methods
using the approach proposed by Wu et al. (2008). The APup–APdw data
sets were used to generate the corrected data set APcorr, and similarly
the RLup–RLdw data sets were used to generate RLcorr. Theoretically, a
perfect correction should produce morphologically identical APcorr and
RLcorr images, and maps of tensor quantities generated from these two
data sets should be super-imposable. Therefore, correction perfor-
mances were assessed by analyzing the voxelwise standard deviation
(SD) maps of tensor-derived quantities such as fractional anisotropy
(FA) and Trace (TR) computed from the two corrected datasets.

For a population analysis of SDmaps, all diffusion tensors from both
APcorr and RLcorr images for all subjects were first registered nonlinearly
using DTITK (Zhang et al., 2006) to obtain the transformations that
wouldmorph each tensor to the averagemorphology of the population,
and the resulting RLcorr deformations were applied to the SD maps to
compute a population average SD map for the quantity of interest (TR
or FA).

For the first two test sets, theWilcoxon signed-rank test was used to
determine whether one of the methods had statistically significantly
(5% confidence level) lower SD values in a given voxel. For eachmethod,
the number of voxels where that method was statistically the best was
counted, and this total was ranked against other methods' totals.
Additionally, whole brainmedian SD valueswere computed for each in-
dividual and for eachmethod, for both FA and TR, and reported. A paired
t-test was performed on themedian values to determine significant dif-
ferences. For Test Set 3, with only one subject, the difference image was
displayed for visual inspection.

Additional experiments
One of the goals of this work is to answer several previously

uninvestigated questions pertaining to blip-up blip-down acquisitions
and corrections. In this Section, we will describe these questions and
our analysis methodologies to investigate them.

• Blip-up blip-down symmetry: To test the potential advantages of
using two deformation fields rather than one and its inverse in presence
of motion, two data sets were selected from Test Set 3: one with mini-
mal motion between the b = 0 images of the blip-up and down data
sets and one with relatively large motion. This test was performed by
setting β to 1 in Eq. (10) both forcing inverse equality of deformations.

• Effects of correction ondirectional information: To check the effects of
using DWIs during correction, we used the GE data from Test Set 3 and
compared the DEC maps produced after DR-BUDDI correction.

• Flow artifacts in b = 0: Flow artifacts are more prominent in the
b = 0 s/mm2 images than DWIs and using only b = 0 images might
not produce the desired results. To assess the effects of flow artifacts,
we used Test Set 4 and performed the correction twice with DR-
BUDDI, once with only the b=0 images and once with DWIs weighted
significantly more and compared their performances.

• Scanner manufacturer differences: EPI distortions may be a source
of low reproducibility for data acquired on scanners from different
manufacturers in multi-center studies. We tested the ability of DR-
BUDDI processing with default parameters to increase reproduc-
ibility of DTI metrics on data acquired for Test Set 3. Single subject
SD maps for FA and trace were computed with and without
correction.

• Gibbs ringing: Gibbs ringing is common on b = 0 s/mm2 images
propagating from regions with extreme signal pile-up. To assess the ef-
fects of Gibbs ringing artifacts on DR-BUDDI correction, a data set from
Test Set 3 with particularly evident signal pile-ups was selected. We
tested two different DR-BUDDI settings: 1) the default, and 2) deforma-
tion regularization and DWI usage turned off.

Implementation and settings
For the experiments in this paper, the default settings were used for

the proposed and compared methods while testing the performance of
DR-BUDDI with respect to the existing algorithms (Section 3.1). DR-
BUDDI's default settings can be found in Appendix A.6. For the additional
experiments, DR-BUDDI parameters were altered or optimized but the
outcomes were not compared to those of the other methods.

For each data set, the corresponding structural image was trans-
formed into anterior commissure posterior commissure orientation
and DR-BUDDI corrections were performed in this space. The DWIs
were upsampled by a factor of 2. The experiments were run on a
dual Intel Xeon system, utilizing DR-BUDDI's fully parallelized ar-
chitecture. A typical correction employing two metrics and seven
pairs of images, on 1 mm isotropic data after upsampling, took
45 min.

Results

Comparative assessment of correction performance

Fig. 3 displays the original distorted and the corresponding corrected
b=0 s/mm2 images from the three algorithms tested using a single sub-
ject from Test Set 1. Data acquired with all four phase-encoding



Fig. 3.Original distorted images and their corrected versions createdusing threemethods froma single subject of Test Set 1. The top row represents imageswith RLphase encoding and the
bottom row with AP encoding. The structural image is the same for both rows.
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directions are presented along with the corresponding structural T2W
image; images in the top row are encoded with RL and in the bottom
row with AP.

The corrected b= 0 images clearly show that all algorithms signifi-
cantly decreased EPI distortions. DR-BUDDI correction produced sharp
images with clearly visible tissue interfaces, where TOPUP produced im-
ages that were more blurred. At this slice level, signal pile-ups and ex-
pansions were very pronounced. DR-BUDDI was still able to correctly
reconstruct the olfactory bulbs with anatomically plausible white mat-
ter bundles, even for the RL encoded data (arrow). TOPUP and EPIC
could only partially achieve this for AP data, while for RL data, it appears
that the corrected imagewas not consistentwith the anatomyof this re-
gion. The inferior temporal lobes for both RL and AP corrected datawere
again anatomically more accurate with DR-BUDDI. Additionally, both
Fig. 4. Population maps of the average (top row) and standard deviation (bottom row) of
FA fromAP and RLdata fromTest Set 1 (1.5 T). Regions of high SDvalues indicate imperfect
distortion corrections by the algorithms. (a) No EPI correction, corrected with (b) DR-
BUDDI, (c) TOPUP, and (d) EPIC. All FA maps, and SD maps are displayed with identical
brightness/contrast.
TOPUP and EPIC introduced small artifactual bands in AP corrected
data in the temporal lobe near the petrous sinus (arrows in AP panel).

Fig. 4 displays spatially normalized population maps of both the
mean and SD maps for FA computed from the APcorr and RLcorr data.
The mean FA maps, including those computed from the uncorrected
data, appear morphologically similar but with different degrees of blur-
ring. The SD maps reveal clear differences. The uncorrected EPI distor-
tions resulted in very high SD values in the genu and splenium of the
corpus callosum (CC) and internal capsule. The SD map of DR-BUDDI
shows almost no structures, except for a small band in the genu of the
CC, while those of TOPUP and EPIC show high values at the periphery
of the genu of the CC and cortical regions. The EPIC SD map also shows
high values in the splenium of the CC.

Fig. 5 displays the same analysis as Fig. 4 but for Test Set 2. SD maps
computed from uncorrected data show large values indicating a signif-
icant amount of misalignment in several regions. Test Set 2, however,
has lesser amount of distortions than Test Set 1. Consequently, all
three algorithms produced better quality corrections for this set. The
Fig. 5. Population maps of the average and standard deviation of FA between AP and RL
corrected images from Test Set 2.



Table 1
Correction performance results across methods for Test Set 1. The whole brainmedian SD
value for FA and TR for each individual (along with the corresponding ranks). The
voxelwiseWilcoxon signed-rank test results are at the bottom of the panel as the number
of voxels with the significantly lowest SD for each method. Trace SD values are in units of
10−6 mm2/s.

DR-BUDDI TOPUP EPIC

Subject FA SD/(method rank)
1 0.136 / (1) 0.146 / (3) 0.139 / (2)
2 0.138 / (1) 0.140 / (2) 0.145 / (3)
3 0.138 / (1) 0.141 / (3) 0.140 / (2)
4 0.143 / (2) 0.143 / (1) 0.144 / (3)
5 0.140 / (2) 0.138 / (1) 0.147 / (3)
# voxels with significantly lowest SD/(rank)

64027 / (1) 45387 / (2) 32933 / (3)

Subject TR SD/(method rank)
1 8.311 / (1) 10.18 / (3) 9.701 / (2)
2 8.394 / (1) 9.904 / (2) 10.68 / (3)
3 7.261 / (1) 8.955 / (3) 8.905 / (2)
4 8.037 / (1) 9.223 / (2) 9.522 / (3)
5 7.463 / (1) 8.664 / (2) 9.418 / (3)
# voxels with significantly lowest SD/(rank)

73916 / (1) 53096 / (2) 24704 / (3)
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regions showinghigh values in TOPUP's and EPIC's SDmaps are the same
as those found in Fig. 4, but the magnitude of the effect is much lower.
As for Test Set 1, DR-BUDDI showed good overall performance.

Fig. 6 presents the same analysis as Fig. 5 but at a different slice level.
At this level, differences amongmethods can be observed in the orbito-
frontal cortex on the average FA maps, where the white matter fiber
bundles appear more accurately depicted after correction with DR-
BUDDI (large arrows). The other methods also show larger SD values
in this region. Additionally, differences among methods can also be ob-
served in the cerebral peduncles (small arrows).

Tables 1 and 2 present the results of the performance comparison
across methods for Test Sets 1 and 2, respectively. In this analysis,
lower SD values indicate better performance, i.e., better agreement for
tensor quantities computed from RLcorr and APcorr data. Results are re-
ported for the whole brain median SD value analysis and the voxelwise
Wilcoxon signed-rank test. In general DR-BUDDI outperformed the
other two methods, except for three instances in which the median
SD value of FA was not the lowest. The paired t-test analysis results
were consistent with this scenario. For both test sets DR-BUDDIwas sig-
nificantly better than the other two methods for TR (all p-values less
than 0.018), but for FA, statistical significance was only achieved with
respect to EPIC with a p-value of 0.038 and a p-value of 0.0477 for the
two test sets respectively. In the comparison with TOPUP, the p-values
were 0.4 and 0.057.

Fig. 7 displays the original distorted images and outputs from the
three correction algorithms from Test Set 3. As previously stated, paral-
lel imagingwas intentionally not used, hence the distortions in this test
set are severe and more challenging than for typical data. Corrections
were less accurate for allmethods. Even though the resultswere accept-
able for the RL data when the EPIC method was used, the algorithm
failed to correct the distortions for the AP data due to the large motion
between the blip-up and down acquisitions. DR-BUDDI again produced
anatomically faithful images that appear sharper than those obtained
with the other methods.

Fig. 8 displays images again from Test Set 3 at the level of the brain
stem. At this challenging level, DR-BUDDI was not able to correctly re-
construct the CSF surrounding the white matter within the brain stem
with the AP data, whereas TOPUP could. However, with TOPUP, CSF
also bled into the white matter and artifacts were introduced in back-
ground regions, though, the artifacts did not affect the brain tissue.
EPIC failed againwith the AP data. No algorithmwas able to correctly re-
construct the temporal lobes with RL data, though the agreement of AP
and RL corrected data was better with DR-BUDDI.

The local cross-correlationmaps createdwith awindow size of 5, are
displayed in Fig. 9. They indicate the dissimilarities between the
corrected AP images and the structural image. These maps provide an
additional way of assessing correction quality. Overall DR-BUDDI
showed a higher correlation with the undistorted T2WI than did TOPUP
Fig. 6. Same data set of Fig. 5 from Test Set 2 at a different slice level.
and EPIC. Differences are more pronounced in frontal and occipital
areas, posterior portions of the cerebellum, and central white matter.

Fig. 10 displays the distorted b = 0 s/mm2 images from the RL
encoded acquisition of Test Set 5, the DR-BUDDI corrected output and
the distortion-free spin-echo CPMG data. This data set had distortions
around the frontal and right–left regions (red arrows) and around an
air bubble (yellow arrow). Fig. 11, top row, displays the DEC maps for
both the AP and RL EPI data correctedwithDR-BUDDI and also the undis-
torted CPMG data. The DECmaps for the three sets are identical at visual
inspection. The difference images of FA computed from the corrected EPI
data and the undistorted spin-echo data (Figs. 11(d)–(f)) confirm that
the corrected images are structurally very well-aligned to their undis-
torted counterpart. Only a few small structures around the corpus
callosum and the cerebellar regions are present and the entire images,
for both cases, are otherwise homogeneous. The air bubble affected the
AP data slightly more but still only caused subtle deviations from the
ground truth CPMG data.
Results from additional experiments

Testing the blip-up blip-down symmetry principle
Figs. 12(a–b) displays the distorted images from two blip-up blip-

down acquisitions (Test Set 3) with significant motion in one of the
Table 2
Correction performance results for Test Set 2 similar to Table 1.

DR-BUDDI TOPUP EPIC

Subject FA SD/(method rank)
1 0.119 / (1) 0.136 / (3) 0.134 / (2)
2 0.131 / (2) 0.129 / (1) 0.132 / (3)
3 0.120 / (1) 0.126 / (3) 0.123 / (2)
4 0.126 / (1) 0.134 / (2) 0.135 / (3)
5 0.124 / (1) 0.129 / (3) 0.128 / (2)
# voxels with significantly lowest SD/(rank)

63787 / (1) 25499 / (3) 60724 / (2)

Subject TR SD/(method rank)
1 7.860 / (1) 10.28 / (3) 10.25 / (2)
2 12.04 / (1) 12.05 / (2) 12.61 / (3)
3 8.344 / (1) 10.49 / (2) 10.52 / (3)
4 9.584 / (1) 12.42 / (2) 12.77 / (3)
5 8.621 / (1) 10.62 / (2) 10.76 / (3)
# voxels with significantly lowest SD/(rank)

59726 / (1) 23973 / (3) 54989 / (2)



Fig. 7.Original distorted images and their corrected versions created using threemethodswith Test Set 3. The top row represents imageswith RLphase encoding and the bottom rowwith
AP encoding. The structural image is repeated for convenience. Distortions in this set are very large.
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acquisitions. The same slice is visualized without any rigid registration.
The AP data showed largemisalignment between the blip-up and down
images. The computed deformation fields are displayed in (c–d). The
second and the fourth fields are the inverse fields; therefore should the-
oretically be identical to the first and third fields, respectively. These de-
formation fields were obtained after quadratically registering each
Fig. 8. Original distorted images and their corrected versions created using three methods with
and the bottom row with AP encoding.
image to the corresponding structural image and only represent the dis-
tortions due to susceptibility. The fields for the AP data are significantly
different from each other, whereas the fields for the RL data, where mo-
tion was negligible, were very similar.

We can hypothesize that the differences between R − ϕ1 and L −
ϕ2
−1 might be because of imperfect registration, gradient heating, or
Test Set 3 at the brain stem level. The top row represents images with RL phase encoding



Fig. 9. Local cross-correlation maps between different corrected images (AP) and the
structural image. Warmer colors indicate higher local agreement between the corrected
and the structural images.

Fig. 11. Top row: DEC maps computed from data corrected with DR-BUDDIwith RL and AP
encoding in (a) and (b) respectively. The DEC map in (c) is from the CPMG undistorted
ground truth data. Bottom row: Differences in FA maps between data computed from (d)
CPMG and corrected RL encoded EPI, (e) CPMG and corrected AP encoded EPI, (f) the two
corrected EPI data.
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magnetic field drift. However, such issues cannot explain the large dif-
ference between A − ϕ1 and P − ϕ2

−1. The images corrected with
these deformation fields are in (e) and (g) respectively. The frontal re-
gion in these images was nicely corrected. A correction strategy that
only used a single deformation field, P − ϕ2 and its inverse P − ϕ2

−1,
produced the image displayed in (f) with artifacts indicated by the
arrows.

Another test involved the analysis of one v.s. two deformation
models. Fig. 13 displays the computed deformation fields from Test
Set 3, presented in Fig. 7. The first two fields were generated using a
two-deformation model, and the second pair used only a single defor-
mation and its inverse. There was minimal motion between the blip-
up and down images.

In this case, even with the two-deformation model, the displace-
ment fields were almost inverses of each other. However, there were
differences between ϕ1 and ϕ and ϕ2 and ϕ−1. The two deformation
model is able to model a larger displacement with ϕ1 in the orbito-
frontal region for the up image, whereas this was not needed for the
down image as indicated by the similarity of ϕ2 and ϕ−1 in this region.
Additionally, the two-deformation model was able to capture more local
details due to the inherent smoothingwith the single-deformationmodel.

b = 0 s/mm2 artifacts
The b=0 images from Test Set 4, for both the blip-up and down data

sets, are presented in Fig. 14. Inconsistent signal drops originating from
flowvoids ventral to themedulla could affect the quality of the correction.
Fig. 10. The b = 0 images from the mouse dataset (Test Set 5). The images in (a) and
(b) are the raw images from the RL encoded EPI set, (b) is the output of DR-BUDDI correc-
tion and (d) is the distortion free spin-echo CPMG image.
In this case, our proposed solution was to manually weight the DWIs
more than the b = 0 s/mm2 images as signal originating from blood
only affects the b = 0 s/mm2 images and is not present in the DWIs.
Fig. 15 presents the Trace images obtained with a correction that equally
weighs all images and one thatweighsDWIs significantlymore. The brain
Fig. 12. Two sets of data with varying amounts of motion.



Fig. 13. The outputs of the two-deformation v.s. one deformation model.
Fig. 15. Trace maps computed with equal and DWI-emphasized weighting.
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stem better matched that of the structural image andwas less affected by
CSF partial voluming when the artifactual images were de-emphasized.

Effects of using DWIs for correction
Fig. 16 displays the effects of using DWIs together with the b = 0

image for correction. The pons is homogeneous in the T2W image and
b= 0 images do not contain enough information for a correct registra-
tion of pathways. In fact, Fig. 16(b) shows that the transverse pontine fi-
bers in the ventral aspect of the pons appeared broken,when only b=0
images were used for correction (arrow). Including DWIs within DR-
BUDDI's vector-image registration framework solved this issue
(Fig. 16(c)). Additionally, the shape of the cortical spinal tracts is also
more accurate with correction using DWIs.

Fig. 17 displays the b = 0 s/mm2 and DEC images from the largely
distorted RL data of Test Set 3, zoomed in to the brain stem region.
Even though CSF bled intowhitematter regions to somedegree, the cor-
rections from all methods appear to be acceptable when only the b=0
images are considered.However, one canobserve significant differences
between the methods in the DEC maps. With DR-BUDDI, which also
used the DWIs to compute the deformation field, the CST (arrows)
were clearly distinct and show high anisotropy, whereas with TOPUP,
the two CST bundles were split into three (arrows) with an artifactual
bundle created at the mid-sagittal line. This anatomically correct bun-
dles also have reduced anisotropy. With EPIC, the two CST bundles
were instead merged into a single one at the mid-sagittal line (arrow).

Scanner differences
With this analysis, our aimwas to determinewhetherDR-BUDDI can

be used to reduce the effect of the variability introduced by different
levels of EPI distortions from different manufacturer magnets. There-
fore, largely distorted data fromTest Set 3 acquiredwith identical acqui-
sition parameters on scanners from GE and Siemens were used.
Distortion levels in the acquired data were significantly different across
magnets. To determine this difference, the FA (and TR)maps computed
from the uncorrected blip-up data acquired with the GE scanner were
subtracted from the FA (and TR) maps computed from the uncorrected
data from the Siemens scanner. This processwas repeated for the uncor-
rected blip-down data sets and the data corrected with DR-BUDDI.
Fig. 18 displays these subtraction maps. Due to the difference in levels
of distortions between these two magnets, both the FA and TR subtrac-
tion maps show large variations in several regions for both the uncor-
rected up and down data sets. However, DR-BUDDI was able to reduce
this variability significantly (Fig. 18(c)).
Fig. 14. b= 0 s/mm2 images with artifacts.
Gibbs ringing
Fig. 19 displays a b=0 image with Gibbs ringing artifacts due to ex-

treme signal pile-ups around the eye regions (arrows). The deformation
field in (b) is computed with DR-BUDDI using the image in (a) and its
down version for correction, with no DWIs and no deformation regular-
ization. As indicated by arrows in (b), the deformation field suffered
greatly from the presence of such irregular image characteristics, and
discontinuities or irregularities are visible even in the deformation
fields. With the default settings (c), DR-BUDDI did not suffer from
these issues because of the deformation regularizer, and, more impor-
tantly, because of its use of DWIs, which do not contain these types of
artifacts.
Discussion

We proposed a novel EPI distortion correction method, DR-BUDDI,
for diffusion MRI datasets acquired with reversed phase-encoding di-
rections. The proposed method is based on symmetric diffeomorphic
registration principles and is capable of correcting for large deforma-
tions. It parameterizes the registration space with time and aims to
find a middle image that is distortion-free by guiding the registration
with additional information and constraints. The first piece of additional
information is an anatomical, T2W, distortion-free structural image,
which serves two purposes: 1) to guide the registration through a mid-
dle time point image that is distortion-free when displacements are
large and 2) to regularize the registration and make it more robust in
the presence of artifacts that may make the images inconsistent with
the assumption that the transformations for correcting blip-up and
blip-down images should be exactly the inverse of each other. The sec-
ond piece of additional information comes from the use of diffusion-
weighted images to help the correction in white matter regions that
are homogeneous in b = 0 s/mm2 images and also to make the correc-
tion more robust to the presence of artifacts in the b = s/mm2 image
from flow and Gibbs ringing.

DR-BUDDI outperforms the existing methods in most cases, particu-
larly in the presence of motion or other imaging artifacts. It consistently
produced sharper images with more distinct tissue interfaces and was
very effective in preserving the anatomy of white matter pathways in
regions of large distortions. Our primary criterion for judging the perfor-
mance of the proposed algorithm was to assess the similarity of the
Fig. 16. Effects of Using DWIs for Correction.



Fig. 17. Pons from the RL Test Set 3 corrected with three methods.

Fig. 19. b=0 s/mm2 image with Gibbs ringing artifacts due to signal pile-ups and the de-
formation field computed using this image, b) with no DWI or regularization, and c) with
DWIs and regularization.
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corrected Right–Left (RL) phase encoded data to its Anterior–Posterior
(AP) encoded counterpart with two subject populations on 1.5 and 3 T
scanners. In both cases, DR-BUDDI was generally superior to other
methods in achieving anatomical similarity between tensor derived
maps from corrected data acquired with RL and AP phase encoding.

Several common acquisition issues affect the quality of the blip-up
blip-down correction methods. The first of these issues is motion be-
tween the blip-up and down scans. In general, the blip-up and down
scans should image the same object in the same position, with an iden-
tical orientation of phase encoding. Obviously, subject motion may vio-
late these assumptions and may also produce a change in the local B0
field. From our initial observations we found that the effects of motion
are not negligible with current blip-up blip-down acquisition schemes
of acquiring a full dataset for blip-up, followed by blip-down (not inter-
leaved). Simply rigidly aligning images and performing correction as if
the phase-encoding directions of the images were aligned, and as if
ΔB0 was identical, led to unsatisfactory results. DR-BUDDI accounts for
the possibility that the phase-encode orientation of the blip-up and
down images may be inconsistent, and uses a two-deformation field
model with a structural target to increase robustness. These strategies
helped to improve the correction quality in the presence of minor
Fig. 18. FA (top row) and TR (bottom row) difference maps between data acquired with
scanners from different vendors.
misalignment, but a robust solution is still needed in the case of large
motion.

Another acquisition related issue is the use of parallel imaging. Due
to the reduced degree of distortions, correcting the distortions in data
acquired with parallel imaging was significantly less challenging than
without parallel imaging. However, in our experience, images acquired
with parallel imaging, regardless of the magnet manufacturer, suffer
from some degree of ghosting. DR-BUDDI opens the possibility of
obtaining usable images from 3 T scans acquired without parallel
imaging.

Numerous other issues affect correction quality as well. These in-
cludeflow artifacts, Gibbs ringing, ghosting, hitting the noise floor in ex-
panded regions, and gradient non-linearities. Even though we did not
investigate all these issues, we have shown examples of how DR-
BUDDI can handle Gibbs ringing and flow artifacts. Dealing with these
challenges necessitates clever deformation regularization strategies or
extra sets of images, which do not suffer from these issues. Using both
structural and diffusion-weighted images within the DR-BUDDI frame-
work provides fundamental improvements for the convergence of the
algorithm to a more stable solution. However, in the presence of such
artifacts, the parameters, specifically image and metric weights, need
to be adjusted accordingly.

With our numerous experiments testing DR-BUDDI correction, we
realized that no set of fixed parameters produced optimal results for
all types of data. In general, we noticed that imageswithmoderate to se-
vere degrees of distortion, including most 3 T data acquired with paral-
lel imaging on magnets by the three major manufacturers, can be very
effectively corrected with the default settings. Tweaking of parameters
was sometimes necessary for atypical data. For example, for data with
extremely large EPI distortions, better correction performance was
achieved by increasing the optimization step-length, the correlation
window size or the time parameterization. Data with pronounced
Gibbs' ringing artifacts on the b= 0 s/mm2 images required further de-
formation field regularization by increasing the regularization
operator's kernel size and increasing the weighting of the DWIs,
which do not suffer from these artifacts. We experienced few instances
in which the initial quadratic or affine registration failed, in particular
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when we used a previously masked structural image. The solution in
this case was to perform a rigid registration of the b = 0 images to the
structural image, an option which is available to the user in DR-BUDDI.
Additionally, we wanted to give users the ability to synthesize DWIs
through thediffusion tensormodel. In our experience, using the individ-
ual DWIs worked relatively well, however, it can be very time consum-
ing for data sets with a large number of diffusion directions. Using
synthetic images helps as a dimensionality reduction strategy and it
can also be useful in situations where a few DWIs are artifactual.

Another important aspect we learned about in this work is how to
assess the quality of corrections when dealing with diffusion MRI data.
Traditionally, the similarity of the reconstructed b = 0 images to a
distortion-free anatomical image has been the main assessment tool.
However, we have often seen that even when the corrected b = 0 im-
ages seemperfectly alignedwith the structural image, thedirectionality,
size, and anisotropy of white matter bundles from the DWI data might
be anatomically inaccurate. The most egregious examples were found
in the pons, where the left and right motor pathways were sometimes
fused into a single bundle or split into three bundles after correction.
Therefore, we believe it is of fundamental importance to asses the qual-
ity of a blip-up blip-down correction method by checking the
directionally encoded color maps and fiber tractography results as sug-
gested in Irfanoglu et al. (2012). The Trace or Mean Diffusivity maps are
also very important to assess the amount of CSF bleeding into parenchy-
mal structures after registration.

As stated previously, motion has an effect on the B-matrices. After
DR-BUDDI correction, we generate a corrected blip-up data set and a
corrected blip-down data set, each with its own B-matrix, which are
later combined with geometric averaging to generate the final signal-
redistributed data. In the presence of motion, the B-matrices for the
two corrected data sets can be significantly different, and the combina-
tion of these two B-matrices for the final data is mathematically not
straightforward. In our software package, we simply linearly average
these two matrices. This approximation is acceptable when motion is
small but not when it is extreme. As a result of extrememotion, the dis-
tortions for the blip-up and down images will be significantly different
and the corresponding diffusion-weighted volumes will have different
diffusion contrasts. In this case, these volumes should either be exclud-
ed from the tensor computations or the two data sets should be
concatenated rather than averaged geometrically.

Themetrics proposed in thiswork assumed a T2 contrast for the struc-
tural images because the cross-correlation measure used to derive the
proposed metrics requires a similar contrast between the b = 0 s/mm2

and the structural images. In our experiments, the structural images
were fat-suppressed T2W images. Another reason for using fat suppressed
T2W images is that the strong signal from the soft tissue in the head in
T1W images, as well as the non fat-suppressed T2W images, may cause
the algorithm to stretch brain regions into the skull. To use T1W images
as structural images, a mutual information version of the metrics pro-
posed in this work should be implemented.

Another question related to the acquisition is about the choice of
phase-encoding directions. In our previous work (Irfanoglu et al.,
2012), we reported that data acquired with Right–Left (or Left–
Right) phase encoding are more prone to spurious tract asymmetries
between the right and left hemispheres and that this encoding op-
tion should be avoided if possible. However, the EPI distortion cor-
rection strategy used in that work was less effective than those
achievable with blip-up blip down methods. Blip-up blip-down ac-
quisitions and corrections show great potential in this area as we
have shown in this work with the similarity of corrected images
with AP and RL phase encoding. With RL phase encoding, the number
of phase-encoding lines in RL acquisitions can be reduced when a
rectangular FOV is used; this strategy will reduce echo time, and,
consequently, increase SNR and possibly reduce total scan time. It
may therefore be advantageous to consider using RL phase encoding
for blip-up blip-down corrections.
In addition to DTI, we have been successfully using the proposed
method with HARDI multi-shell acquisitions as well. Employing the
b= 0 s/mm2 and the low q regime images to estimate the deformation
fields and using these fields to correct the high q images have produced
good results for diffusion models that are more complex than the diffu-
sion tensor.

Finally, we would like to discuss the advantages of blip-up blip-
down protocols. In general, because the modality and the quality of
the acquisitions are limited by scan time, especially in clinical settings,
onemight question themarginal advantage of blip-up blip-down acqui-
sitions. At this point, we can clearly state that the correction quality
achieved with blip-up blip-down data for both the white matter and
cortical graymatter regions is unmatched compared with previous cor-
rection approaches, such as fieldmapping or simple elastic registration.
It is important to consider that even though the two datasets are
merged into a single one, there is not a loss in terms of scan time be-
cause the merging operation also increases the SNR of the final images.
Therefore, if scan time is an issue for DTI acquisitions, then it might be
more advantageous to reduce the number of diffusion-weighted direc-
tions and acquire blip-up and down data. Therefore, considering the ad-
vantages, we expect the diffusion MRI field to move toward protocols
with blip-up blip-down acquisitions for clinical scans in the near future.
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Appendix A

Displacements from SyN metric

For completeness, SyN displacement derivations will be repeated
here. See Avants et al. (2008) for further details. Following the notations
of Avants et al. (2008), let the local cross-correlation metric be:

ξ ¼ CC I0up; I
0
down;x

� �
¼ b I0up; I

0
down N

2

b I0up; I
0
up Nb I0down; I

0
downN

¼ A2
=BC ð12Þ

b I0up; I
0
down N ¼

Xn�n�n

x¼1

I0up xð Þ−μup

� �
I0down xð Þ−μdown

	 
 ð13Þ

¼
Xn�n�n

x¼1

Iup xð ÞIdown xð Þ ð14Þ

with n the local correlationwindow size, μup themean signal within this
window from Iup′, and Īup(x) = Iup′(x) − μup.
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The displacements can be computed using Euler–Lagrange equa-
tions applied to Eq. (12). From chain rule:

∂ξ
∂ϕ1

¼ 1
BCð Þ2 2ABC

∂A
∂ϕ1

−A2C
∂B
∂ϕ1

� �
ð15Þ

¼ 2A
BC

∂A
∂ϕ1

− A2

B2C
∂B
∂ϕ1

ð16Þ

¼ A
BC

2
∂A
∂x

∂x
∂ϕ1

−A
B
∂B
∂x

∂x
∂ϕ1

� �
ð17Þ

with

∂A
∂x ¼ Idown

∂I0up
∂x ;

∂B
∂x ¼ 2Iup

∂I0up
∂x

∂ξ
∂ϕ1

¼ 2A
BC

J ϕ1ð Þ ∂I
0
up

∂x Idown−
A
B
Iup

� �
: ð18Þ

Similarly:

∂ξ
∂ϕ2

¼ 2A
BC

J ϕ2ð Þ ∂I
0
down

∂x Iup−
A
C
Idown

� �
: ð19Þ

Displacements when a structural image is used

InMetric 3 of Eq. (3), because the second termof the summation does
not depend on ϕ1, its gradient reduces to zero. The gradient of the first
term can be computed in the same manner as in Appendix A.1 to yield:

∂ξ3
∂ϕ1

xð Þ ¼ 2b I0up;S N

b I0up; I
0
up Nb S;S N

� S− b I0up;S N

b I0up; I
0
up N

I0up

 !�����J ϕ1ð Þj∇I0up ð20Þ

and for the down image:

∂ξ3
∂ϕ2

xð Þ ¼ 2b I0dw;S N

b I0dw; I
0
dw Nb S;S N

� S− b I0dw;S N

b I0dw; I
0
downN

I0dw

� �
jJ ϕ2ð Þj∇I0dw:

ð21Þ

Displacements from signal redistribution metric

By chain rule, the displacementswhen a structural image and signal-
redistributed image are used can be found as:

∂ξ4
∂ϕ1

¼ ∂ξ4
∂K

∂K
∂ϕ1

;
∂ξ4
∂ϕ2

¼ ∂ξ4
∂K

∂K
∂ϕ2

: ð22Þ

Similarly to the previous derivations:

∂ξ4
∂K ¼ 2bK0

;S N

bK0;K0 Nb S;S N
S− bK0

;S N

bK0;K0 N
K

� �
ð23Þ

and

∂K
∂ϕ1

¼ 2
I0down

I0up þ I0down

 !2

jJ ϕ1ð Þj∇I0up ð24Þ

∂K
∂ϕ2

¼ 2
I0up

I0up þ I0down

 !2

jJ ϕ2ð Þj∇I0down: ð25Þ
Deformation equality soft constraints

Assuming there is no motion between the up and down images and

no changes in the B0 field, we would expect ∂ξi
∂ϕ1

to be equal to ∂ξi
∂ϕ2

� �−1
.

Then the weighted average for the new displacement, which assumes
nomotion but changes in the B0 field can bewritten as (with β∈ [0,1]):

∂ξi
∂ϕ1

f

xð Þ ¼ ∂ξi
∂ϕ1

xð Þ þ β
2

∂ξi
∂ϕ2

� �−1

xð Þ− ∂ξi
∂ϕ1

xð Þ
 !

: ð26Þ

In the presence of motion, one cannot simply average the dis-
placements from the two fields because the phase encoding direc-
tions are different. Therefore, one needs to rotate the displacement
vector of the “other” field onto the current one. This can be done by
using the rotation matrices that mapped both the up and down im-
ages onto the structural image. Hence, the rotated displacement vec-
tor can be written as:

∂ξi
∂ϕ2

� �−1

rotated
xð Þ ¼ RT

upRdown
∂ξi
∂ϕ2

� �−1

xð Þ ð27Þ

producing the soft-constrained deformation field equation as:

∂ξi
∂ϕ1

f

xð Þ ¼ ∂ξi
∂ϕ1

xð Þ þ β
2

RT
upRdown

∂ξi
∂φ2

� �−1

xð Þ− ∂ξi
∂ϕ1

xð Þ
 !

: ð28Þ

Anisotropic deformation regularization

In this section, we will first recap the PDE regularization method for
vector images proposed by Tschumperlé & Deriche (2005) and then
describe how we use it in our framework. Let G(σ) be an isotropic
Gaussian kernel with standard deviation σ, and let the displacement

field originating from channel i of ∂ξ
∂ϕ1;2

� �
be Di. The traditional approach

to regularize the deformation fields is with Gaussian convolution as:

Dregularized
i ¼ Di � G σð Þ

where ∗ is the convolution operator, which is identical to:

∂Di

∂t ¼ trace Hið Þ ð29Þ

where Hi is the local Hessian matrix of the vector component Di, and
time parameterization t defines the standard deviation σ in the con-
volution formulation. However, one is not restricted to isotropic
Gaussian with this PDE-based formulation. If we introduce a 3 × 3
anisotropic structure diffusion tensor T (not to be confused with dif-
fusion MRI tensor) to Eq. (29), the new regularization equation be-
comes:

∂Di

∂t ¼ trace THið Þ ð30Þ

which is identical to:

Dt
i ¼ Dt¼0

i � G T; tð Þ with G T; tð Þ xð Þ ¼ 1
4πt

e−
xT T−1x

4t :

One can choose any anisotropic diffusion tensor T to filter the image.
However, to use a locally varying tensor T(x) that depends on local
structures of image Di is a common and intelligent practice that pre-
vents blurring and intermixing of image structures. Because Di is a dis-
placement field and not a typical image in this work, we compute T(x)
from the structure tensor field of the original images I′i. Let ∇ signify
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the spatial gradient operator. Then the structure tensor M(x) can be
written as:

M xð Þ ¼
XN
j¼1

∇I0j xð Þ∇I0Tj xð Þ:

Note again that this structure tensor is based on the gradients of the
original diffusion weighted and b=0 images and not the displacement
fields. Let u1(x), u2(x), and u3(x) be the eigenvectors of M(x) and
λ1,2,3(x) be the corresponding sorted eigenvalues. Then the anisotropic
diffusion tensor is computed as [as in Tschumperlé and Deriche,
2005)]:

T xð Þ ¼
X3
i¼1

f i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace M xð Þð Þ

p� �
ui xð ÞuT

i xð Þ ð31Þ

where the functions fi(s) = (1 + s2)−1/i.
This formulation couples the different diffusion-weighted image

channels through the structure tensor M and prevents the blurring of
small structures in the transformed images Ii′ by the deformation field
regularizer.

DR-BUDDI default settings

• Gradient descent step-length: 1.5
• Correlation window size: 7
• Initial registration type: Quadratic
• b = 0 s/mm2 image type: From tensor estimation
• DWI type: Synthesized
• # of DWIS: 6
• DWI and b = 0 image weighting: Equal
• Metrics: ξ2 and ξ3
• Metric weighting: Equal
• Restriction: Along the phase-encode direction
• Up and down deformation symmetry: Not enforced
• Deformation regularization: Anistropic
• # of anisotropic regularization steps: 5
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